Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

A Synoptic Update on Smart Lipid Nanocarrier: Cubosomes, and their Design Development, and Recent Challenges

Author(s): Putrevu Sreelaya and Sankha Bhattacharya*

Volume 25, Issue 4, 2024

Published on: 22 June, 2023

Page: [434 - 447] Pages: 14

DOI: 10.2174/1389201024666230519103330

Price: $65

Abstract

Cubosomes are a kind of nanoparticle that is distinct from solid particles in that they are liquid crystalline particles formed by self-assembly of a certain surfactant with a current water ratio. Their unique properties as a result of their microstructure are useful in practical applications. Cubosomes, specifically lyotropic nonlamellar liquid crystalline nanoparticles (LCNs) have gained acceptance as a medication delivery strategy for cancer and other disorders. Cubosomes are produced by the fragmentation of a solid-like phase into smaller particles. Because of its particular microstructure, which is physiologically safe and capable of allowing for the controlled release of solubilized compounds, cubic phase particles are garnering considerable attention. These cubosomes are highly adaptable carriers with promising theranostic efficacy because they can be given orally, topically, or intravenously. Throughout its operation, the drug delivery system regulates the loaded anticancer bioactive's target selectivity and drug release characteristics. This compilation examines recent advances and obstacles in the development and application of cubosomes to treat various cancers, as well as the challenges of turning it into a potential nanotechnological invasion.

Graphical Abstract

[1]
Kaur, S.D.; Singh, G.; Singh, G.; Singhal, K.; Kant, S.; Bedi, N. Cubosomes as potential nanocarrier for drug delivery: A comprehensive review. J. Pharm. Res. Int., 2021, 33, 118-135.
[http://dx.doi.org/10.9734/jpri/2021/v33i31B31698]
[2]
Almoshari, Y. Development, therapeutic evaluation and theranostic applications of cubosomes on cancers: An updated review. Pharmaceutics, 2022, 14(3), 600.
[http://dx.doi.org/10.3390/pharmaceutics14030600] [PMID: 35335975]
[3]
Gaballa, SA.; El Garhy, OH.; Abdelkader, H. Cubosomes: Composition, preparation, and drug delivery applications. Int J of Ad Biomed & Pharm Res., 2020, 3(1), 1-9.
[4]
Dhadwal, A.; Sharma, D.R.; Pandit, V.; Ashawat, M.S.; Kumar, P. Cubosomes: A novel carrier for transdermal drug delivery. J. Drug Deliv. Ther., 2020, 10(1), 123-130.
[http://dx.doi.org/10.22270/jddt.v10i1.3814]
[5]
Zhao, XY.; Zhang, J.; Zheng, LQ. Studies of cubosomes as a sustained drug delivery system. J. Dispers. Sci. Technol., 2005, 25(6), 795-799.
[6]
Spicer, P.T. Progress in liquid crystalline dispersions. Cubosomes. Curr. Opin. Colloid Interface Sci., 2005, 10(5-6), 274-279.
[http://dx.doi.org/10.1016/j.cocis.2005.09.004]
[7]
Lindman, B Alexandridis, PJABCS-A Amphiphilic molecules: Small and large. 2000, 1-12.
[8]
Bhosale, R.R.; Osmani, R.A.; Harkare, B.R.; Ghodake, P.P. Cubosomes: the inimitable nanoparticulate drug carriers. Sch. Acad. J. Pharm., 2013, 2(6), 481-486.
[9]
Flak, D.K.; Adamski, V.; Nowaczyk, G.; Szutkowski, K.; Synowitz, M.; Jurga, S.; Held-Feindt, J. AT101-loaded cubosomes as an alternative for improved glioblastoma therapy. Int. J. Nanomedicine, 2021, 15, 7415-7431.
[http://dx.doi.org/10.2147/IJN.S265061] [PMID: 33116479];
(b) Garg M, Goyal A, Kumari S. An update on the recent advances in cubosome: a novel drug delivery system. Curr Drug Metab, 2021, 22(6), 441-450.
[http://dx.doi.org/10.2174/1389200221666210105121532] [PMID: 33402079]
[10]
Faria, AR.; Silvestre, OF.; Maibohm, C.; Adão, RM.; Silva, BF. Nieder, JBJNR Cubosome nanoparticles for enhanced delivery of mitochondria anticancer drug elesclomol and therapeutic monitoring via sub-cellular NAD (P) H multi-photon fluorescence lifetime imaging. Nano Res., 2019, 12, 991-998.
[11]
Zewail, M. Lipidic cubic-phase leflunomide nanoparticles (cubosomes) as a potential tool for breast cancer management. Drug Deliv., 2022, 29(1), 1663-1674.
[12]
Alexandridis, P.; Olsson, U.; Lindman, BJL. Structural polymorphism of amphiphilic copolymers: Six lyotropic liquid crystalline and two solution phases in a poly (oxybutylene)-b-poly (oxyethylene)- water- xylene system. Langmuir, 1997, 13(1), 23-34.
[13]
Nasr, M.; Ghorab, M.K.; Abdelazem, A. In vitro and in vivo evaluation of cubosomes containing 5-fluorouracil for liver targeting. Acta Pharm. Sin. B, 2015, 5(1), 79-88.
[http://dx.doi.org/10.1016/j.apsb.2014.12.001] [PMID: 26579429]
[14]
Rehman, A.; Tong, Q.; Jafari, S.M.; Assadpour, E.; Shehzad, Q.; Aadil, R.M.; Iqbal, M.W.; Rashed, M.M.A.; Mushtaq, B.S.; Ashraf, W. Carotenoid-loaded nanocarriers: A comprehensive review. Adv. Colloid Interface Sci., 2020, 275, 102048.
[http://dx.doi.org/10.1016/j.cis.2019.102048] [PMID: 31757387]
[15]
Kim, D.H.; Jahn, A.; Cho, S.J.; Kim, J.S.; Ki, M.H.; Kim, D.D. Lyotropic liquid crystal systems in drug delivery: A review. J. Pharm. Investig., 2015, 45(1), 1-11.
[http://dx.doi.org/10.1007/s40005-014-0165-9]
[16]
Huang, Y.; Gui, S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Advances, 2018, 8(13), 6978-6987.
[http://dx.doi.org/10.1039/C7RA12008G] [PMID: 35540315]
[17]
Mertins, O.; Mathews, P.D.; Angelova, A. Advances in the design of ph-sensitive cubosome liquid crystalline nanocarriers for drug delivery applications. Nanomaterials, 2020, 10(5), 963.
[http://dx.doi.org/10.3390/nano10050963] [PMID: 32443582]
[18]
Mohammad, Y.; Prentice, RN.; Boyd, BJ. Comparison of cubosomes and hexosomes for the delivery of phenytoin to the brain. J. Colloid Interface Sci., 2022, 605, 146-154.
[19]
Ba, A; Xa, FG; Sa, S.AN An overview of cubosomes-smart drug delivery system. Sri Ramachandra J. Med., 2015, 8(1)
[20]
Jain, S.; Jain, V.; Mahajan, S. Lipid based vesicular drug delivery systems; Advances in Pharmaceutics, 2014.
[http://dx.doi.org/10.1155/2014/574673]
[21]
Patond, V.B.; Ghonge, A.B.; Narkhede, M.B.J.I.J.T.S.R.D. Cubosome-Review., 2020, 4, 1116-1120.
[22]
Karami, Z. Cubosomes: Remarkable drug delivery potential. Drug Discov. Today, 2016, 21(5), 789-801.
[23]
Younus, M.; Prentice, R.N.; Clarkson, A.N.; Boyd, B.J.; Rizwan, S.B. Incorporation of an endogenous neuromodulatory lipid, oleoylethanolamide, into cubosomes: Nanostructural characterization. Langmuir, 2016, 32(35), 8942-8950.
[http://dx.doi.org/10.1021/acs.langmuir.6b02395] [PMID: 27524261]
[24]
Barkate, A.R.; Gadekar, D.N. Cubosomes: The novel drug delivery system. World J. Pharm. Res., 2020, 9, 1170-1185.
[25]
Oliveira, C.; Ferreira, C.JO.; Sousa, M.; Paris, JL.; Gaspar, R.; Silva, B.FB.; Teixeira, JA.; Ferreira-Santos, P.; Botelho, CM. A versatile nanocarrier—cubosomes, characterization, and applications. Nanomaterials, 2022, 12(13), 2224.
[http://dx.doi.org/10.3390/nano12132224] [PMID: 35808060]
[26]
Garg, G.; Saraf, S.; Saraf, S. Cubosomes: An overview. Biol. Pharm. Bull., 2007, 30(2), 350-353.
[http://dx.doi.org/10.1248/bpb.30.350] [PMID: 17268078]
[27]
Hong, SK.; Ma, JY. In vitro skin permeation enhancement of KIOM-MA-128 by monoolein cubosomes. J. Dispers. Sci. Technol., 2012, 33(10), 1503-1508.
[28]
Rizwan, S.B.; Boyd, B.J. Cubosomes: structure, preparation and use as an antigen delivery system. Subunit Vaccine Delivery; Springer, 2015, pp. 125-140.
[29]
Drummond, C.J.; Fong, C. Surfactant self-assembly objects as novel drug delivery vehicles. Curr. Opin. Colloid Interface Sci., 1999, 4(6), 449-456.
[http://dx.doi.org/10.1016/S1359-0294(00)00020-0]
[30]
Chong, J.Y.T.; Mulet, X.; Keddie, D.J.; Waddington, L.; Mudie, S.T.; Boyd, B.J.; Drummond, C.J. Novel steric stabilizers for lyotropic liquid crystalline nanoparticles: PEGylated-phytanyl copolymers. Langmuir, 2015, 31(9), 2615-2629.
[http://dx.doi.org/10.1021/la501471z] [PMID: 25068381]
[31]
Ha, S.; La, Y.; Kim, K.T. Polymer cubosomes: Infinite cubic mazes and possibilities. Acc. Chem. Res., 2020, 53(3), 620-631.
[http://dx.doi.org/10.1021/acs.accounts.9b00563] [PMID: 31920073];
(b) Varghese R, Salvi S, Sood P, Kulkarni B, Kumar D. Cubosomes in cancer drug delivery: A review. Colloid Interface Sci Commun, 2022, 46, 100561.
[32]
Akhlaghi, S.P.; Ribeiro, I.R.; Boyd, B.J.; Loh, W. Impact of preparation method and variables on the internal structure, morphology, and presence of liposomes in phytantriol-Pluronic® F127 cubosomes. Colloids Surf. B Biointerfaces, 2016, 145, 845-853.
[http://dx.doi.org/10.1016/j.colsurfb.2016.05.091] [PMID: 27315333]
[33]
Chime, A.; Ikechukwu, V.O. Lipid-based drug delivery systems (LDDS): Recent advances and applications of lipids in drug delivery. Afr. J. Pharm. Pharmacol., 2013, 7(48), 3034-3059.
[http://dx.doi.org/10.5897/AJPPX2013.0004]
[34]
Balata, G.; Amin, M.; Alhalabi, F.; Alansari, S. Cubosomes: A novel approach for delivery of anticancer drugs. Am. j. PharmTech res., 2016, 7(1), 1-14.
[35]
Patel, B. Thakkar, HPJNDDSAEBA Cubosomes: Novel nanocarriers for drug delivery. Curr. Drug Deliv., 2021, 13(4), 482-493.
[36]
Shrimal, P.; Jadeja, G.; Patel, S. A review on novel methodologies for drug nanoparticle preparation: Microfluidic approach. Chem. Eng. Res. Des., 2020, 153, 728-756.
[http://dx.doi.org/10.1016/j.cherd.2019.11.031]
[37]
Patond, V.B.; Ghonge, A.B.; Narkhede, M.B. Cubosome-Review. Int J Trend Sci Res Dev., 2020, 4, 1116-1120.
[38]
von Halling Laier, C.; Gibson, B.; van de Weert, M.; Boyd, B.J.; Rades, T.; Boisen, A.; Hook, S.; Nielsen, L.H. Spray dried cubosomes with ovalbumin and Quil-A as a nanoparticulate dry powder vaccine formulation. Int. J. Pharm., 2018, 550(1-2), 35-44.
[http://dx.doi.org/10.1016/j.ijpharm.2018.08.036] [PMID: 30134183]
[39]
Ola, M.; Bhaskar, R.; Patil, G.R. Liquid crystalline drug delivery system for sustained release loaded with an antitubercular drug. J. Drug Deliv. Ther., 2018, 8(4), 93-101.
[http://dx.doi.org/10.22270/jddt.v8i4.1719]
[40]
Jain, A.K.; Thareja, S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol., 2019, 47(1), 524-539.
[http://dx.doi.org/10.1080/21691401.2018.1561457] [PMID: 30784319]
[41]
Hallan, S.S.; Sguizzato, M.; Esposito, E.; Cortesi, R. Challenges in the physical characterization of lipid nanoparticles. Pharmaceutics, 2021, 13(4), 549.
[http://dx.doi.org/10.3390/pharmaceutics13040549] [PMID: 33919859]
[42]
Angelov, B.; Angelova, A.; Drechsler, M.; Garamus, V.M.; Mutafchieva, R.; Lesieur, S. Identification of large channels in cationic PEGylated cubosome nanoparticles by synchrotron radiation SAXS and Cryo-TEM imaging. Soft Matter, 2015, 11(18), 3686-3692.
[http://dx.doi.org/10.1039/C5SM00169B] [PMID: 25820228]
[43]
Fang, L.; Seifert, S.; Winans, R.E.; Li, T. Operando XAS/SAXS: Guiding design of single-atom and subnanocluster catalysts. Small Methods, 2021, 5(5), 2001194.
[http://dx.doi.org/10.1002/smtd.202001194] [PMID: 34928104]
[44]
Alexandridis, P.; Olsson, U.; Lindman, BJL. A reverse micellar cubic phase. Langmuir, 1996, 12(6), 1419-1422.
[http://dx.doi.org/10.1021/la9509099]
[45]
Aleandri, S.; Bandera, D.; Mezzenga, R.; Landau, E.M. Biotinylated cubosomes: A versatile tool for active targeting and codelivery of paclitaxel and a fluorescein-based lipid dye. Langmuir, 2015, 31(46), 12770-12776.
[http://dx.doi.org/10.1021/acs.langmuir.5b03469] [PMID: 26513646]
[46]
Mohsen, A.M.; Younis, M.M.; Salama, A.; Darwish, A.B. Cubosomes as a potential oral drug delivery system for enhancing the hepatoprotective effect of coenzyme Q10. J. Pharm. Sci., 2021, 110(7), 2677-2686.
[http://dx.doi.org/10.1016/j.xphs.2021.02.007] [PMID: 33600809]
[47]
Mo, J.; Milleret, G.; Nagaraj, M. Liquid crystal nanoparticles for commercial drug delivery. Liq. Cryst. Rev., 2017, 5(2), 69-85.
[http://dx.doi.org/10.1080/21680396.2017.1361874]
[48]
Archana, A.; Vijayasri, K.; Madhurim, M.; Kumar, C. Curcumin loaded nano cubosomal hydrogel: preparation, in vitro characterization and antibacterial activity. Chem. Sci. Trans., 2015, 4(1), 75-80.
[49]
Rarokar, N.R.; Saoji, S.D.; Raut, N.A.; Taksande, J.B.; Khedekar, P.B.; Dave, V.S. Nanostructured cubosomes in a thermoresponsive depot system: an alternative approach for the controlled delivery of docetaxel. AAPS PharmSciTech, 2016, 17(2), 436-445.
[http://dx.doi.org/10.1208/s12249-015-0369-y] [PMID: 26208439]
[50]
Akhlaghi, S.P.; Loh, W. Interactions and release of two palmitoyl peptides from phytantriol cubosomes. Eur. J. Pharm. Biopharm., 2017, 117, 60-67.
[http://dx.doi.org/10.1016/j.ejpb.2017.03.022] [PMID: 28377272]
[51]
Huang, J.; Peng, T.; Li, Y.; Zhan, Z.; Zeng, Y.; Huang, Y.; Pan, X.; Wu, C.Y.; Wu, C. Ocular cubosome drug delivery system for timolol maleate: preparation, characterization, cytotoxicity, ex vivo, and in vivo evaluation. AAPS PharmSciTech, 2017, 18(8), 2919-2926.
[http://dx.doi.org/10.1208/s12249-017-0763-8] [PMID: 28429294]
[52]
Mulet, X.; Boyd, B.J.; Drummond, C.J. Advances in drug delivery and medical imaging using colloidal lyotropic liquid crystalline dispersions. J. Colloid Interface Sci., 2013, 393, 1-20.
[http://dx.doi.org/10.1016/j.jcis.2012.10.014] [PMID: 23237762]
[53]
Rizwan, S.B.; Boyd, B.J.; Rades, T.; Hook, S. Bicontinuous cubic liquid crystals as sustained delivery systems for peptides and proteins. Expert Opin. Drug Deliv., 2010, 7(10), 1133-1144.
[http://dx.doi.org/10.1517/17425247.2010.515584] [PMID: 20858165]
[54]
Bala, R.; Sindhu, R.K.; Kaundle, B.; Madaan, R.; Cavalu, S. The prospective of liquid crystals in nano formulations for drug delivery systems. J. Mol. Struct., 2021, 1245, 131117.
[http://dx.doi.org/10.1016/j.molstruc.2021.131117]
[55]
Sarkar, B; Venugopal, V; Bodratti, AM; Tsianou, M Nanoparticle surface modification by amphiphilic polymers in aqueous media: Role of polar organic solvents. J. Colloid Interface Sci., 2013, 397, 1-8.;
(b) Hou F, Wang H, Zhang Y, Zhu N, Liu H, Li J. Construction and evaluation of folic acid-modified 3-bromopyruvate cubosomes. Med Sci Monit, 2020, 26, e924620.
[http://dx.doi.org/10.12659/MSM.924620] [PMID: 32956335];
(c) Zhai J, Scoble JA, Li N, et al. Epidermal growth factor receptor- targeted lipid nanoparticles retain self-assembled nanostructures and provide high specificity Nanoscale , 2015, 7(7), 2905-13.
[56]
Waheed, A.; Aqil, M. Lyotropic liquid crystalline nanoparticles: Scaffolds for delivery of myriad therapeutics and diagnostics. J. Mol. Liq., 2021, 338, 116919.
[http://dx.doi.org/10.1016/j.molliq.2021.116919]
[57]
Rarokar, N.; Khedekar, P. Cubosomes: A vehicle for delivery of various therapeutic agents. MOJ Toxicol., 2018, 4(1), 19-21.
[58]
Rapalli, VK; Banerjee, S; Khan, S; Jha, PN; Gupta, G; Dua, K QbD-driven formulation development and evaluation of topical hydrogel containing ketoconazole loaded cubosomes., 2021, 119, 111548.
[http://dx.doi.org/10.1016/j.msec.2020.111548]
[59]
Gajda, E.; Godlewska, M.; Mariak, Z.; Nazaruk, E.; Gawel, D. Combinatory treatment with miR-7-5p and drug-loaded cubosomes effectively impairs cancer cells. Int. J. Mol. Sci., 2020, 21(14), 5039.
[http://dx.doi.org/10.3390/ijms21145039] [PMID: 32708846]
[60]
Shanmugam, T.; Banerjee, R. Nanostructured self assembled lipid materials for drug delivery and tissue engineering. Ther. Deliv., 2011, 2(11), 1485-1516.
[http://dx.doi.org/10.4155/tde.11.105] [PMID: 22826876]
[61]
Nasr, M.; Younes, H.; Abdel-Rashid, R.S. Formulation and evaluation of cubosomes containing colchicine for transdermal delivery. Drug Deliv. Transl. Res., 2020, 10(5), 1302-1313.
[http://dx.doi.org/10.1007/s13346-020-00785-6] [PMID: 32399604]
[62]
Suresh, AM. Kallingal, A Cubosomes nanoparticles: Recent advancements in drug delivery. Int J Med Phar Sci, 2020, 10(02), 11.
[63]
Thomas, A; Varghese, J; Raju, SP; Das, C; Abraham, E Cubosomes- a novel drug delivery system. J. Global Trends Pharm. Sci.,
[64]
Said, M; Aboelwafa, AA; Elshafeey, AH Central composite optimization of ocular mucoadhesive cubosomes for enhanced bioavailability and controlled delivery of voriconazole. J. Drug Deliv. Sci. Technol., 2021, 61, 102075.
[65]
Sen, R.; Gupta, R.; Singh, S.; Mantry, S.; Das, S. A review on cubosome and virosome: The novel drug delivery system. UJPSR, 2017, 3(1), 24-33.
[66]
Sahdev, P.; Ochyl, L.J.; Moon, J.J. Biomaterials for nanoparticle vaccine delivery systems. Pharm. Res., 2014, 31(10), 2563-2582.
[http://dx.doi.org/10.1007/s11095-014-1419-y] [PMID: 24848341]
[67]
Madheswaran, T.; Kandasamy, M.; Bose, R.J.C.; Karuppagounder, V. Current potential and challenges in the advances of liquid crystalline nanoparticles as drug delivery systems. Drug Discov. Today, 2019, 24(7), 1405-1412.
[http://dx.doi.org/10.1016/j.drudis.2019.05.004] [PMID: 31102731]
[68]
Gan, L.; Wang, J.; Jiang, M.; Bartlett, H.; Ouyang, D.; Eperjesi, F.; Liu, J.; Gan, Y. Recent advances in topical ophthalmic drug delivery with lipid-based nanocarriers. Drug Discov. Today, 2013, 18(5-6), 290-297.
[http://dx.doi.org/10.1016/j.drudis.2012.10.005] [PMID: 23092895]
[69]
Kaasgaard, T.; Drummond, C.J. Ordered 2-D and 3-D nanostructured amphiphile self-assembly materials stable in excess solvent. Phys. Chem. Chem. Phys., 2006, 8(43), 4957-4975.
[http://dx.doi.org/10.1039/b609510k] [PMID: 17091149]
[70]
Zhang, L.; Li, J.; Tian, D.; Sun, L.; Wang, X.; Tian, M. Theranostic combinatorial drug-loaded coated cubosomes for enhanced targeting and efficacy against cancer cells. Cell Death Dis., 2020, 11(1), 1-12.
[http://dx.doi.org/10.1038/s41419-019-2182-0] [PMID: 31911576]
[71]
Patil, S.M.; Sawant, S.S.; Kunda, N.K. Inhalable bedaquiline-loaded cubosomes for the treatment of non-small cell lung cancer (NSCLC). Int. J. Pharm., 2021, 607, 121046.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121046] [PMID: 34450225]
[72]
Bessone, C.D.V.; Akhlaghi, S.P.; Tártara, L.I.; Quinteros, D.A.; Loh, W.; Allemandi, D.A. Latanoprost-loaded phytantriol cubosomes for the treatment of glaucoma. Eur. J. Pharm. Sci., 2021, 160, 105748.
[http://dx.doi.org/10.1016/j.ejps.2021.105748] [PMID: 33567324]
[73]
Al-mahallawi, A.M.; Abdelbary, A.A.; El-Zahaby, S.A. Norfloxacin loaded nano-cubosomes for enhanced management of otitis externa: In vitro and in vivo evaluation. Int. J. Pharm., 2021, 600, 120490.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120490] [PMID: 33744451]
[74]
Saber, S.; Nasr, M.; Kaddah, M.M.Y.; Mostafa-Hedeab, G.; Cavalu, S.; Mourad, A.A.E.; Gaafar, A.G.A.; Zaghlool, S.S.; Saleh, S.; Hafez, M.M.; Girgis, S.; Elgharabawy, R.M.; Nader, K.; Alsharidah, M.; Batiha, G.E.S.; El-Ahwany, E.; Amin, N.A.; Elagamy, H.I.; Shata, A.; Nader, R.; Khodir, A.E. Nifuroxazide-loaded cubosomes exhibit an advancement in pulmonary delivery and attenuate bleomycin-induced lung fibrosis by regulating the STAT3 and NF-κB signaling: A new challenge for unmet therapeutic needs. Biomed. Pharmacother., 2022, 148, 112731.
[http://dx.doi.org/10.1016/j.biopha.2022.112731] [PMID: 35220029]
[75]
Bernardi, FPRBKWZJE Cubosome, its process of obtaining and its uses. 2020.
[76]
Strachan, CEC Oral therapeutic delivery. 2020.
[77]
Zhang, IPAPA Drug combination kits and methods of drug delivery. 2020.
[78]
Barrows, TH. Compositions and methods of use thereof for treatment of mastitis. Patent Application 20230057782 2020.
[79]
Allen, EASBD Remote modulation of bicontinuous nanospheres for controlled delivery applications. Patent Application 20210308065, 2020.
[80]
Prestidge, CTT Antimicrobial compositions and methods of use., 2020.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy