Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Therapeutic Potential and Pharmacological Activities of Moscatilin in Medicine for the Treatment of Cancers and other Human Complication: A Review of the Active Components of Dendrobium Species

Author(s): Dinesh Kumar Patel*

Volume 20, Issue 5, 2024

Published on: 12 September, 2023

Page: [425 - 433] Pages: 9

DOI: 10.2174/1573394719666230912115100

Price: $65

Abstract

Background: Plant-derived byproducts have been used to treat numerous kinds of human complications in medicine since a very early age. Moscatilin is a bibenzyl compound found to be present in Dendrobium. Moscatilin, also called 4,4′-dihydroxyl-3,3′,5-trimethoxybibenzyl has potential benefits in medicine for the treatment of ovarian, lung, breast, esophageal, hepatic, colorectal, pancreatic and neck squamous cancer.

Methods: The present work summarized the health-beneficial aspects of moscatilin for its effectiveness against numerous kinds of cancerous disorders in medicine. Pharmacological activities and analytical aspects of moscatilin have been analyzed in the present work through available scientific data on Google, Scopus, Science Direct, and PubMed.

Results: Scientific data analysis of moscatilin signified their therapeutic effectiveness against ovarian cancer, lung cancer, breast cancer, esophageal cancer, hepatic cancer, colorectal cancer, pancreatic cancer, neck squamous cell cancer, apoptosis, and angiogenesis. Further, moscatilin has a significant effect on inflammation, Alzheimer's disease, diabetic neuropathy, and retinal ischemia. However, analytical data on moscatilin were also discussed in the present work in order to know the effective separation, isolation and identification of moscatilin.

Conclusion: Scientific information on moscatilin presented in this work will be helpful to all scientific people to understand the biological importance and therapeutic potential of moscatilin in medicine.

Next »
Graphical Abstract

[1]
Patel, D.K. Therapeutic potential of poncirin against numerous human health complications: Medicinal uses and therapeutic benefit of an active principle of citrus species. Endocr. Metab. Immune Disord. Drug Targets, 2021, 21(11), 1974-1981.
[http://dx.doi.org/10.2174/1871530321666210108122924] [PMID: 33423654]
[2]
Patel, D.K. Biological activities and therapeutic potential of irigenin on gastric, lung, prostate, breast, and endometrial cancer: Pharmacological and analytical aspects. Curr. Cancer Ther. Rev., 2022, 18(3), 172-180.
[http://dx.doi.org/10.2174/1573394718666220329184852]
[3]
Bu, F.; Zhang, S.; Duan, Z. A critical review on the relationship of herbal medicine, Akkermansia muciniphila, and human health. Biomed. Pharmacother., 2020, 128, 110352.
[http://dx.doi.org/10.1016/j.biopha.2020.110352] [PMID: 32521456]
[4]
Patel, K.; Kumar, V.; Rahman, M.; Verma, A.; Patel, D.K. Rhamnazin: A systematic review on ethnopharmacology, pharmacology and analytical aspects of an important phytomedicine. Curr. Tradit. Med., 2018, 4(2), 120-127.
[http://dx.doi.org/10.2174/2215083804666180416124949]
[5]
Patel, D.K.; Patel, K.; Rahman, M.; Chaudhary, S. Therapeutic potential of “Aegeline,” an important phytochemical of aegle marmelos: Current health perspectives for the treatment of disease. In: Nanomedicine for Bioactives; Springer Singapore: Singapore, 2020, pp. 383-392.
[6]
Patel, D.K.; Patel, K. Health benefits of avicularin in the medicine against cancerous disorders and other complications: Biological importance, therapeutic benefit and analytical aspects. Curr. Cancer Ther. Rev., 2022, 18(1), 41-50.
[http://dx.doi.org/10.2174/1573394717666210831163322]
[7]
Patel, K.; Kumar, V.; Verma, A.; Rahman, M.; Patel, D.K. Amarogentin as topical anticancer and anti-infective potential: Scope of lipid based vesicular in its effective delivery. Recent Patents Anti-Infect. Drug Disc., 2019, 14(1), 7-15.
[http://dx.doi.org/10.2174/1574891X13666180913154355] [PMID: 30210007]
[8]
Patel, K.; Gadewar, M.; Tahilyani, V.; Patel, D.K. A review on pharmacological and analytical aspects of diosmetin: A concise report. Chin. J. Integr. Med., 2013, 19(10), 792-800.
[http://dx.doi.org/10.1007/s11655-013-1595-3] [PMID: 24092244]
[9]
Patel, D.K. Potential benefits of tricetin in medicine for the treatment of cancers and other health-related disorders: Medicinal importance and therapeutic benefit. Nat. Prod. J., 2022, 12(6), e211221199198.
[http://dx.doi.org/10.2174/2210315512666211221113117]
[10]
Cardile, V.; Avola, R.; Graziano, A.C.E.; Russo, A. Moscatilin, a bibenzyl derivative from the orchid Dendrobium loddigesii, induces apoptosis in melanoma cells. Chem. Biol. Interact., 2020, 323, 109075.
[http://dx.doi.org/10.1016/j.cbi.2020.109075] [PMID: 32229109]
[11]
Śliwiński, T.; Kowalczyk, T.; Sitarek, P.; Kolanowska, M. Orchidaceae‐derived anticancer agents: A review. Cancers, 2022, 14(3), 754.
[12]
Huang, X.; Wang, Y.; Yang, W.; Dong, J.; Li, L. Regulation of dietary polyphenols on cancer cell pyroptosis and the tumor immune microenvironment. Front. Nutr., 2022, 9, 974896.
[http://dx.doi.org/10.3389/fnut.2022.974896] [PMID: 36091247]
[13]
Lai, M.C.; Liu, W.Y.; Liou, S.S.; Liu, I.M. The protective effects of moscatilin against methylglyoxal-induced neurotoxicity via the regulation of p38/JNK MAPK pathways in PC12 neuron-like cells. Food Chem. Toxicol., 2020, 140, 111369.
[http://dx.doi.org/10.1016/j.fct.2020.111369] [PMID: 32325188]
[14]
Zhai, D.; Lv, X.; Chen, J.; Peng, M.; Cai, J. Recent research progress on natural stilbenes in Dendrobium species. Molecules, 2022, 27(21), 7233.
[http://dx.doi.org/10.3390/molecules27217233] [PMID: 36364058]
[15]
He, L.; Su, Q.; Bai, L. Recent research progress on natural small molecule bibenzyls and its derivatives in Dendrobium species. Eur. J. Med. Chem., 2020, 204, 112530.
[http://dx.doi.org/10.1016/j.ejmech.2020.112530] [PMID: 32711292]
[16]
Ho, C.K.; Chen, C.C. Moscatilin from the orchid Dendrobrium loddigesii is a potential anticancer agent. Cancer Invest., 2003, 21(5), 729-736.
[http://dx.doi.org/10.1081/CNV-120023771] [PMID: 14628431]
[17]
Guan, L.; Zhou, J.; Lin, Q. Design, synthesis and antitumour and anti-angiogenesis evaluation of 22 moscatilin derivatives. Bioorg. Med. Chem., 2019, 27(12), 2657-2665.
[http://dx.doi.org/10.1016/j.bmc.2019.04.027] [PMID: 31047774]
[18]
Lee, E.; Han, A.R.; Nam, B. Moscatilin induces apoptosis in human head and neck squamous cell carcinoma cells via JNK signaling pathway. Molecules, 2020, 25(4), 901.
[http://dx.doi.org/10.3390/molecules25040901] [PMID: 32085431]
[19]
Pengdee, C.; Sritularak, B.; Putalun, W. Optimization of microwave-assisted extraction of phenolic compounds in Dendrobium formosum Roxb. ex Lindl. and glucose uptake activity. S. Afr. J. Bot., 2020, 132, 423-431.
[http://dx.doi.org/10.1016/j.sajb.2020.06.009]
[20]
Chen, C.C.; Wu, L.G.; Ko, F.N.; Teng, C.M. Antiplatelet aggregation principles of Dendrobium loddigesii. J. Nat. Prod., 1994, 57(9), 1271-1274.
[http://dx.doi.org/10.1021/np50111a014] [PMID: 7798962]
[21]
Kowitdamrong, A.; Chanvorachote, P.; Sritularak, B.; Pongrakhananon, V. Moscatilin inhibits lung cancer cell motility and invasion via suppression of endogenous reactive oxygen species. BioMed Res. Int., 2013, 2013, 1-11.
[http://dx.doi.org/10.1155/2013/765894] [PMID: 23738332]
[22]
Pujari, I.; Sengupta, R.; Babu, V.S. Docking and ADMET studies for investigating the anticancer potency of Moscatilin on APC10/DOC1 and PKM2 against five clinical drugs. J. Genet. Eng. Biotechnol., 2021, 19(1), 161.
[http://dx.doi.org/10.1186/s43141-021-00256-6] [PMID: 34665359]
[23]
Thitikornpong, W.; Jithavech, P.; Thompho, S. Development and validation of a simple, sensitive and reproducible method for simultaneous determination of six polyphenolic bioactive markers in Dendrobium plants. Arab. J. Chem., 2022, 15(9), 104038.
[http://dx.doi.org/10.1016/j.arabjc.2022.104038]
[24]
Tsai, A.C.; Pan, S.L.; Liao, C.H. Moscatilin, a bibenzyl derivative from the India orchid Dendrobrium loddigesii, suppresses tumor angiogenesis and growth in vitro and in vivo. Cancer Lett., 2010, 292(2), 163-170.
[http://dx.doi.org/10.1016/j.canlet.2009.11.020] [PMID: 20056528]
[25]
Chen, W.K.; Chen, C.A.; Chi, C.W. Moscatilin inhibits growth of human esophageal cancer xenograft and sensitizes cancer cells to radiotherapy. J. Clin. Med., 2019, 8(2), 187.
[http://dx.doi.org/10.3390/jcm8020187] [PMID: 30764514]
[26]
Chen, C.A.; Chen, C.C.; Shen, C.C.; Chang, H.H.; Chen, Y.J. Moscatilin induces apoptosis and mitotic catastrophe in human esophageal cancer cells. J. Med. Food, 2013, 16(10), 869-877.
[http://dx.doi.org/10.1089/jmf.2012.2617] [PMID: 24074296]
[27]
Zhang, Y.; Xu, Y.; Jing, X.; Lu, W.; Zhang, F.; Qin, C. Moscatilin suppresses the inflammation from macrophages and T cells. Open Med., 2022, 17(1), 756-767.
[http://dx.doi.org/10.1515/med-2022-0456] [PMID: 35509689]
[28]
Zhang, L.; Fang, Y.; Xu, X.F.; Jin, D.Y. Moscatilin induces apoptosis of pancreatic cancer cells via reactive oxygen species and the JNK/SAPK pathway. Mol. Med. Rep., 2017, 15(3), 1195-1203.
[http://dx.doi.org/10.3892/mmr.2017.6144] [PMID: 28138710]
[29]
Su, W.; Zeng, L.; Chen, W. Moscatilin suppresses the breast cancer both in vitro and in vivo by inhibiting HDAC3. Dose Response, 2021, 19(1)
[http://dx.doi.org/10.1177/15593258211001251] [PMID: 33795998]
[30]
Pujari, I; Thomas, A; Rai, PS; Satyamoorthy, K; Babu, VS n vitro bioproduction and enhancement of moscatilin from a threatened tropical epiphytic orchid, Dendrobium ovatum (Willd.) Kraenzl. 3 Biotech, 2021, 11, 507.
[31]
Huang, J.M.; Huang, F.I.; Yang, C.R. Moscatilin ameliorates tau phosphorylation and cognitive deficits in alzheimer’s disease models. J. Nat. Prod., 2019, 82(7), 1979-1988.
[http://dx.doi.org/10.1021/acs.jnatprod.9b00375] [PMID: 31291099]
[32]
Yu, C.L.; Weng, M.S.; Chen, W.C. Moscatilin inhibits metastatic behavior of human hepatocellular carcinoma cells: A crucial role of uPA suppression via Akt/NF-κB-dependent pathway. Int. J. Mol. Sci., 2021, 22(6), 2930.
[http://dx.doi.org/10.3390/ijms22062930] [PMID: 33805784]
[33]
Busaranon, K.; Plaimee, P.; Sritularak, B.; Chanvorachote, P. Moscatilin inhibits epithelial-to-mesenchymal transition and sensitizes anoikis in human lung cancer H460 cells. J. Nat. Med., 2016, 70(1), 18-27.
[http://dx.doi.org/10.1007/s11418-015-0931-7] [PMID: 26384689]
[34]
Pujari, I; Thomas, A; Thomas, J; Jhawar, N; Guruprasad, KP; Rai, PS Cytotoxicity and radiosensitizing potency of Moscatilin in cancer cells at low radiation doses of X-ray and UV-C. 3 Biotech, 2021, 11, 281.
[35]
Pann Phyu, M.; Kongkatitham, V.; Mekboonsonglarp, W.; Likhitwitayawuid, K.; Sritularak, B. Phenanthrenes from Dendrobium senile and their pancreatic lipase inhibitory activity. J. Asian Nat. Prod. Res., 2022, 24(7), 697-702.
[http://dx.doi.org/10.1080/10286020.2021.1956478] [PMID: 34304660]
[36]
Liu, Y.N.; Pan, S.L.; Peng, C.Y. Moscatilin repressed lipopolysaccharide-induced hif-1α accumulation and nf-κb activation in murine raw264.7 cells. Shock, 2010, 33(1), 70-75.
[http://dx.doi.org/10.1097/SHK.0b013e3181a7ff4a] [PMID: 19487987]
[37]
Pai, H.C.; Chang, L.H.; Peng, C.Y. Moscatilin inhibits migration and metastasis of human breast cancer MDA-MB-231 cells through inhibition of Akt and Twist signaling pathway. J. Mol. Med., 2013, 91(3), 347-356.
[http://dx.doi.org/10.1007/s00109-012-0945-5] [PMID: 22961111]
[38]
Lai, M.C.; Liu, W.Y.; Liou, S.S.; Liu, I.M. A bibenzyl component moscatilin mitigates glycation-mediated damages in an sh-sy5y cell model of neurodegenerative diseases through AMPK activation and RAGE/NF-κB pathway suppression. Molecules, 2020, 25(19), 4574.
[http://dx.doi.org/10.3390/molecules25194574] [PMID: 33036367]
[39]
Jia-Wei, S.; Ji-Mei, L.; Ri-Dao, C. Study on chemical bibenzyls in Dendrobium gratiosissimum. Zhongguo Zhongyao Zazhi, 2020, 45(20), 4929-4937.
[PMID: 33350266]
[40]
Pai, H.C.; Kumar, S.; Shen, C.C.; Liou, J.P.; Pan, S.L.; Teng, C.M. MT-4 suppresses resistant ovarian cancer growth through targeting tubulin and HSP27. PLoS One, 2015, 10(4), e0123819.
[http://dx.doi.org/10.1371/journal.pone.0123819] [PMID: 25874627]
[41]
Chen, M.C.; Kuo, Y.C.; Hsu, C.M. The apoptotic mechanisms of MT-6, a mitotic arrest inducer, in human ovarian cancer cells. Sci. Rep., 2017, 7(1), 46149.
[http://dx.doi.org/10.1038/srep46149] [PMID: 28387244]
[42]
Chanvorachote, P; Kowitdamrong, A; Ruanghirun, T; Sritularak, B; Mungmee, C; Likhitwitayawuid, K Anti-metastatic activities of bibenzyls from dendrobium pulchellum. Nat Prod Commun, 2013, 8, 1934578X1300800.
[http://dx.doi.org/10.1177/1934578X1300800127]
[43]
Klongkumnuankarn, P.; Busaranon, K.; Chanvorachote, P.; Sritularak, B.; Jongbunprasert, V.; Likhitwitayawuid, K. Cytotoxic and antimigratory activities of phenolic compounds from Dendrobium brymerianum. Evid. Based Complement. Alternat. Med., 2015, 2015, 1-9.
[http://dx.doi.org/10.1155/2015/350410] [PMID: 25685168]
[44]
Tanagornmeatar, K.; Chaotham, C.; Sritularak, B.; Likhitwitayawuid, K.; Chanvorachote, P. Cytotoxic and anti-metastatic activities of phenolic compounds from Dendrobium ellipsophyllum. Anticancer Res., 2014, 34(11), 6573-6579.
[PMID: 25368260]
[45]
Chen, T.H.; Pan, S.L.; Guh, J.H. Moscatilin induces apoptosis in human colorectal cancer cells: A crucial role of c-Jun NH2-terminal protein kinase activation caused by tubulin depolymerization and DNA damage. Clin. Cancer Res., 2008, 14(13), 4250-4258.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4578] [PMID: 18594007]
[46]
Miyazawa, M.; Shimamura, H.; Nakamura, S.; Sugiura, W.; Kosaka, H.; Kameoka, H. Moscatilin from Dendrobium nobile, a naturally occurring bibenzyl compound with potential antimutagenic activity. J. Agric. Food Chem., 1999, 47(5), 2163-2167.
[http://dx.doi.org/10.1021/jf970930a] [PMID: 10552513]
[47]
Gong, C-Y.; Lu, B.; Yang, L.; Wang, L.; Ji, L-L. Bibenzyl from Dendrobium inhibits angiogenesis and its underlying mechanism. Yao Xue Xue Bao, 2013, 48(3), 337-342.
[PMID: 23724644]
[48]
Chao, W.H.; Lai, M.Y.; Pan, H.T.; Shiu, H.W.; Chen, M.M.; Chao, H.M. Dendrobium nobile Lindley and its bibenzyl component moscatilin are able to protect retinal cells from ischemia/hypoxia by dowregulating placental growth factor and upregulating Norrie disease protein. BMC Complement. Altern. Med., 2018, 18(1), 193.
[http://dx.doi.org/10.1186/s12906-018-2256-z] [PMID: 29933759]
[49]
Zhang, R.; Wu, Q.; Gao, H.; Li, Y.; Zhang, P. Rapid separation and characterization of the in vitro metabolites of moscatilin by ultra‐high performance liquid chromatography coupled to hybrid quadrupole orbitrap tandem mass spectrometry. J. Sep. Sci., 2022, 45(23), 4167-4175.
[http://dx.doi.org/10.1002/jssc.202200617] [PMID: 36168860]
[50]
Hu, A.; Liu, Q.; Ouyang, J. Identification and characterization of the metabolites of moscatilin in mouse, rat, dog, monkey and human hepatocytes by LC–Orbitrap–MS/MS combined with diagnostic fragment ions and accurate mass measurements. Biomed. Chromatogr., 2023, 37(4), e5573.
[http://dx.doi.org/10.1002/bmc.5573] [PMID: 36529812]
[51]
Qin, H.L.; Zhang, J.X.; Wang, Z.T.; Yang, X.S.; Xu, L.S.; Hao, X.J. [Analysis of 1H-NMR fingerprint in stem of Dendrobium loddigesii]. Zhongguo Zhongyao Zazhi, 2002, 27(12), 919-923.
[PMID: 12776532]
[52]
Li, M.F.; Hirata, Y.; Xu, G.J.; Niwa, M.; Wu, H.M. Studies on the chemical constituents of Dendrobium loddigesii rolfe. Yao Xue Xue Bao, 1991, 26(4), 307-310.
[PMID: 1659772]
[53]
Zhao, N.; Yang, G.; Zhang, Y.; Chen, L.; Chen, Y. A new 9,10-dihydrophenanthrene from Dendrobium moniliforme. Nat. Prod. Res., 2016, 30(2), 174-179.
[http://dx.doi.org/10.1080/14786419.2015.1046379] [PMID: 26132274]
[54]
Yang, M.; Zhang, Y.; Chen, L.; Chen, Y. A new (propylphenyl)bibenzyl derivative from Dendrobium williamsonii. Nat. Prod. Res., 2018, 32(14), 1699-1705.
[http://dx.doi.org/10.1080/14786419.2017.1396599] [PMID: 29092642]
[55]
Yang, D.; Liu, L.Y.; Cheng, Z.Q. Five new phenolic compounds from Dendrobium aphyllum. Fitoterapia, 2015, 100, 11-18.
[http://dx.doi.org/10.1016/j.fitote.2014.11.004] [PMID: 25447160]
[56]
Sritularak, B.; Duangrak, N.; Likhitwitayawuid, K. A new bibenzyl from Dendrobium secundum. Z. Naturforsch. C J. Biosci., 2011, 66(5-6), 205-208.
[http://dx.doi.org/10.1515/znc-2011-5-602] [PMID: 21812336]
[57]
Li, Y.; Wang, C.L.; Guo, S.X.; Yang, J.S.; Xiao, P.G. Two new compounds from Dendrobium candidum. Chem. Pharm. Bull., 2008, 56(10), 1477-1479.
[http://dx.doi.org/10.1248/cpb.56.1477] [PMID: 18827395]
[58]
Zhang, C.; Liu, S.J.; Yang, L. Sesquiterpene amino ether and cytotoxic phenols from Dendrobium wardianum Warner. Fitoterapia, 2017, 122, 76-79.
[http://dx.doi.org/10.1016/j.fitote.2017.08.015] [PMID: 28844931]
[59]
Warinhomhoun, S.; Muangnoi, C.; Buranasudja, V. Antioxidant activities and protective effects of dendropachol, a new bisbibenzyl compound from dendrobium pachyglossum, on hydrogen peroxide-induced oxidative stress in HaCaT keratinocytes. Antioxidants, 2021, 10(2), 252.
[http://dx.doi.org/10.3390/antiox10020252] [PMID: 33562174]
[60]
Zhou, J.; Xu, Z.; Kong, H.; Lu, X.; Xu, G. Comparison of phenolic components among different species of Dendrobium (Shihu Fengdou) and determination of their active components-moscatilin and gigantol. Se Pu, 2010, 28(6), 566-571.
[http://dx.doi.org/10.3724/SP.J.1123.2010.00566] [PMID: 20873577]
[61]
Zhou, Y-J.; Wang, J-H.; Xu, H.; Chou, G-X.; Wang, Z-T. Bibenzyls from Dendrobium officinale. Zhongguo Zhongyao Zazhi, 2021, 46(15), 3853-3858.
[PMID: 34472259]
[62]
Liu, H.; Mu, D.; Lin, T.; Li, Q. A simple method for the screening and measurement of phenols in Dendrobium chrysotoxum by a miniature mass detector using a matrix solid-phase dispersion method. J. Anal. Methods Chem., 2019, 2019, 1-9.
[http://dx.doi.org/10.1155/2019/6737632] [PMID: 30809414]
[63]
Thomas, A.; Pujari, I.; Shetty, V. Dendrobium protoplast co-culture promotes phytochemical assemblage in vitro. Protoplasma, 2017, 254(4), 1517-1528.
[http://dx.doi.org/10.1007/s00709-016-1043-2] [PMID: 27837285]
[64]
Peng, L.Q.; Dong, X.; Zhen, X.T. Simultaneous separation and concentration of neutral analytes by cyclodextrin assisted sweeping-micellar electrokinetic chromatography. Anal. Chim. Acta, 2020, 1105, 224-230.
[http://dx.doi.org/10.1016/j.aca.2020.01.037] [PMID: 32138922]
[65]
Chen, X.; Wang, F.; Wang, Y. Discrimination of the rare medicinal plant Dendrobium officinale based on naringenin, bibenzyl, and polysaccharides. Sci. China Life Sci., 2012, 55(12), 1092-1099.
[http://dx.doi.org/10.1007/s11427-012-4419-3] [PMID: 23233224]
[66]
Nam, B.; Jang, H.J.; Han, A.R. Chemical and biological profiles of dendrobium in two different species, their hybrid, and gamma-irradiated mutant lines of the hybrid based on LC-QToF MS and cytotoxicity analysis. Plants, 2021, 10(7), 1376.
[http://dx.doi.org/10.3390/plants10071376] [PMID: 34371579]
[67]
Zhang, C-F.; Shao, L.; Huang, W-H.; Wang, L.; Wang, Z-T.; Xu, L-S. [Phenolic components from herbs of Dendrobium aphyllum]. Zhongguo Zhongyao Zazhi, 2008, 33(24), 2922-2925.
[PMID: 19294851]
[68]
Yang, L.; Wang, Y.; Zhang, G. Simultaneous quantitative and qualitative analysis of bioactive phenols in Dendrobium aurantiacum var. denneanum by high-performance liquid chromatography coupled with mass spectrometry and diode array detection. Biomed. Chromatogr., 2007, 21(7), 687-694.
[http://dx.doi.org/10.1002/bmc.801] [PMID: 17428009]
[69]
Patel, D.K. Pharmacological activities and therapeutic potential of kaempferitrin in medicine for the treatment of human disorders: A review of medicinal importance and health benefits. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(2), 104-114.
[http://dx.doi.org/10.2174/1871529X21666210812111931] [PMID: 34387174]
[70]
Patel, D.K.; Patel, K. Potential therapeutic applications of eudesmin in medicine: An overview on medicinal importance, pharmacological activities and analytical prospects. Pharmacological Research - Modern Chinese Medicine, 2022, 5, 100175.
[http://dx.doi.org/10.1016/j.prmcm.2022.100175]
[71]
Patel, D.K. Therapeutic role of columbianadin in human disorders: Medicinal importance, biological properties and analytical aspects. Pharmacol Res - Mod Chin Med, 2023, 6, 100212.
[http://dx.doi.org/10.1016/j.prmcm.2022.100212]
[72]
Patel, D.K. Biological importance and therapeutic potential of Trilobatin in the management of human disorders and associated secondary complications. Pharmacol Res - Mod Chin Med, 2022, 5, 100185.
[73]
Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of hispidulin: A concise report. J. Tradit. Complement. Med., 2017, 7(3), 360-366.
[http://dx.doi.org/10.1016/j.jtcme.2016.11.003] [PMID: 28725632]
[74]
Patel, K.; Singh, G.K.; Patel, D.K. A review on pharmacological and analytical aspects of naringenin. Chin. J. Integr. Med., 2018, 24(7), 551-560.
[http://dx.doi.org/10.1007/s11655-014-1960-x] [PMID: 25501296]
[75]
Patel, D.K. Therapeutic effectiveness of Magnolin on cancers and other human complications. Pharmacol Res - Mod Chin Med, 2023, 6, 100203.
[76]
Patel, D.K. Biological potential and therapeutic benefit of Chrysosplenetin: An Applications of polymethoxylated flavonoid in medicine from natural sources. Pharmacol Res - Mod Chin Med, 2022, 4, 100155.
[http://dx.doi.org/10.1016/j.prmcm.2022.100155]
[77]
Patel, D.K. Grandisin and its therapeutic potential and pharmacological activities: A review. Pharmacol Res - Mod Chin Med, 2022, 5, 100176.
[78]
Yang, H.; Liu, J.; Ping Dou, Q. Targeting tumor proteasome with traditional Chinese medicine. Curr. Drug Discov. Technol., 2010, 7(1), 46-53.
[http://dx.doi.org/10.2174/157016310791162785] [PMID: 20156140]
[79]
Khoonrit, P.; Mirdogan, A.; Dehlinger, A. Immune modulatory effect of a novel 4,5-dihydroxy-3,3´,4´-trimethoxybibenzyl from Dendrobium lindleyi. PLoS One, 2020, 15(9), e0238509.
[http://dx.doi.org/10.1371/journal.pone.0238509] [PMID: 32870935]
[80]
Pujari, I; Babu, VS Rhizobium rhizogenes infection in threatened Indian orchid Dendrobium ovatum mobilises ‘Moscatilin’ to enhance plant defensins. 3 Biotech, 2022, 119

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy