Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Akkermansia muciniphila - A Potential Next-generation Probiotic for Non-alcoholic Fatty Liver Disease

Author(s): Goutam Banerjee*, Suraya R. Papri, Sanjaya K. Satapathy* and Pratik Banerjee*

Volume 25, Issue 4, 2024

Published on: 22 September, 2023

Page: [426 - 433] Pages: 8

DOI: 10.2174/1389201025666230915103052

Price: $65

Abstract

Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver conditions, and its growing prevalence is a serious concern worldwide, especially in Western countries. Researchers have pointed out several genetic mutations associated with NAFLD; however, the imbalance of the gut microbial community also plays a critical role in the progression of NAFLD. Due to the lack of approved medicine, probiotics gain special attention in controlling metabolic disorders like NAFLD. Among these probiotics, Akkermansia muciniphila (a member of natural gut microflora) is considered one of the most efficient and important bacterium in maintaining gut health, energy homeostasis, and lipid metabolism. In this perspective, we discussed the probable molecular mechanism of A. muciniphila in controlling the progression of NAFLD and restoring liver health. The therapeutic potential of A. muciniphila in NAFLD has been tested primarily on animal models, and thus, more randomized human trials should be conducted to prove its efficacy.

Graphical Abstract

[1]
Eslam, M.; Sanyal, A.J.; George, J.; Sanyal, A.; Neuschwander-Tetri, B.; Tiribelli, C. MAFLD: A consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology, 2020, 158(7), 1999-2014.
[http://dx.doi.org/10.1053/j.gastro.2019.11.312]
[2]
Satapathy, S.K.; Banerjee, P.; Pierre, J.F.; Higgins, D.; Dutta, S.; Heda, R.; Khan, S.D.; Mupparaju, V.K.; Mas, V.; Nair, S.; Eason, J.D.; Kleiner, D.E.; Maluf, D.G. Characterization of gut microbiome in liver transplant recipients with nonalcoholic steatohepatitis. Transplant. Direct, 2020, 6(12), e625.
[http://dx.doi.org/10.1097/TXD.0000000000001033] [PMID: 33204823]
[3]
Neuschwander-Tetri, B.A. Non-alcoholic fatty liver disease. BMC Med., 2017, 15(1), 45.
[http://dx.doi.org/10.1186/s12916-017-0806-8] [PMID: 28241825]
[4]
Hazlehurst, J.M.; Woods, C.; Marjot, T.; Cobbold, J.F.; Tomlinson, J.W. Non-alcoholic fatty liver disease and diabetes. Metabolism, 2016, 65(8), 1096-1108.
[http://dx.doi.org/10.1016/j.metabol.2016.01.001] [PMID: 26856933]
[5]
Asgharpour, A.; Cazanave, S.C.; Pacana, T.; Seneshaw, M.; Vincent, R.; Banini, B.A.; Kumar, D.P.; Daita, K.; Min, H.K.; Mirshahi, F.; Bedossa, P.; Sun, X.; Hoshida, Y.; Koduru, S.V.; Contaifer, D., Jr; Warncke, U.O.; Wijesinghe, D.S.; Sanyal, A.J. A diet-induced animal model of non-alcoholic fatty liver disease and hepatocellular cancer. J. Hepatol., 2016, 65(3), 579-588.
[http://dx.doi.org/10.1016/j.jhep.2016.05.005] [PMID: 27261415]
[6]
Miele, L.; Valenza, V.; La Torre, G.; Montalto, M.; Cammarota, G.; Ricci, R.; Mascianà, R.; Forgione, A.; Gabrieli, M.L.; Perotti, G.; Vecchio, F.M.; Rapaccini, G.; Gasbarrini, G.; Day, C.P.; Grieco, A. Increased intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology, 2009, 49(6), 1877-1887.
[http://dx.doi.org/10.1002/hep.22848] [PMID: 19291785]
[7]
De Munck, T.J.I.; Xu, P.; Verwijs, H.J.A.; Masclee, A.A.M.; Jonkers, D.; Verbeek, J.; Koek, G.H. Intestinal permeability in human nonalcoholic fatty liver disease: A systematic review and meta-analysis. Liver Int., 2020, 40(12), 2906-2916.
[http://dx.doi.org/10.1111/liv.14696] [PMID: 33037768]
[8]
Kim, S-K.; Guevarra, R.B.; Kim, Y-T.; Kwon, J.; Kim, H.; Cho, J.H. Role of probiotics in human gut microbiome-associated diseases. J. Microbiol. Biotechnol., 2019, 29(9), 1335-1340.
[http://dx.doi.org/10.4014/jmb.1906.06064]
[9]
Huang, Z.; Liu, K.; Ma, W.; Li, D.; Mo, T.; Liu, Q. The gut microbiome in human health and disease—Where are we and where are we going? A bibliometric analysis. Front. Microbiol., 2022, 13, 1018594.
[http://dx.doi.org/10.3389/fmicb.2022.1018594] [PMID: 36590421]
[10]
Albhaisi, S.A.M.; Bajaj, J.S. The influence of the microbiome on NAFLD and NASH. Clin. Liver Dis., 2021, 17(1), 15-18.
[http://dx.doi.org/10.1002/cld.1010] [PMID: 33552480]
[11]
Imajo, K.; Fujita, K.; Yoneda, M.; Nozaki, Y.; Ogawa, Y.; Shinohara, Y.; Kato, S.; Mawatari, H.; Shibata, W.; Kitani, H.; Ikejima, K.; Kirikoshi, H.; Nakajima, N.; Saito, S.; Maeyama, S.; Watanabe, S.; Wada, K.; Nakajima, A. Hyperresponsivity to low-dose endotoxin during progression to nonalcoholic steatohepatitis is regulated by leptin-mediated signaling. Cell Metab., 2012, 16(1), 44-54.
[http://dx.doi.org/10.1016/j.cmet.2012.05.012] [PMID: 22768838]
[12]
Zhu, L.; Baker, S.S.; Gill, C.; Liu, W.; Alkhouri, R.; Baker, R.D.; Gill, S.R. Characterization of gut microbiomes in nonalcoholic steatohepatitis (NASH) patients: A connection between endogenous alcohol and NASH. Hepatology, 2013, 57(2), 601-609.
[http://dx.doi.org/10.1002/hep.26093] [PMID: 23055155]
[13]
Wong, V.W.S.; Tse, C.H.; Lam, T.T.Y.; Wong, G.L.H.; Chim, A.M.L.; Chu, W.C.W.; Yeung, D.K.W.; Law, P.T.W.; Kwan, H.S.; Yu, J.; Sung, J.J.Y.; Chan, H.L.Y. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis--a longitudinal study. PLoS One, 2013, 8(4), e62885.
[http://dx.doi.org/10.1371/journal.pone.0062885] [PMID: 23638162]
[14]
Mouzaki, M.; Comelli, E.M.; Arendt, B.M.; Bonengel, J.; Fung, S.K.; Fischer, S.E.; McGilvray, I.D.; Allard, J.P. Intestinal microbiota in patients with nonalcoholic fatty liver disease. Hepatology, 2013, 58(1), 120-127.
[http://dx.doi.org/10.1002/hep.26319] [PMID: 23401313]
[15]
Umirah, F.; Neoh, C.F.; Ramasamy, K.; Lim, S.M. Differential gut microbiota composition between type 2 diabetes mellitus patients and healthy controls: A systematic review. Diabetes Res. Clin. Pract., 2021, 173, 108689.
[http://dx.doi.org/10.1016/j.diabres.2021.108689] [PMID: 33549678]
[16]
Hassouneh, R.; Kim, C.; Behary, J.; Zekry, A.; Bajaj, J. Microbiota and liver disease.: year in review. Microb. Health Dis., 2021, 3, e584.
[http://dx.doi.org/10.26355/mhd_20219_584]
[17]
Palmas, V.; Pisanu, S.; Madau, V.; Casula, E.; Deledda, A.; Cusano, R.; Uva, P.; Vascellari, S.; Loviselli, A.; Manzin, A.; Velluzzi, F. Gut microbiota markers associated with obesity and overweight in Italian adults. Sci. Rep., 2021, 11(1), 5532.
[http://dx.doi.org/10.1038/s41598-021-84928-w] [PMID: 33750881]
[18]
Ruuskanen, M.O.; Åberg, F.; Männistö, V.; Havulinna, A.S.; Méric, G.; Liu, Y.; Loomba, R.; Vázquez-Baeza, Y.; Tripathi, A.; Valsta, L.M.; Inouye, M.; Jousilahti, P.; Salomaa, V.; Jain, M.; Knight, R.; Lahti, L.; Niiranen, T.J. Links between gut microbiome composition and fatty liver disease in a large population sample. Gut Microbes, 2021, 13(1), 1888673.
[http://dx.doi.org/10.1080/19490976.2021.1888673] [PMID: 33651661]
[19]
Ferguson, D.; Finck, B.N. Emerging therapeutic approaches for the treatment of NAFLD and type 2 diabetes mellitus. Nat. Rev. Endocrinol., 2021, 17(8), 484-495.
[http://dx.doi.org/10.1038/s41574-021-00507-z] [PMID: 34131333]
[20]
Astbury, S.; Atallah, E.; Vijay, A.; Aithal, G.P.; Grove, J.I.; Valdes, A.M. Lower gut microbiome diversity and higher abundance of proinflammatory genus Collinsella are associated with biopsy-proven nonalcoholic steatohepatitis. Gut Microbes, 2020, 11(3), 569-580.
[http://dx.doi.org/10.1080/19490976.2019.1681861] [PMID: 31696774]
[21]
Loomba, R.; Seguritan, V.; Li, W.; Long, T.; Klitgord, N.; Bhatt, A. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab., 2017, 25(5), 1054-1062.
[http://dx.doi.org/10.1016/j.cmet.2017.04.001]
[22]
Rinella, M.E.; Neuschwander-Tetri, B.A.; Siddiqui, M.S.; Abdelmalek, M.F.; Caldwell, S.; Barb, D.; Kleiner, D.E.; Loomba, R. AASLD practice guidance on the clinical assessment and management of nonalcoholic fatty liver disease. Hepatology, 2023, 77(5), 1797-1835.
[http://dx.doi.org/10.1097/HEP.0000000000000323] [PMID: 36727674]
[23]
Abenavoli, L.; Scarpellini, E.; Rouabhia, S.; Balsano, C.; Luzza, F. Probiotics in non-alcoholic fatty liver disease: Which and when. Ann. Hepatol., 2013, 12(3), 357-363.
[http://dx.doi.org/10.1016/S1665-2681(19)30997-4] [PMID: 23619251]
[24]
Depommier, C.; Everard, A.; Druart, C.; Plovier, H.; Van Hul, M.; Vieira-Silva, S.; Falony, G.; Raes, J.; Maiter, D.; Delzenne, N.M.; de Barsy, M.; Loumaye, A.; Hermans, M.P.; Thissen, J.P.; de Vos, W.M.; Cani, P.D. Supplementation with Akkermansia muciniphila in overweight and obese human volunteers: A proof-of-concept exploratory study. Nat. Med., 2019, 25(7), 1096-1103.
[http://dx.doi.org/10.1038/s41591-019-0495-2] [PMID: 31263284]
[25]
Roshanravan, N.; Bastani, S.; Tutunchi, H.; Kafil, B.; Nikpayam, O.; Mesri Alamdari, N. A comprehensive systematic review of the effectiveness of Akkermansia muciniphila, a member of the gut microbiome, for the management of obesity and associated metabolic disorders. Arch. Physiol. Biochem., 2023, 129(3), 741-751.
[http://dx.doi.org/10.3390/microorganisms9051098] [PMID: 33449810]
[26]
Derrien, M.; Vaughan, E.E.; Plugge, C.M.; de Vos, W.M. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int. J. Syst. Evol. Microbiol., 2004, 54(5), 1469-1476.
[http://dx.doi.org/10.1099/ijs.0.02873-0] [PMID: 15388697]
[27]
Zhang, T.; Ji, X.; Lu, G.; Zhang, F. The potential of akkermansia muciniphila in inflammatory bowel disease. Appl. Microbiol. Biotechnol., 2021, 105(14-15), 5785-5794.
[http://dx.doi.org/10.1007/s00253-021-11453-1] [PMID: 34312713]
[28]
Shi, Z.; Lei, H.; Chen, G.; Yuan, P.; Cao, Z.; Ser, H.L.; Zhu, X.; Wu, F.; Liu, C.; Dong, M.; Song, Y.; Guo, Y.; Chen, C.; Hu, K.; Zhu, Y.; Zeng, X.; Zhou, J.; Lu, Y.; Patterson, A.D.; Zhang, L. Impaired intestinal Akkermansia muciniphila and aryl hydrocarbon receptor ligands contribute to nonalcoholic fatty liver disease in mice. mSystems, 2021, 6(1), e00985-e20.
[http://dx.doi.org/10.1128/mSystems.00985-20] [PMID: 33622853]
[29]
Sanjiwani, M.I.D.; Aryadi, I.P.H.; Semadi, I.M.S. Review of literature on Akkermansia muciniphila and its possible role in the etiopathogenesis and therapy of type 2 diabetes mellitus. J. ASEAN Fed. Endocr. Soc., 2022, 37(1), 69-74.
[http://dx.doi.org/10.15605/jafes.037.01.13] [PMID: 35800592]
[30]
Nistal, E.; Saenz de Miera, L.E.; Ballesteros Pomar, M.; Sánchez-Campos, S.; García-Mediavilla, M.V.; Álvarez-Cuenllas, B. An altered fecal microbiota profile in patients with non-alcoholic fatty liver disease (NAFLD) associated with obesity. Rev. Esp. Enferm. Dig., 2019, 111(4), 275-282.
[http://dx.doi.org/10.17235/reed.2019.6068/2018]
[31]
Perraudeau, F.; McMurdie, P.; Bullard, J.; Cheng, A.; Cutcliffe, C.; Deo, A.; Eid, J.; Gines, J.; Iyer, M.; Justice, N.; Loo, W.T.; Nemchek, M.; Schicklberger, M.; Souza, M.; Stoneburner, B.; Tyagi, S.; Kolterman, O. Improvements to postprandial glucose control in subjects with type 2 diabetes: A multicenter, double blind, randomized placebo-controlled trial of a novel probiotic formulation. BMJ Open Diabetes Res. Care, 2020, 8(1), e001319.
[http://dx.doi.org/10.1136/bmjdrc-2020-001319] [PMID: 32675291]
[32]
Rao, Y.; Kuang, Z.; Li, C.; Guo, S.; Xu, Y.; Zhao, D.; Hu, Y.; Song, B.; Jiang, Z.; Ge, Z.; Liu, X.; Li, C.; Chen, S.; Ye, J.; Huang, Z.; Lu, Y. Gut Akkermansia muciniphila ameliorates metabolic dysfunction-associated fatty liver disease by regulating the metabolism of L-aspartate via gut-liver axis. Gut Microbes, 2021, 13(1), 1927633.
[http://dx.doi.org/10.1080/19490976.2021.1927633] [PMID: 34030573]
[33]
Zhou, J.; Zhang, Q.; Zhao, Y.; Zou, Y.; Chen, M.; Zhou, S.; Wang, Z. The relationship of megamonas species with nonalcoholic fatty liver disease in children and adolescents revealed by metagenomics of gut microbiota. Sci. Rep., 2022, 12(1), 22001.
[http://dx.doi.org/10.1038/s41598-022-25140-2] [PMID: 36539432]
[34]
Liang, T.; Li, D.; Zunong, J.; Li, M.; Amaerjiang, N.; Xiao, H.; Khattab, N.; Vermund, S.; Hu, Y. Interplay of lymphocytes with the intestinal microbiota in children with nonalcoholic fatty liver disease. Nutrients, 2022, 14(21), 4641.
[http://dx.doi.org/10.3390/nu14214641] [PMID: 36364902]
[35]
Jinato, T.; Chayanupatkul, M.; Dissayabutra, T.; Chutaputti, A.; Tangkijvanich, P.; Chuaypen, N. Litchi-derived polyphenol alleviates liver steatosis and gut dysbiosis in patients with non-alcoholic fatty liver disease: A randomized double-blinded, placebo-controlled study. Nutrients, 2022, 14(14), 2921.
[http://dx.doi.org/10.3390/nu14142921] [PMID: 35889878]
[36]
Pan, X.; Kaminga, A.C.; Liu, A.; Wen, S.W.; Luo, M.; Luo, J. Gut microbiota, glucose, lipid, and water-electrolyte metabolism in children with nonalcoholic fatty liver disease. Front. Cell. Infect. Microbiol., 2021, 11, 683743.
[http://dx.doi.org/10.3389/fcimb.2021.683743] [PMID: 34778099]
[37]
Schwimmer, J.B.; Johnson, J.S.; Angeles, J.E.; Behling, C.; Belt, P.H.; Borecki, I.; Bross, C.; Durelle, J.; Goyal, N.P.; Hamilton, G.; Holtz, M.L.; Lavine, J.E.; Mitreva, M.; Newton, K.P.; Pan, A.; Simpson, P.M.; Sirlin, C.B.; Sodergren, E.; Tyagi, R.; Yates, K.P.; Weinstock, G.M.; Salzman, N.H. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology, 2019, 157(4), 1109-1122.
[http://dx.doi.org/10.1053/j.gastro.2019.06.028] [PMID: 31255652]
[38]
Iacono, A.; Raso, G.M.; Canani, R.B.; Calignano, A.; Meli, R. Probiotics as an emerging therapeutic strategy to treat NAFLD: Focus on molecular and biochemical mechanisms. J. Nutr. Biochem., 2011, 22(8), 699-711.
[http://dx.doi.org/10.1016/j.jnutbio.2010.10.002] [PMID: 21292470]
[39]
Khan, A.; Ding, Z.; Ishaq, M.; Bacha, A.S.; Khan, I.; Hanif, A.; Li, W.; Guo, X. Understanding the effects of gut microbiota dysbiosis on nonalcoholic fatty liver disease and the possible probiotics role: Recent updates. Int. J. Biol. Sci., 2021, 17(3), 818-833.
[http://dx.doi.org/10.7150/ijbs.56214] [PMID: 33767591]
[40]
Ritze, Y.; Bárdos, G.; Claus, A.; Ehrmann, V.; Bergheim, I.; Schwiertz, A.; Bischoff, S.C. Lactobacillus rhamnosus GG protects against non-alcoholic fatty liver disease in mice. PLoS One, 2014, 9(1), e80169.
[http://dx.doi.org/10.1371/journal.pone.0080169] [PMID: 24475018]
[41]
Yan, Y.; Liu, C.; Zhao, S.; Wang, X.; Wang, J.; Zhang, H.; Wang, Y.; Zhao, G. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease. AMB Express, 2020, 10(1), 101.
[http://dx.doi.org/10.1186/s13568-020-01038-y] [PMID: 32472368]
[42]
Si, J.; Kang, H.; You, H.J.; Ko, G. Revisiting the role of Akkermansia muciniphila as a therapeutic bacterium. Gut Microbes, 2022, 14(1), 2078619.
[http://dx.doi.org/10.1080/19490976.2022.2078619] [PMID: 35613313]
[43]
Cao, F.; Ding, Q.; Zhuge, H.; Lai, S.; Chang, K.; Le, C.; Yang, G.; Valencak, T.G.; Li, S.; Ren, D. Lactobacillus plantarum ZJUIDS14 alleviates non-alcoholic fatty liver disease in mice in association with modulation in the gut microbiota. Front. Nutr., 2023, 9, 1071284.
[http://dx.doi.org/10.3389/fnut.2022.1071284] [PMID: 36698477]
[44]
Depommier, C.; Vitale, R.M.; Iannotti, F.A.; Silvestri, C.; Flamand, N.; Druart, C.; Everard, A.; Pelicaen, R.; Maiter, D.; Thissen, J.P.; Loumaye, A.; Hermans, M.P.; Delzenne, N.M.; de Vos, W.M.; Di Marzo, V.; Cani, P.D. Beneficial effects of Akkermansia muciniphila are not associated with major changes in the circulating Endocannabinoidome but linked to higher Mono-Palmitoyl-Glycerol levels as new PPARα agonists. Cells, 2021, 10(1), 185.
[http://dx.doi.org/10.3390/cells10010185] [PMID: 33477821]
[45]
Rau, M.; Rehman, A.; Dittrich, M.; Groen, A.K.; Hermanns, H.M.; Seyfried, F.; Beyersdorf, N.; Dandekar, T.; Rosenstiel, P.; Geier, A. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United European Gastroenterol. J., 2018, 6(10), 1496-1507.
[http://dx.doi.org/10.1177/2050640618804444] [PMID: 30574320]
[46]
Yoon, S.J.; Yu, J.S.; Min, B.H.; Gupta, H.; Won, S.M.; Park, H.J.; Han, S.H.; Kim, B.Y.; Kim, K.H.; Kim, B.K.; Joung, H.C.; Park, T.S.; Ham, Y.L.; Lee, D.Y.; Suk, K.T. Bifidobacterium-derived short-chain fatty acids and indole compounds attenuate nonalcoholic fatty liver disease by modulating gut-liver axis. Front. Microbiol., 2023, 14, 1129904.
[http://dx.doi.org/10.3389/fmicb.2023.1129904] [PMID: 36937300]
[47]
LeBlanc, J.G.; Chain, F.; Martín, R.; Bermúdez-Humarán, L.G.; Courau, S.; Langella, P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb. Cell Fact., 2017, 16(1), 79.
[http://dx.doi.org/10.1186/s12934-017-0691-z] [PMID: 28482838]
[48]
Gou, H.Z.; Zhang, Y.L.; Ren, L.F.; Li, Z.J.; Zhang, L. How do intestinal probiotics restore the intestinal barrier? Front. Microbiol., 2022, 13, 929346.
[http://dx.doi.org/10.3389/fmicb.2022.929346] [PMID: 35910620]
[49]
Nian, F.; Wu, L.; Xia, Q.; Tian, P.; Ding, C.; Lu, X. Akkermansia muciniphila and Bifidobacterium bifidum prevent NAFLD by regulating FXR expression and gut microbiota. J. Clin. Transl. Hepatol., 2023, 11, 763-776.
[http://dx.doi.org/10.14218/JCTH.2022.00415]
[50]
Kim, S.; Lee, Y.; Kim, Y.; Seo, Y.; Lee, H.; Ha, J.; Lee, J.; Choi, Y.; Oh, H.; Yoon, Y. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl. Environ. Microbiol., 2020, 86(7), e03004-e03019.
[http://dx.doi.org/10.1128/AEM.03004-19] [PMID: 31953338]
[51]
Cao, C.; Shou, D.; Xu, H.; Huang, H.; Xia, Y.; Mei, Q.; Quan, Y.; Chen, H.; Zhao, C.; Tang, W.; Chen, H.; Zhau, Y. IDDF2021-ABS-0205 Akkermansia viable bacteria improves liver steatosis induced by high-fat diet relating to the regulation of gut microbiota in C57BL/6J MICE. Gut, 2021, 70, A8-A9.
[http://dx.doi.org/10.1136/gutjnl-2021-IDDF.11]
[52]
Gu, C.; Zhou, Z.; Yu, Z.; He, M.; He, L.; Luo, Z.; Xiao, W.; Yang, Q.; Zhao, F.; Li, W.; Shen, L.; Han, J.; Cao, S.; Zuo, Z.; Deng, J.; Yan, Q.; Ren, Z.; Zhao, M.; Yu, S. The microbiota and it’s correlation with metabolites in the gut of mice with nonalcoholic fatty liver disease. Front. Cell. Infect. Microbiol., 2022, 12, 870785.
[http://dx.doi.org/10.3389/fcimb.2022.870785] [PMID: 35694542]
[53]
Kersten, S. Integrated physiology and systems biology of PPARα. Mol. Metab., 2014, 3(4), 354-371.
[http://dx.doi.org/10.1016/j.molmet.2014.02.002] [PMID: 24944896]
[54]
Hasan, A.; Rahman, A.; Kobori, H. Interactions between host PPARs and gut microbiota in health and disease. Int. J. Mol. Sci., 2019, 20(2), 387.
[http://dx.doi.org/10.3390/ijms20020387] [PMID: 30658440]
[55]
Plovier, H.; Everard, A.; Druart, C.; Depommier, C.; Van Hul, M.; Geurts, L.; Chilloux, J.; Ottman, N.; Duparc, T.; Lichtenstein, L.; Myridakis, A.; Delzenne, N.M.; Klievink, J.; Bhattacharjee, A.; van der Ark, K.C.H.; Aalvink, S.; Martinez, L.O.; Dumas, M.E.; Maiter, D.; Loumaye, A.; Hermans, M.P.; Thissen, J.P.; Belzer, C.; de Vos, W.M.; Cani, P.D. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med., 2017, 23(1), 107-113.
[http://dx.doi.org/10.1038/nm.4236] [PMID: 27892954]
[56]
Yan, J.; Pan, Y.; Shao, W.; Wang, C.; Wang, R.; He, Y.; Zhang, M.; Wang, Y.; Li, T.; Wang, Z.; Liu, W.; Wang, Z.; Sun, X.; Dong, S. Beneficial effect of the short-chain fatty acid propionate on vascular calcification through intestinal microbiota remodelling. Microbiome, 2022, 10(1), 195.
[http://dx.doi.org/10.1186/s40168-022-01390-0] [PMID: 36380385]
[57]
Xiong, J.; Chen, X.; Zhao, Z.; Liao, Y.; Zhou, T.; Xiang, Q. A potential link between plasma short chain fatty acids, TNF-α level and disease progression in non alcoholic fatty liver disease: A retrospective study. Exp. Ther. Med., 2022, 24(3), 598.
[http://dx.doi.org/10.3892/etm.2022.11536] [PMID: 35949337]
[58]
Raftar, S.K.A.; Ashrafian, F.; Abdollahiyan, S.; Yadegar, A.; Moradi, H.R.; Masoumi, M.; Vaziri, F.; Moshiri, A.; Siadat, S.D.; Zali, M.R. The anti-inflammatory effects of Akkermansia muciniphila and its derivates in HFD/CCL4-induced murine model of liver injury. Sci. Rep., 2022, 12(1), 2453.
[http://dx.doi.org/10.1038/s41598-022-06414-1] [PMID: 35165344]
[59]
Martin-Gallausiaux, C.; Garcia-Weber, D.; Lashermes, A.; Larraufie, P.; Marinelli, L.; Teixeira, V.; Rolland, A.; Béguet-Crespel, F.; Brochard, V.; Quatremare, T.; Jamet, A.; Doré, J.; Gray-Owen, S.D.; Blottière, H.M.; Arrieumerlou, C.; Lapaque, N. Akkermansia muciniphila upregulates genes involved in maintaining the intestinal barrier function via ADP-heptose-dependent activation of the ALPK1/TIFA pathway. Gut Microbes, 2022, 14(1), 2110639.
[http://dx.doi.org/10.1080/19490976.2022.2110639] [PMID: 36036242]
[60]
Han, Y.; Li, L.; Wang, B. Role of Akkermansia muciniphila in the development of nonalcoholic fatty liver disease: Current knowledge and perspectives. Front. Med., 2022, 16(5), 667-685.
[http://dx.doi.org/10.1007/s11684-022-0960-z] [PMID: 36318353]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy