Abstract
Background: MicroRNAs (miRNAs) are crucial in cancer development and progression, and therapies targeting miRNAs demonstrate great therapeutic promise.
Aim: We sought to predict the prognosis and therapeutic response of lung adenocarcinoma (LUAD) by classifying molecular subtypes and constructing a prognostic model based on miRNA-related genes.
Methods: This study was based on miRNA-mRNA action pairs and ceRNA networks in the Cancer Genome Atlas (TCGA) database. Three molecular subtypes were determined based on 64 miRNA-associated target genes identified in the ceRNA network. The S3 subtype had the best prognosis, and the S2 subtype had the worst prognosis. The S2 subtype had a higher tumor mutational load (TMB) and a lower immune score. The S2 subtype was more suitable for immunotherapy and sensitive to chemotherapy. The least absolute shrinkage and selection operator (LASSO) algorithm was performed to determine eight miRNA-associated target genes for the construction of prognostic models.
Result: High-risk patients had a poorer prognosis, lower immune score, and lower response to immunotherapy. Robustness was confirmed in the Gene-Expression Omnibus (GEO) database cohort (GSE31210, GSE50081, and GSE37745 datasets). Overall, our study deepened the understanding of the mechanism of miRNA-related target genes in LUAD and provided new ideas for classification.
Conclusion: Such miRNA-associated target gene characterization could be useful for prognostic prediction and contribute to therapeutic decision-making in LUAD.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[http://dx.doi.org/10.1007/s00595-017-1497-7] [PMID: 28280984]
[http://dx.doi.org/10.1073/pnas.1305322110] [PMID: 23620514]
[http://dx.doi.org/10.1242/dmm.047662] [PMID: 33973623]
[http://dx.doi.org/10.1002/jcp.27486] [PMID: 30471116]
[http://dx.doi.org/10.3390/ijms21051723] [PMID: 32138313]
[http://dx.doi.org/10.7150/ijbs.47203] [PMID: 32792861]
[http://dx.doi.org/10.1002/hed.26089] [PMID: 31981257]
[http://dx.doi.org/10.1186/s13148-018-0587-8] [PMID: 30744689]
[http://dx.doi.org/10.3389/fgene.2018.00174] [PMID: 29868122]
[http://dx.doi.org/10.1016/j.canlet.2018.10.038] [PMID: 30389433]
[http://dx.doi.org/10.1093/bioinformatics/btg405] [PMID: 14960456]
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[http://dx.doi.org/10.1038/ng1536] [PMID: 15806104]
[http://dx.doi.org/10.1186/gb-2003-5-1-r1] [PMID: 14709173]
[http://dx.doi.org/10.1371/journal.pbio.0020363] [PMID: 15502875]
[http://dx.doi.org/10.1101/gad.1184704] [PMID: 15131085]
[http://dx.doi.org/10.1093/bioinformatics/btp503] [PMID: 19692556]
[PMID: 31647101]
[http://dx.doi.org/10.1093/nar/gkz757] [PMID: 31504780]
[http://dx.doi.org/10.1016/j.cell.2006.07.031] [PMID: 16990141]
[http://dx.doi.org/10.1093/bioinformatics/bts344] [PMID: 22718787]
[http://dx.doi.org/10.1038/ng2135] [PMID: 17893677]
[http://dx.doi.org/10.1038/nsmb1226] [PMID: 17401373]
[http://dx.doi.org/10.1038/nature03817] [PMID: 15951802]
[http://dx.doi.org/10.1016/S0092-8674(03)01018-3] [PMID: 14697198]
[http://dx.doi.org/10.1093/nar/gkt1248] [PMID: 24297251]
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[http://dx.doi.org/10.1093/nar/gkz401] [PMID: 31114916]
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[http://dx.doi.org/10.1038/nature25501] [PMID: 29443960]
[http://dx.doi.org/10.1016/S0140-6736(16)32455-2] [PMID: 27939400]
[http://dx.doi.org/10.1371/journal.pone.0107468] [PMID: 25229481]
[http://dx.doi.org/10.1016/j.cell.2017.09.028]
[http://dx.doi.org/10.1016/j.cell.2016.02.065] [PMID: 26997480]
[http://dx.doi.org/10.1186/s13148-020-00907-4] [PMID: 32762727]
[http://dx.doi.org/10.3892/ol.2019.10462] [PMID: 31423286]
[http://dx.doi.org/10.3892/or.2017.5880] [PMID: 28791371]
[http://dx.doi.org/10.1042/BSR20191554] [PMID: 31950990]
[http://dx.doi.org/10.2174/1568009617666170630142725] [PMID: 28669338]
[http://dx.doi.org/10.7150/jca.60419] [PMID: 34729113]
[http://dx.doi.org/10.3389/fmolb.2022.822739] [PMID: 35372503]
[http://dx.doi.org/10.1016/j.lfs.2019.117147] [PMID: 31830480]
[http://dx.doi.org/10.1021/acs.jafc.0c01302] [PMID: 32452677]
[http://dx.doi.org/10.3390/cancers12061535] [PMID: 32545367]
[http://dx.doi.org/10.3389/fmolb.2020.602328] [PMID: 33330629]
[http://dx.doi.org/10.1016/j.ebiom.2020.102990] [PMID: 32927274]
[http://dx.doi.org/10.3389/fimmu.2022.983570] [PMID: 36275753]
[http://dx.doi.org/10.1056/NEJMoa1910231] [PMID: 31562796]
[http://dx.doi.org/10.1158/0008-5472.CAN-22-0283] [PMID: 36052492]
[http://dx.doi.org/10.18632/oncotarget.26071] [PMID: 30279964]
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1011] [PMID: 30185552]
[http://dx.doi.org/10.1001/jamaoncol.2022.1981] [PMID: 35708671]
[http://dx.doi.org/10.1038/nrg3871] [PMID: 25645873]
[http://dx.doi.org/10.3390/cells10051002] [PMID: 33923166]
[http://dx.doi.org/10.1186/s13046-019-1470-y] [PMID: 31852504]
[http://dx.doi.org/10.1080/21655979.2022.2063537] [PMID: 35441565]
[http://dx.doi.org/10.1111/jcmm.15755] [PMID: 32885593]
[http://dx.doi.org/10.1093/carcin/bgz020] [PMID: 30916759]
[http://dx.doi.org/10.1093/nar/gky1012] [PMID: 30371874]
[http://dx.doi.org/10.1093/nar/gky229] [PMID: 29660014]
[http://dx.doi.org/10.1016/j.cbi.2022.110190] [PMID: 36162454]
[http://dx.doi.org/10.2139/ssrn.4318397]
[http://dx.doi.org/10.21037/atm.2020.03.98] [PMID: 32355831]
[http://dx.doi.org/10.1016/j.apsb.2021.07.027] [PMID: 35024318]
[http://dx.doi.org/10.21037/atm-21-1392] [PMID: 34164477]
[http://dx.doi.org/10.1177/1758835920937904] [PMID: 32655701]
[http://dx.doi.org/10.1016/j.ncrna.2020.11.003] [PMID: 33251387]