Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Aptamer-guided Selective Delivery of Therapeutics to Breast Cancer Cells Expressing Specific Biomarkers

Author(s): Swaroop Kumar Pandey*, Mradula Parul and Manikandan Santhanam

Volume 20, Issue 5, 2024

Published on: 17 October, 2023

Page: [434 - 460] Pages: 27

DOI: 10.2174/1573394719666230911113126

Price: $65

Abstract

Cancer biomarkers or tumor-associated antigens (TAA) are the focus area of current research in cancer biology for diagnosis, prognosis, screening, and targeted treatments. Breast cancer is the second most common type of cancer, affecting women more than men. Conventional methods and antibody-targeted therapies are less effective and suffer systemic cytotoxicity, poor tissue sensitivity, low penetration capacity, and reduced accumulation of the drug in tumor cells that limit its application and sometimes result in treatment failure. Opting for aptamer-mediated targeted delivery of various anti-cancer agents (drugs, siRNA, miRNA, shRNA and peptides) could possibly overcome these limitations by utilizing aptamer as a targeting ligand. The purpose of this article is to review the novel indicative biomarkers of breast cancer and also describe current applications of aptamer-guided active targeting systems in breast cancer therapy in vivo and in vitro.

Graphical Abstract

[1]
Ginsburg, O.; Bray, F.; Coleman, M.P. The global burden of women’s cancers: A grand challenge in global health. Lancet, 2017, 389(10071), 847-860.
[http://dx.doi.org/10.1016/S0140-6736(16)31392-7] [PMID: 27814965]
[2]
Giaquinto, A.N.; Sung, H.; Miller, K.D. Breast Cancer Statistics, 2022. CA Cancer J. Clin., 2022, 72(6), 524-541.
[http://dx.doi.org/10.3322/caac.21754] [PMID: 36190501]
[3]
Chandrasekaran, R.; Lee, A.S.W.; Yap, L.W.; Jans, D.A.; Wagstaff, K.M.; Cheng, W. Tumor cell-specific photothermal killing by SELEX-derived DNA aptamer-targeted gold nanorods. Nanoscale, 2016, 8(1), 187-196.
[http://dx.doi.org/10.1039/C5NR07831H] [PMID: 26646051]
[4]
Chakraborty, S.; Rahman, T. The difficulties in cancer treatment. Ecancermedicalscience, 2012, 6(ed16)
[PMID: 24883085]
[5]
Xiang, D.; Shigdar, S.; Qiao, G. Nucleic acid aptamer-guided cancer therapeutics and diagnostics: the next generation of cancer medicine. Theranostics, 2015, 5(1), 23-42.
[http://dx.doi.org/10.7150/thno.10202] [PMID: 25553096]
[6]
Zhu, G.; Chen, X. Aptamer-based targeted therapy. Adv. Drug Deliv. Rev., 2018, 134, 65-78.
[http://dx.doi.org/10.1016/j.addr.2018.08.005] [PMID: 30125604]
[7]
Ni, S.; Zhuo, Z.; Pan, Y. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl. Mater. Interfaces, 2021, 13(8), 9500-9519.
[http://dx.doi.org/10.1021/acsami.0c05750] [PMID: 32603135]
[8]
Nimjee, S.M.; White, R.R.; Becker, R.C.; Sullenger, B.A. Aptamers as therapeutics. Annu. Rev. Pharmacol. Toxicol., 2017, 57(1), 61-79.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104558] [PMID: 28061688]
[9]
Keefe, A.D.; Pai, S.; Ellington, A. Aptamers as therapeutics. Nat. Rev. Drug Discov., 2010, 9(7), 537-550.
[http://dx.doi.org/10.1038/nrd3141] [PMID: 20592747]
[10]
Tabarzad, M.; Jafari, M. Trends in the design and development of specific aptamers against peptides and proteins. Protein J., 2016, 35(2), 81-99.
[http://dx.doi.org/10.1007/s10930-016-9653-2] [PMID: 26984473]
[11]
Neves, M.A.D.; Blaszykowski, C.; Thompson, M. Utilizing a key aptamer structure-switching mechanism for the ultrahigh frequency detection of cocaine. Anal. Chem., 2016, 88(6), 3098-3106.
[http://dx.doi.org/10.1021/acs.analchem.5b04010] [PMID: 26871312]
[12]
Kim, D.H.; Seo, J.M.; Shin, K.J.; Yang, S.G. Design and clinical developments of aptamer-drug conjugates for targeted cancer therapy. Biomater. Res., 2021, 25(1), 42.
[http://dx.doi.org/10.1186/s40824-021-00244-4] [PMID: 34823601]
[13]
Marx, V. Finding the right antibody for the job. Nat. Methods, 2013, 10(8), 703-707.
[http://dx.doi.org/10.1038/nmeth.2570] [PMID: 23900250]
[14]
Shanaa, O.A.; Rumyantsev, A.; Sambuk, E.; Padkina, M. In vivo production of RNA aptamers and nanoparticles: Problems and prospects. Molecules, 2021, 26(5), 1422.
[http://dx.doi.org/10.3390/molecules26051422] [PMID: 33800717]
[15]
Lee, J.W.; Kim, H.J.; Heo, K. Therapeutic aptamers: Developmental potential as anticancer drugs. BMB Rep., 2015, 48(4), 234-237.
[http://dx.doi.org/10.5483/BMBRep.2015.48.4.277] [PMID: 25560701]
[16]
Que-Gewirth, N.S.; Sullenger, B.A. Gene therapy progress and prospects: RNA aptamers. Gene Ther., 2007, 14(4), 283-291.
[http://dx.doi.org/10.1038/sj.gt.3302900] [PMID: 17279100]
[17]
Tan, W.; Donovan, M.J.; Jiang, J. Aptamers from cell-based selection for bioanalytical applications. Chem. Rev., 2013, 113(4), 2842-2862.
[http://dx.doi.org/10.1021/cr300468w] [PMID: 23509854]
[18]
Yasmeen, F.; Seo, H.; Javaid, N.; Kim, M.S.; Choi, S. Therapeutic interventions into innate immune diseases by means of aptamers. Pharmaceutics, 2020, 12(10), 955.
[http://dx.doi.org/10.3390/pharmaceutics12100955] [PMID: 33050544]
[19]
Liu, M.; Yu, X.; Chen, Z. Aptamer selection and applications for breast cancer diagnostics and therapy. J. Nanobiotechnology, 2017, 15(1), 81.
[http://dx.doi.org/10.1186/s12951-017-0311-4] [PMID: 29132385]
[20]
Henry, N.L.; Shah, P.D.; Haider, I.; Freer, P.E.; Jagsi, R. Cancer of the Breast Abeloff’s Clinical Oncology, 6th ed; Elsevier, 2020, pp. 1560-603.e12.
[http://dx.doi.org/10.1016/B978-0-323-47674-4.00088-8]
[21]
Iqbal, N.; Iqbal, N. Human epidermal growth factor receptor 2 (HER2) in Cancers: Overexpression and therapeutic implications. Mol. Biol. Int., 2014, 2014, 1-9.
[http://dx.doi.org/10.1155/2014/852748] [PMID: 25276427]
[22]
Masuda, H.; Zhang, D.; Bartholomeusz, C.; Doihara, H.; Hortobagyi, G.N.; Ueno, N.T. Role of epidermal growth factor receptor in breast cancer. Breast Cancer Res. Treat., 2012, 136(2), 331-345.
[http://dx.doi.org/10.1007/s10549-012-2289-9] [PMID: 23073759]
[23]
Swain, S.M.; Shastry, M.; Hamilton, E. Targeting HER2-positive breast cancer: Advances and future directions. Nat. Rev. Drug Discov., 2023, 22(2), 101-126.
[http://dx.doi.org/10.1038/s41573-022-00579-0] [PMID: 36344672]
[24]
Nave, O.P.; Elbaz, M.; Bunimovich-Mendrazitsky, S. Analysis of a breast cancer mathematical model by a new method to find an optimal protocol for H E R 2 -positive cancer. Biosystems, 2020, 197104191
[http://dx.doi.org/10.1016/j.biosystems.2020.104191] [PMID: 32791173]
[25]
Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N. Engl. J. Med., 2005, 353(16), 1659-1672.
[http://dx.doi.org/10.1056/NEJMoa052306] [PMID: 16236737]
[26]
Gregório, A.C.; Lacerda, M.; Figueiredo, P.; Simões, S.; Dias, S.; Moreira, J.N. Meeting the needs of breast cancer: A nucleolin’s perspective. Crit. Rev. Oncol. Hematol., 2018, 125, 89-101.
[http://dx.doi.org/10.1016/j.critrevonc.2018.03.008] [PMID: 29650282]
[27]
Ginisty, H.; Sicard, H.; Roger, B.; Bouvet, P. Structure and functions of nucleolin. J. Cell Sci., 1999, 112(6), 761-772.
[http://dx.doi.org/10.1242/jcs.112.6.761] [PMID: 10036227]
[28]
Chen, Z.; Xu, X. Roles of nucleolin. Saudi Med. J., 2016, 37(12), 1312-1318.
[http://dx.doi.org/10.15537/smj.2016.12.15972] [PMID: 27874146]
[29]
Nguyen Van Long, F.; Lardy-Cleaud, A.; Bray, S. Druggable Nucleolin identifies breast tumours associated with poor prognosis that exhibit different biological processes. Cancers, 2018, 10(10), 390.
[http://dx.doi.org/10.3390/cancers10100390] [PMID: 30360377]
[30]
Xue, M.; Zhang, K.; Mu, K. Regulation of estrogen signaling and breast cancer proliferation by an ubiquitin ligase TRIM56. Oncogenesis, 2019, 8(5), 30.
[http://dx.doi.org/10.1038/s41389-019-0139-x] [PMID: 31000690]
[31]
Osta, W.A.; Chen, Y.; Mikhitarian, K. EpCAM is overexpressed in breast cancer and is a potential target for breast cancer gene therapy. Cancer Res., 2004, 64(16), 5818-5824.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-0754] [PMID: 15313925]
[32]
Gao, S.; Sun, Y.; Liu, X.; Zhang, D.; Yang, X. EpCAM and COX-2 expression are positively correlated in human breast cancer. Mol. Med. Rep., 2017, 15(6), 3755-3760.
[http://dx.doi.org/10.3892/mmr.2017.6447] [PMID: 28393249]
[33]
Gao, J.; Yan, Q.; Liu, S.; Yang, X. Knockdown of EpCAM enhances the chemosensitivity of breast cancer cells to 5-fluorouracil by downregulating the antiapoptotic factor Bcl-2. PLoS One, 2014, 9(7)e102590
[http://dx.doi.org/10.1371/journal.pone.0102590] [PMID: 25019346]
[34]
Linke, R.; Klein, A.; Seimetz, D. Catumaxomab. MAbs, 2010, 2(2), 129-136.
[http://dx.doi.org/10.4161/mabs.2.2.11221] [PMID: 20190561]
[35]
Gross, J.M.; Yee, D. How does the estrogen receptor work? Breast Cancer Res., 2002, 4(2), 62-64.
[http://dx.doi.org/10.1186/bcr424] [PMID: 11879565]
[36]
Williams, C.; Lin, C.Y. Oestrogen receptors in breast cancer: Basic mechanisms and clinical implications. Ecancermedicalscience, 2013, 7, 370.
[PMID: 24222786]
[37]
Hua, H.; Zhang, H.; Kong, Q.; Jiang, Y. Mechanisms for estrogen receptor expression in human cancer. Exp. Hematol. Oncol., 2018, 7(1), 24.
[http://dx.doi.org/10.1186/s40164-018-0116-7] [PMID: 30250760]
[38]
Bouris, P.; Skandalis, S.S.; Piperigkou, Z. Estrogen receptor alpha mediates epithelial to mesenchymal transition, expression of specific matrix effectors and functional properties of breast cancer cells. Matrix Biol., 2015, 43, 42-60.
[http://dx.doi.org/10.1016/j.matbio.2015.02.008] [PMID: 25728938]
[39]
Miller, D.M.; Thomas, S.D.; Islam, A.; Muench, D.; Sedoris, K. c-Myc and cancer metabolism. Clin. Cancer Res., 2012, 18(20), 5546-5553.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-0977] [PMID: 23071356]
[40]
Alao, J.P. The regulation of cyclin D1 degradation: Roles in cancer development and the potential for therapeutic invention. Mol. Cancer, 2007, 6(1), 24.
[http://dx.doi.org/10.1186/1476-4598-6-24] [PMID: 17407548]
[41]
Sacks, D.; Baxter, B.; Campbell, B.C.V. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke. Int. J. Stroke, 2018, 13(6), 612-632.
[PMID: 29786478]
[42]
Yaşar, P.; Ayaz, G.; User, S.D.; Güpür, G.; Muyan, M. Molecular mechanism of estrogen-estrogen receptor signaling. Reprod. Med. Biol., 2017, 16(1), 4-20.
[http://dx.doi.org/10.1002/rmb2.12006] [PMID: 29259445]
[43]
Kufe, D.W. MUC1-C oncoprotein as a target in breast cancer: Activation of signaling pathways and therapeutic approaches. Oncogene, 2013, 32(9), 1073-1081.
[http://dx.doi.org/10.1038/onc.2012.158] [PMID: 22580612]
[44]
Nath, S.; Mukherjee, P. MUC1: A multifaceted oncoprotein with a key role in cancer progression. Trends Mol. Med., 2014, 20(6), 332-342.
[http://dx.doi.org/10.1016/j.molmed.2014.02.007] [PMID: 24667139]
[45]
Horm, T.M.; Schroeder, J.A. MUC1 and metastatic cancer. Cell Adhes. Migr., 2013, 7(2), 187-198.
[http://dx.doi.org/10.4161/cam.23131] [PMID: 23303343]
[46]
Bailey-Dell, K.J.; Hassel, B.; Doyle, L.A.; Ross, D.D. Promoter characterization and genomic organization of the human breast cancer resistance protein (ATP-binding cassette transporter G2) gene. Biochim. Biophys. Acta Gene Struct. Expr., 2001, 1520(3), 234-241.
[http://dx.doi.org/10.1016/S0167-4781(01)00270-6] [PMID: 11566359]
[47]
Wang, J.Q.; Wu, Z.X.; Yang, Y. ATP‐binding cassette (ABC) transporters in cancer: A review of recent updates. J. Evid. Based Med., 2021, 14(3), 232-256.
[http://dx.doi.org/10.1111/jebm.12434] [PMID: 34388310]
[48]
Natarajan, K.; Xie, Y.; Baer, M.R.; Ross, D.D. Role of breast cancer resistance protein (BCRP/ABCG2) in cancer drug resistance. Biochem. Pharmacol., 2012, 83(8), 1084-1103.
[http://dx.doi.org/10.1016/j.bcp.2012.01.002] [PMID: 22248732]
[49]
Staud, F.; Pavek, P. Breast cancer resistance protein (BCRP/ABCG2). Int. J. Biochem. Cell Biol., 2005, 37(4), 720-725.
[http://dx.doi.org/10.1016/j.biocel.2004.11.004] [PMID: 15694832]
[50]
Ee, P.L.R.; Kamalakaran, S.; Tonetti, D.; He, X.; Ross, D.D.; Beck, W.T. Identification of a novel estrogen response element in the breast cancer resistance protein (ABCG2) gene. Cancer Res., 2004, 64(4), 1247-1251.
[http://dx.doi.org/10.1158/0008-5472.CAN-03-3583] [PMID: 14973083]
[51]
Agarwal, S.; Sane, R.; Gallardo, J.L.; Ohlfest, J.R.; Elmquist, W.F. Distribution of gefitinib to the brain is limited by P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2)-mediated active efflux. J. Pharmacol. Exp. Ther., 2010, 334(1), 147-155.
[http://dx.doi.org/10.1124/jpet.110.167601] [PMID: 20421331]
[52]
Constantinidou, A.; Jones, R.L.; Reis-Filho, J.S. Beyond triple-negative breast cancer: The need to define new subtypes. Expert Rev. Anticancer Ther., 2010, 10(8), 1197-1213.
[http://dx.doi.org/10.1586/era.10.50] [PMID: 20735307]
[53]
Wang, D.Y.; Jiang, Z.; Ben-David, Y.; Woodgett, J.R.; Zacksenhaus, E. Molecular stratification within triple-negative breast cancer subtypes. Sci. Rep., 2019, 9(1), 19107.
[http://dx.doi.org/10.1038/s41598-019-55710-w] [PMID: 31836816]
[54]
Marra, A.; Viale, G.; Curigliano, G. Recent advances in triple negative breast cancer: The immunotherapy era. BMC Med., 2019, 17(1), 90.
[http://dx.doi.org/10.1186/s12916-019-1326-5] [PMID: 31068190]
[55]
Yadav, B.S.; Chanana, P.; Jhamb, S. Biomarkers in triple negative breast cancer: A review. World J. Clin. Oncol., 2015, 6(6), 252-263.
[http://dx.doi.org/10.5306/wjco.v6.i6.252] [PMID: 26677438]
[56]
Gurdal, H.; Tuglu, M.M.; Bostanabad, S.Y.; Dalkiliç, B. Partial agonistic effect of cetuximab on epidermal growth factor receptor and Src kinase activation in triple negative breast cancer cell lines. Int. J. Oncol., 2019, 54(4), 1345-1356.
[http://dx.doi.org/10.3892/ijo.2019.4697] [PMID: 30720056]
[57]
Gerber, H.P.; Dixit, V.; Ferrara, N. Vascular endothelial growth factor induces expression of the antiapoptotic proteins Bcl-2 and A1 in vascular endothelial cells. J. Biol. Chem., 1998, 273(21), 13313-13316.
[http://dx.doi.org/10.1074/jbc.273.21.13313] [PMID: 9582377]
[58]
Nahed, A.S.; Shaimaa, M.Y. Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biol. Med., 2016, 13(4), 496-504.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2016.0066] [PMID: 28154782]
[59]
Singh, B.; Lucci, A. Role of cyclooxygenase-2 in breast cancer. J. Surg. Res., 2002, 108(1), 173-179.
[http://dx.doi.org/10.1006/jsre.2002.6532] [PMID: 12472107]
[60]
Ossovskaya, V.; Koo, I.C.; Kaldjian, E.P.; Alvares, C.; Sherman, B.M. Upregulation of poly (ADP-Ribose) Polymerase-1 (PARP1) in triple-negative breast cancer and other primary human tumor types. Genes Cancer, 2010, 1(8), 812-821.
[http://dx.doi.org/10.1177/1947601910383418] [PMID: 21779467]
[61]
Ziyaie, D.; Hupp, T.R.; Thompson, A.M. p53 and breast cancer. Breast, 2000, 9(5), 239-246.
[http://dx.doi.org/10.1054/brst.2000.0199] [PMID: 14732173]
[62]
Depowski, P.L.; Rosenthal, S.I.; Brien, T.P.; Stylos, S.; Johnson, R.L.; Ross, J.S. Topoisomerase IIalpha expression in breast cancer: correlation with outcome variables. Mod. Pathol., 2000, 13(5), 542-547.
[http://dx.doi.org/10.1038/modpathol.3880094] [PMID: 10824926]
[63]
Moosavian, S.A.; Abnous, K.; Badiee, A.; Jaafari, M.R. Improvement in the drug delivery and anti-tumor efficacy of PEGylated liposomal doxorubicin by targeting RNA aptamers in mice bearing breast tumor model. Colloids Surf. B Biointerfaces, 2016, 139, 228-236.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.009] [PMID: 26722819]
[64]
Ghahremani, F.; Shahbazi-Gahrouei, D.; Kefayat, A.; Motaghi, H.; Mehrgardi, M.A.; Javanmard, S.H. AS1411 aptamer conjugated gold nanoclusters as a targeted radiosensitizer for megavoltage radiation therapy of 4T1 breast cancer cells. RSC Advances, 2018, 8(8), 4249-4258.
[http://dx.doi.org/10.1039/C7RA11116A]
[65]
Zavvar, T.; Babaei, M.; Abnous, K. Synthesis of multimodal polymersomes for targeted drug delivery and MR/fluorescence imaging in metastatic breast cancer model. Int. J. Pharm., 2020, 578119091
[http://dx.doi.org/10.1016/j.ijpharm.2020.119091] [PMID: 32007591]
[66]
Kumar Kulabhusan, P.; Hussain, B.; Yüce, M. Current perspectives on aptamers as diagnostic tools and therapeutic agents. Pharmaceutics, 2020, 12(7), 646.
[http://dx.doi.org/10.3390/pharmaceutics12070646] [PMID: 32659966]
[67]
Adachi, T.; Nakamura, Y. Aptamers: A review of their chemical properties and modifications for therapeutic application. Molecules, 2019, 24(23), 4229.
[http://dx.doi.org/10.3390/molecules24234229] [PMID: 31766318]
[68]
Odeh, F.; Nsairat, H.; Alshaer, W. Aptamers chemistry: Chemical modifications and conjugation strategies. Molecules, 2019, 25(1), 3.
[http://dx.doi.org/10.3390/molecules25010003] [PMID: 31861277]
[69]
Srivastava, S.; Abraham, P.R.; Mukhopadhyay, S. Aptamers: An emerging tool for diagnosis and therapeutics in tuberculosis. Front. Cell. Infect. Microbiol., 2021, 11656421
[http://dx.doi.org/10.3389/fcimb.2021.656421] [PMID: 34277465]
[70]
Thorn, C.F.; Oshiro, C.; Marsh, S. Doxorubicin pathways. Pharmacogenet. Genomics, 2011, 21(7), 440-446.
[http://dx.doi.org/10.1097/FPC.0b013e32833ffb56] [PMID: 21048526]
[71]
Yun, U.J.; Lee, J.H.; Shim, J. Anti-cancer effect of doxorubicin is mediated by downregulation of HMG-Co A reductase via inhibition of EGFR/Src pathway. Lab. Invest., 2019, 99(8), 1157-1172.
[http://dx.doi.org/10.1038/s41374-019-0193-1] [PMID: 30700846]
[72]
Yan, J.; Chen, J.; Zhang, N. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(3), 492-503.
[http://dx.doi.org/10.1039/C9TB02266J] [PMID: 31840727]
[73]
Sohail, M.; Sun, Z.; Li, Y.; Gu, X.; Xu, H. Research progress in strategies to improve the efficacy and safety of doxorubicin for cancer chemotherapy. Expert Rev. Anticancer Ther., 2021, 21(12), 1385-1398.
[http://dx.doi.org/10.1080/14737140.2021.1991316] [PMID: 34636282]
[74]
Patel, A.G.; Kaufmann, S.H. How does doxorubicin work? eLife, 2012, 1e00387
[http://dx.doi.org/10.7554/eLife.00387] [PMID: 23256047]
[75]
Gewirtz, D. A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem. Pharmacol., 1999, 57(7), 727-741.
[http://dx.doi.org/10.1016/S0006-2952(98)00307-4] [PMID: 10075079]
[76]
Yang, F.; Teves, S.S.; Kemp, C.J.; Henikoff, S. Doxorubicin, DNA torsion, and chromatin dynamics. Biochim. Biophys. Acta, 2014, 1845(1), 84-89.
[PMID: 24361676]
[77]
Hashemitabar, S.; Yazdian-Robati, R.; Hashemi, M.; Ramezani, M.; Abnous, K.; Kalalinia, F. ABCG2 aptamer selectively delivers doxorubicin to drug-resistant breast cancer cells. J. Biosci., 2019, 44(2), 39.
[http://dx.doi.org/10.1007/s12038-019-9854-x] [PMID: 31180052]
[78]
Liu, Z.; Duan, J.H.; Song, Y.M. Novel HER2 aptamer selectively delivers cytotoxic drug to HER2-positive breast cancer cells in vitro. J. Transl. Med., 2012, 10(1), 148.
[http://dx.doi.org/10.1186/1479-5876-10-148] [PMID: 22817844]
[79]
Ni, S.; Yao, H.; Wang, L. Chemical modifications of nucleic acid aptamers for therapeutic purposes. Int. J. Mol. Sci., 2017, 18(8), 1683.
[http://dx.doi.org/10.3390/ijms18081683] [PMID: 28767098]
[80]
He, J.; Peng, T.; Peng, Y. Molecularly engineering triptolide with aptamers for high specificity and cytotoxicity for triple-negative breast cancer. J. Am. Chem. Soc., 2020, 142(6), 2699-2703.
[http://dx.doi.org/10.1021/jacs.9b10510] [PMID: 31910009]
[81]
Dean, N.M.; Bennett, C.F. Antisense oligonucleotide-based therapeutics for cancer. Oncogene, 2003, 22(56), 9087-9096.
[http://dx.doi.org/10.1038/sj.onc.1207231] [PMID: 14663487]
[82]
Mansoori, B.; Sandoghchian, S.S.; Baradaran, B. RNA interference and its role in cancer therapy. Adv. Pharm. Bull., 2014, 4(4), 313-321.
[PMID: 25436185]
[83]
Bartoszewski, R.; Sikorski, A.F. Editorial focus: Understanding off-target effects as the key to successful RNAi therapy. Cell. Mol. Biol. Lett., 2019, 24(1), 69.
[http://dx.doi.org/10.1186/s11658-019-0196-3] [PMID: 31867046]
[84]
Mallick, A.M.; Tripathi, A.; Mishra, S. Emerging approaches for enabling RNAi therapeutics. Chem. Asian J., 2022, 17(16)e202200451
[http://dx.doi.org/10.1002/asia.202200451] [PMID: 35689534]
[85]
Xin, Y.; Huang, M.; Guo, W.W.; Huang, Q.; Zhang, L.; Jiang, G. Nano-based delivery of RNAi in cancer therapy. Mol. Cancer, 2017, 16(1), 134.
[http://dx.doi.org/10.1186/s12943-017-0683-y] [PMID: 28754120]
[86]
Nachreiner, I.; Hussain, A.F.; Wullner, U. Elimination of HER3-expressing breast cancer cells using aptamer-siRNA chimeras. Exp. Ther. Med., 2019, 18(4), 2401-2412.
[http://dx.doi.org/10.3892/etm.2019.7753] [PMID: 31555351]
[87]
Wang, T.; Gantier, M.P.; Xiang, D. EpCAM aptamer-mediated survivin silencing sensitized cancer stem cells to doxorubicin in a breast cancer model. Theranostics, 2015, 5(12), 1456-1472.
[http://dx.doi.org/10.7150/thno.11692] [PMID: 26681989]
[88]
Yu, X.; Ghamande, S.; Liu, H. Targeting EGFR/HER2/HER3 with a Three-in-One Aptamer-siRNA chimera confers superior activity against HER2+ Breast Cancer. Mol. Ther. Nucleic Acids, 2018, 10, 317-330.
[http://dx.doi.org/10.1016/j.omtn.2017.12.015] [PMID: 29499944]
[89]
Powell, D.; Chandra, S.; Dodson, K. Aptamer-functionalized hybrid nanoparticle for the treatment of breast cancer. Eur. J. Pharm. Biopharm., 2017, 114, 108-118.
[http://dx.doi.org/10.1016/j.ejpb.2017.01.011] [PMID: 28131717]
[90]
Wang, Y.; Chen, X.; Tian, B. Nucleolin-targeted extracellular vesicles as a versatile platform for biologics delivery to breast cancer. Theranostics, 2017, 7(5), 1360-1372.
[http://dx.doi.org/10.7150/thno.16532] [PMID: 28435471]
[91]
Kardani, A.; Yaghoobi, H.; Alibakhshi, A.; Khatami, M. Inhibition of miR‐155 in MCF‐7 breast cancer cell line by gold nanoparticles functionalized with antagomir and AS1411 aptamer. J. Cell. Physiol., 2020, 235(10), 6887-6895.
[http://dx.doi.org/10.1002/jcp.29584] [PMID: 32003016]
[92]
Taghavi, S.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. Chitosan-modified PLGA nanoparticles tagged with 5TR1 aptamer for in vivo tumor-targeted drug delivery. Cancer Lett., 2017, 400, 1-8.
[http://dx.doi.org/10.1016/j.canlet.2017.04.008] [PMID: 28412238]
[93]
Yin, H.; Xiong, G.; Guo, S. Delivery of Anti-miRNA for triple-negative breast cancer therapy using RNA nanoparticles targeting stem cell marker CD133. Mol. Ther., 2019, 27(7), 1252-1261.
[http://dx.doi.org/10.1016/j.ymthe.2019.04.018] [PMID: 31085078]
[94]
Kunz, C.; Borghouts, C.; Buerger, C.; Groner, B. Peptide aptamers with binding specificity for the intracellular domain of the ErbB2 receptor interfere with AKT signaling and sensitize breast cancer cells to Taxol. Mol. Cancer Res., 2006, 4(12), 983-998.
[http://dx.doi.org/10.1158/1541-7786.MCR-06-0046] [PMID: 17189388]
[95]
Camorani, S.; Hill, B.S.; Collina, F. Targeted imaging and inhibition of triple-negative breast cancer metastases by a PDGFRβ aptamer. Theranostics, 2018, 8(18), 5178-5199.
[http://dx.doi.org/10.7150/thno.27798] [PMID: 30429893]
[96]
Gmeiner, W.H.; Ghosh, S. Nanotechnology for cancer treatment. Nanotechnol. Rev., 2015, 3(2), 111-122.
[PMID: 26082884]
[97]
Jalalian, S.H.; Ramezani, M.; Abnous, K.; Taghdisi, S.M. Targeted co-delivery of epirubicin and NAS-24 aptamer to cancer cells using selenium nanoparticles for enhancing tumor response in vitro and in vivo. Cancer Lett., 2018, 416, 87-93.
[http://dx.doi.org/10.1016/j.canlet.2017.12.023] [PMID: 29253524]
[98]
Aghanejad, A.; Babamiri, H.; Adibkia, K.; Barar, J.; Omidi, Y. Mucin-1 aptamer-armed superparamagnetic iron oxide nanoparticles for targeted delivery of doxorubicin to breast cancer cells. Bioimpacts, 2018, 8(2), 117-127.
[http://dx.doi.org/10.15171/bi.2018.14] [PMID: 29977833]
[99]
Majidi Zolbanin, N.; Jafari, R.; Majidi, J. Targeted co-delivery of docetaxel and cMET siRNA for treatment of mucin1 overexpressing breast cancer cells. Adv. Pharm. Bull., 2018, 8(3), 383-393.
[http://dx.doi.org/10.15171/apb.2018.045] [PMID: 30276134]
[100]
Majidi Zolbanin, N.; Jafari, R.; Majidi, J. Apoptotic effects of mucin1 aptamer-conjugated nanoparticles containing docetaxel and c-Met siRNA on SKBR3 human metastatic breast cancer cells. Jundishapur J. Nat. Pharm. Prod., 2019, 14(4)e67023
[http://dx.doi.org/10.5812/jjnpp.67023]
[101]
Jafari, R.; Majidi Zolbanin, N.; Majidi, J. Anti-Mucin1 aptamer-conjugated chitosan nanoparticles for targeted co-delivery of docetaxel and IGF-1R siRNA to SKBR3 metastatic breast cancer cells. Iran. Biomed. J., 2019, 23(1), 21-33.
[http://dx.doi.org/10.29252/ibj.23.1.21] [PMID: 30041514]
[102]
Hanafi-Bojd, M.Y.; Moosavian Kalat, S.A.; Taghdisi, S.M.; Ansari, L.; Abnous, K.; Malaekeh-Nikouei, B. MUC1 aptamer-conjugated mesoporous silica nanoparticles effectively target breast cancer cells. Drug Dev. Ind. Pharm., 2018, 44(1), 13-18.
[http://dx.doi.org/10.1080/03639045.2017.1371734] [PMID: 28832225]
[103]
Sakhtianchi, R.; Darvishi, B.; Mirzaie, Z.; Dorkoosh, F.; Shanehsazzadeh, S.; Dinarvand, R. Pegylated magnetic mesoporous silica nanoparticles decorated with AS1411 Aptamer as a targeting delivery system for cytotoxic agents. Pharm. Dev. Technol., 2019, 24(9), 1063-1075.
[http://dx.doi.org/10.1080/10837450.2019.1569678] [PMID: 30654677]
[104]
Li, L.L.; Yin, Q.; Cheng, J.; Lu, Y. Polyvalent mesoporous silica nanoparticle-aptamer bioconjugates target breast cancer cells. Adv. Healthc. Mater., 2012, 1(5), 567-572.
[http://dx.doi.org/10.1002/adhm.201200116] [PMID: 23184791]
[105]
Yu, C.; Hu, Y.; Duan, J. Novel aptamer-nanoparticle bioconjugates enhances delivery of anticancer drug to MUC1-positive cancer cells in vitro. PLoS One, 2011, 6(9)e24077
[http://dx.doi.org/10.1371/journal.pone.0024077] [PMID: 21912664]
[106]
Kong, N.; Deng, M.; Sun, X.N.; Chen, Y.D.; Sui, X.B. Polydopamine-functionalized CA-(PCL-ran-PLA) Nanoparticles for target delivery of docetaxel and chemo-photothermal therapy of breast cancer. Front. Pharmacol., 2018, 9, 125.
[http://dx.doi.org/10.3389/fphar.2018.00125] [PMID: 29527167]
[107]
Bahreyni, A.; Alibolandi, M.; Ramezani, M.; Sarafan Sadeghi, A.; Abnous, K.; Taghdisi, S.M. A novel MUC1 aptamer-modified PLGA-epirubicin-PβAE-antimir-21 nanocomplex platform for targeted co-delivery of anticancer agents in vitro and in vivo. Colloids Surf. B Biointerfaces, 2019, 175, 231-238.
[http://dx.doi.org/10.1016/j.colsurfb.2018.12.006] [PMID: 30537619]
[108]
Duan, T.; Xu, Z.; Sun, F. HPA aptamer functionalized paclitaxel-loaded PLGA nanoparticles for enhanced anticancer therapy through targeted effects and microenvironment modulation. Biomed. Pharmacother., 2019, 117109121
[http://dx.doi.org/10.1016/j.biopha.2019.109121] [PMID: 31252265]
[109]
Cao, Z.; Tong, R.; Mishra, A. Reversible cell-specific drug delivery with aptamer-functionalized liposomes. Angew. Chem. Int. Ed., 2009, 48(35), 6494-6498.
[http://dx.doi.org/10.1002/anie.200901452] [PMID: 19623590]
[110]
Moosavian, S.A.; Abnous, K.; Akhtari, J.; Arabi, L.; Gholamzade, D.A.; Jafari, M. 5TR1 aptamer-PEGylated liposomal doxorubicin enhances cellular uptake and suppresses tumour growth by targeting MUC1 on the surface of cancer cells. Artif. Cells Nanomed. Biotechnol., 2018, 46(8), 2054-2065.
[PMID: 29205059]
[111]
Xing, H.; Tang, L.; Yang, X. Selective delivery of an anticancer drug with aptamer-functionalized liposomes to breast cancer cells in vitro and in vivo. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(39), 5288-5297.
[http://dx.doi.org/10.1039/c3tb20412j] [PMID: 24159374]
[112]
Li, X.; Wu, X.; Yang, H.; Li, L.; Ye, Z.; Rao, Y. A nuclear targeted Dox-aptamer loaded liposome delivery platform for the circumvention of drug resistance in breast cancer. Biomed. Pharmacother., 2019, 117109072
[http://dx.doi.org/10.1016/j.biopha.2019.109072] [PMID: 31202169]
[113]
Binaymotlagh, R.; Hajareh Haghighi, F.; Aboutalebi, F.; Mirahmadi-Zare, S.Z.; Hadadzadeh, H.; Nasr-Esfahani, M.H. Selective chemotherapy and imaging of colorectal and breast cancer cells by a modified MUC-1 aptamer conjugated to a poly(ethylene glycol)-dimethacrylate coated Fe 3 O 4 –AuNCs nanocomposite. New J. Chem., 2019, 43(1), 238-248.
[http://dx.doi.org/10.1039/C8NJ04236E]
[114]
Su, F.; Jia, Q.; Li, Z. Aptamer-templated silver nanoclusters embedded in zirconium metal–organic framework for targeted antitumor drug delivery. Microporous Mesoporous Mater., 2019, 275, 152-162.
[http://dx.doi.org/10.1016/j.micromeso.2018.08.026]
[115]
Tang, Z.; Jun, Y.; Lv, Y. Aptamer-conjugated and doxorubicin-loaded grapefruit-derived nanovectors for targeted therapy against HER2 + breast cancer. J. Drug Target., 2020, 28(2), 186-194.
[http://dx.doi.org/10.1080/1061186X.2019.1624970] [PMID: 31134823]
[116]
Zhang, R.; Wang, S.B.; Wu, W.G. Co-delivery of doxorubicin and AS1411 aptamer by poly(ethylene glycol)-poly(β-amino esters) polymeric micelles for targeted cancer therapy. J. Nanopart. Res., 2017, 19(6), 224.
[http://dx.doi.org/10.1007/s11051-017-3913-8]
[117]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[118]
Zhu, G.; Niu, G.; Chen, X. Aptamer–drug conjugates. Bioconjug. Chem., 2015, 26(11), 2186-2197.
[http://dx.doi.org/10.1021/acs.bioconjchem.5b00291] [PMID: 26083153]
[119]
Charbgoo, F.; Alibolandi, M.; Taghdisi, S.M.; Abnous, K.; Soltani, F.; Ramezani, M. MUC1 aptamer-targeted DNA micelles for dual tumor therapy using doxorubicin and KLA peptide. Nanomedicine (Lond.), 2018, 14(3), 685-697.
[http://dx.doi.org/10.1016/j.nano.2017.12.010] [PMID: 29317345]
[120]
Mradula, R.R.; Raj, R.; Devi, S.; Mishra, S. Antibody-labeled gold nanoparticles based immunosensor for the detection of thyroxine hormone. Anal. Sci., 2020, 36(7), 799-806.
[http://dx.doi.org/10.2116/analsci.19P418] [PMID: 32448824]
[121]
Hafalla, J.C.R.; Claser, C.; Couper, K.N. The CTLA-4 and PD-1/PD-L1 inhibitory pathways independently regulate host resistance to Plasmodium-induced acute immune pathology. PLoS Pathog., 2012, 8(2)e1002504
[http://dx.doi.org/10.1371/journal.ppat.1002504] [PMID: 22319445]
[122]
Niazi, J.H.; Verma, S.K.; Niazi, S.; Qureshi, A. In vitro HER2 protein-induced affinity dissociation of carbon nanotube-wrapped anti-HER2 aptamers for HER2 protein detection. Analyst, 2015, 140(1), 243-249.
[http://dx.doi.org/10.1039/C4AN01665C] [PMID: 25365825]
[123]
Kim, M.Y.; Jeong, S. In vitro selection of RNA aptamer and specific targeting of ErbB2 in breast cancer cells. Nucleic Acid Ther., 2011, 21(3), 173-178.
[http://dx.doi.org/10.1089/nat.2011.0283] [PMID: 21749294]
[124]
Chen, C.B.; Chernis, G.A.; Hoang, V.Q.; Landgraf, R. Inhibition of heregulin signaling by an aptamer that preferentially binds to the oligomeric form of human epidermal growth factor receptor-3. Proc. Natl. Acad. Sci. USA, 2003, 100(16), 9226-9231.
[http://dx.doi.org/10.1073/pnas.1332660100] [PMID: 12874383]
[125]
Bates, P.J.; Kahlon, J.B.; Thomas, S.D.; Trent, J.O.; Miller, D.M. Antiproliferative activity of G-rich oligonucleotides correlates with protein binding. J. Biol. Chem., 1999, 274(37), 26369-26377.
[http://dx.doi.org/10.1074/jbc.274.37.26369] [PMID: 10473594]
[126]
Ahirwar, R.; Vellarikkal, S.K.; Sett, A. Aptamer-assisted detection of the altered expression of estrogen receptor alpha in human breast cancer. PLoS One, 2016, 11(4)e0153001
[http://dx.doi.org/10.1371/journal.pone.0153001] [PMID: 27043307]
[127]
Ferreira, C.S.M.; Matthews, C.S.; Missailidis, S. DNA aptamers that bind to MUC1 tumour marker: Design and characterization of MUC1-binding single-stranded DNA aptamers. Tumour Biol., 2006, 27(6), 289-301.
[http://dx.doi.org/10.1159/000096085] [PMID: 17033199]
[128]
Ferreira, C.S.M.; Papamichael, K.; Guilbault, G.; Schwarzacher, T.; Gariepy, J.; Missailidis, S. DNA aptamers against the MUC1 tumour marker: design of aptamer–antibody sandwich ELISA for the early diagnosis of epithelial tumours. Anal. Bioanal. Chem., 2008, 390(4), 1039-1050.
[http://dx.doi.org/10.1007/s00216-007-1470-1] [PMID: 17694298]
[129]
Camorani, S.; Esposito, C.L.; Rienzo, A. Inhibition of receptor signaling and of glioblastoma-derived tumor growth by a novel PDGFRβ aptamer. Mol. Ther., 2014, 22(4), 828-841.
[http://dx.doi.org/10.1038/mt.2013.300] [PMID: 24566984]
[130]
Liu, M.; Wang, Z.; Tan, T. An aptamer-based probe for molecular subtyping of breast cancer. Theranostics, 2018, 8(20), 5772-5783.
[http://dx.doi.org/10.7150/thno.28949] [PMID: 30555580]
[131]
Tarasiuk, A.; Mosińska, P.; Fichna, J. Triphala: Current applications and new perspectives on the treatment of functional gastrointestinal disorders. Chin. Med., 2018, 13(1), 39.
[http://dx.doi.org/10.1186/s13020-018-0197-6] [PMID: 30034512]
[132]
Antoine, T.; Fisher, N.; Amewu, R.; O’Neill, P.M.; Ward, S.A.; Biagini, G.A. Rapid kill of malaria parasites by artemisinin and semi-synthetic endoperoxides involves ROS-dependent depolarization of the membrane potential. J. Antimicrob. Chemother., 2014, 69(4), 1005-1016.
[http://dx.doi.org/10.1093/jac/dkt486] [PMID: 24335485]
[133]
Barbarino, M.; Giordano, A. Assessment of the carcinogenicity of carbon nanotubes in the respiratory system. Cancers, 2021, 13(6), 1318.
[http://dx.doi.org/10.3390/cancers13061318] [PMID: 33804168]
[134]
Blanshard, A.; Hine, P. Atovaquone-proguanil for treating uncomplicated Plasmodium falciparum malaria. Cochrane Database Syst. Rev., 2021, 1(1)CD004529
[PMID: 33459345]
[135]
Brims, F.; Gunatilake, S.; Lawrie, I. Early specialist palliative care on quality of life for malignant pleural mesothelioma: A randomised controlled trial. Thorax, 2019, 74(4), 354-361.
[http://dx.doi.org/10.1136/thoraxjnl-2018-212380] [PMID: 30661019]
[136]
Butterfield, D.A.; Di Domenico, F.; Barone, E. Elevated risk of type 2 diabetes for development of Alzheimer disease: A key role for oxidative stress in brain. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(9), 1693-1706.
[http://dx.doi.org/10.1016/j.bbadis.2014.06.010] [PMID: 24949886]
[137]
Charnogursky, G.; Lee, H.; Lopez, N. Diabetic neuropathy. Handb. Clin. Neurol., 2014, 120, 773-785.
[http://dx.doi.org/10.1016/B978-0-7020-4087-0.00051-6] [PMID: 24365351]
[138]
De Felice, F.G.; Lourenco, M.V.; Ferreira, S.T. How does brain insulin resistance develop in Alzheimer’s disease? Alzheimers Dement., 2014, 10(S1), S26-S32.
[http://dx.doi.org/10.1016/j.jalz.2013.12.004] [PMID: 24529521]
[139]
Frank, A.L.; Joshi, T.K. The global spread of asbestos. Ann. Glob. Health, 2014, 80(4), 257-262.
[http://dx.doi.org/10.1016/j.aogh.2014.09.016] [PMID: 25459326]
[140]
Giri, PA; Singh, KK; Phalke, DB Study of socio demographic determinants of esophageal cancer at a tertiary care teaching hospital of Western Maharashtra, India. South Asian J Cancer, 2014, 3(1), 054-6.
[http://dx.doi.org/10.4103/2278-330X.126526] [PMID: 24665448]
[141]
Gupta, B.; Kumar, D.; Kalgotra, N. Dialkyltin(IV)bis(O–tolyl/benzyldithiocarbonate) complexes: Spectroscopic, thermogravemetric, antifungal and crystal analysis of n–Bu2Sn(S2COCH2C6H5)2. Acta Chim. Slov., 2015, 62(1), 204-212.
[http://dx.doi.org/10.17344/acsi.2014.1027] [PMID: 25830977]
[142]
Højgaard Hansen, A.; Christensen, H.B.; Pandey, S.K. Structure‐activity relationship explorations and discovery of a potent antagonist for the free fatty acid receptor 2. ChemMedChem, 2021, 16(21), 3326-3341.
[http://dx.doi.org/10.1002/cmdc.202100356] [PMID: 34288488]
[143]
Jayamani, J.; Shanmugam, G. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation. Eur. J. Med. Chem., 2014, 85, 352-358.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.111] [PMID: 25105923]
[144]
Kang, K.S.; Lee, W.; Jung, Y. Protective effect of esculin on streptozotocin-induced diabetic renal damage in mice. J. Agric. Food Chem., 2014, 62(9), 2069-2076.
[http://dx.doi.org/10.1021/jf403840c] [PMID: 24484395]
[145]
Kros, J.M.; Mustafa, D.M.; Dekker, L.J.; Sillevis Smitt, P.A.; Luider, T.M.; Zheng, P.P. Circulating glioma biomarkers. Neuro-oncol., 2015, 17(3), 343-360.
[PMID: 25253418]
[146]
Li, X.; Zhang, W.; Liu, L. in vitro selection of DNA aptamers for metastatic breast cancer cell recognition and tissue imaging. Anal. Chem., 2014, 86(13), 6596-6603.
[http://dx.doi.org/10.1021/ac501205q] [PMID: 24892693]
[147]
Naaz, F.; Abdin, M.Z.; Javed, S. Protective effect of esculin against prooxidant aflatoxin B1-induced nephrotoxicity in mice. Mycotoxin Res., 2014, 30(1), 25-32.
[http://dx.doi.org/10.1007/s12550-013-0185-8] [PMID: 24326591]
[148]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[149]
Pandey, S.; Pandey, S.K.; Shah, V. Role of HAMP genetic variants on pathophysiology of iron deficiency anemia. Indian J. Clin. Biochem., 2018, 33(4), 479-482.
[http://dx.doi.org/10.1007/s12291-017-0707-9] [PMID: 30319197]
[150]
Purwar, P.; Bambarkar, S.; Jiwnani, S.; Karimundackal, G.; Laskar, S.G.; Pramesh, C.S. Multimodality management of esophageal cancer. Indian J. Surg., 2014, 76(6), 494-503.
[http://dx.doi.org/10.1007/s12262-014-1163-x] [PMID: 25614726]
[151]
Zhang, K.; Sefah, K.; Tang, L. A novel aptamer developed for breast cancer cell internalization. ChemMedChem, 2012, 7(1), 79-84.
[http://dx.doi.org/10.1002/cmdc.201100457] [PMID: 22170627]
[152]
Needleman, L.; Kurtz, A.B. Doppler evaluation of the renal transplant. J. Clin. Ultrasound, 1987, 15(9), 661-673.
[http://dx.doi.org/10.1002/jcu.1870150909] [PMID: 3119671]
[153]
Niu, X.; Wang, Y.; Li, W. Esculin exhibited anti-inflammatory activities in vivo and regulated TNF-α and IL-6 production in LPS-stimulated mouse peritoneal macrophages in vitro through MAPK pathway. Int. Immunopharmacol., 2015, 29(2), 779-786.
[http://dx.doi.org/10.1016/j.intimp.2015.08.041] [PMID: 26391063]
[154]
Pandey, S.K.; Kim, K.H.; Kwon, E.E.; Kim, Y.H. Hazardous and odorous pollutants released from sewer manholes and stormwater catch basins in urban areas. Environ. Res., 2016, 146, 235-244.
[http://dx.doi.org/10.1016/j.envres.2015.12.033] [PMID: 26775004]
[155]
Wang, K.; Yao, H.; Meng, Y.; Wang, Y.; Yan, X.; Huang, R. Specific aptamer-conjugated mesoporous silica–carbon nanoparticles for HER2-targeted chemo-photothermal combined therapy. Acta Biomater., 2015, 16, 196-205.
[http://dx.doi.org/10.1016/j.actbio.2015.01.002] [PMID: 25596325]
[156]
Wang, Y.H.; Liu, Y.H.; He, G.R.; Lv, Y.; Du, G.H. Esculin improves dyslipidemia, inflammation and renal damage in streptozotocin-induced diabetic rats. BMC Complement. Altern. Med., 2015, 15(1), 402.
[http://dx.doi.org/10.1186/s12906-015-0817-y] [PMID: 26552745]
[157]
Alpugan, S.; Topkaya, D.; Atilla, D.; Ahsen, V.; Niazi, J.H.; Dumoulin, F. Zn phthalocyanine conjugation to H2-ul aptamer for HER2-targeted breast cancer photodynamic therapy: Design, optimization and properties. J. Porphyr. Phthalocyanines, 2017, 21(12), 887-892.
[http://dx.doi.org/10.1142/S1088424617500973]
[158]
Jiang, K.; Han, L.; Guo, Y. A carrier-free dual-drug nanodelivery system functionalized with aptamer specific targeting HER2-overexpressing cancer cells. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(46), 9121-9129.
[http://dx.doi.org/10.1039/C7TB02562A] [PMID: 32264593]
[159]
Li, H.; Yao, Y.; Li, L. Coumarins as potential antidiabetic agents. J. Pharm. Pharmacol., 2017, 69(10), 1253-1264.
[http://dx.doi.org/10.1111/jphp.12774] [PMID: 28675434]
[160]
Yao, Y.; Zhao, X.; Xin, J.; Wu, Y.; Li, H. Coumarins improved type 2 diabetes induced by high-fat diet and streptozotocin in mice via antioxidation. Can. J. Physiol. Pharmacol., 2018, 96(8), 765-771.
[http://dx.doi.org/10.1139/cjpp-2017-0612] [PMID: 29641229]
[161]
Agarwal, A.K.; Ateeq, B.; Gupta, T. Toxicity and mutagenicity of exhaust from compressed natural gas: Could this be a clean solution for megacities with mixed-traffic conditions? Environ. Pollut., 2018, 239, 499-511.
[http://dx.doi.org/10.1016/j.envpol.2018.04.028] [PMID: 29684877]
[162]
Bhardwaj, N.; Pandey, S.K.; Mehta, J.; Bhardwaj, S.K.; Kim, K.H.; Deep, A. Bioactive nano-metal–organic frameworks as antimicrobials against Gram-positive and Gram-negative bacteria. Toxicol. Res., 2018, 7(5), 931-941.
[http://dx.doi.org/10.1039/C8TX00087E] [PMID: 30310670]
[163]
Cota, D.; Mishra, S.; Shengule, S. Beneficial role of Terminalia arjuna hydro-alcoholic extract in colitis and its possible mechanism. J. Ethnopharmacol., 2019, 230, 117-125.
[http://dx.doi.org/10.1016/j.jep.2018.10.020] [PMID: 30367989]
[164]
Furuya, S.; Chimed-Ochir, O.; Takahashi, K.; David, A.; Takala, J. Global asbestos disaster. Int. J. Environ. Res. Public Health, 2018, 15(5), 1000.
[http://dx.doi.org/10.3390/ijerph15051000] [PMID: 29772681]
[165]
Kavitha, B.; Reddy, P.V.L.; Kim, B.; Lee, S.S.; Pandey, S.K.; Kim, K.H. Benefits and limitations of biochar amendment in agricultural soils: A review. J. Environ. Manage., 2018, 227, 146-154.
[http://dx.doi.org/10.1016/j.jenvman.2018.08.082] [PMID: 30176434]
[166]
Kwon, H.S.; Koh, S.H. Neuroinflammation in neurodegenerative disorders: The roles of microglia and astrocytes. Transl. Neurodegener., 2020, 9(1), 42.
[http://dx.doi.org/10.1186/s40035-020-00221-2] [PMID: 33239064]
[167]
Pandey, S.K.; Yadav, S.; Goel, Y.; Singh, S.M. Cytotoxic action of acetate on tumor cells of thymic origin: Role of MCT-1, pH homeostasis and altered cell survival regulation. Biochimie, 2019, 157, 1-9.
[http://dx.doi.org/10.1016/j.biochi.2018.10.022] [PMID: 30391286]
[168]
Song, Y.; Wang, X.; Qin, S.; Zhou, S.; Li, J.; Gao, Y. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy and induces anti-oxidative stress and anti-inflammatory effects via the MAPK pathway. Mol. Med. Rep., 2018, 17(5), 7395-7402.
[http://dx.doi.org/10.3892/mmr.2018.8727] [PMID: 29568860]
[169]
Yadav, S.; Kujur, P.K.; Pandey, S.K. Antitumor action of 3-bromopyruvate implicates reorganized tumor growth regulatory components of tumor milieu, cell cycle arrest and induction of mitochondria-dependent tumor cell death. Toxicol. Appl. Pharmacol., 2018, 339, 52-64.
[http://dx.doi.org/10.1016/j.taap.2017.12.004] [PMID: 29221953]
[170]
Yadav, S.; Pandey, S.K.; Goel, Y. Protective and recuperative effects of 3-bromopyruvate on immunological, hepatic and renal homeostasis in a murine host bearing ascitic lymphoma: Implication of niche dependent differential roles of macrophages. Biomed. Pharmacother., 2018, 99, 970-985.
[http://dx.doi.org/10.1016/j.biopha.2018.01.149] [PMID: 29689702]
[171]
Dai, B.; Hu, Y.; Duan, J.; Yang, X.D. Aptamer-guided DNA tetrahedron as a novel targeted drug delivery system for MUC1-expressing breast cancer cells in vitro. Oncotarget, 2016, 7(25), 38257-38269.
[http://dx.doi.org/10.18632/oncotarget.9431] [PMID: 27203221]
[172]
Scagliotti, G.V.; Gaafar, R.; Nowak, A.K. Nintedanib in combination with pemetrexed and cisplatin for chemotherapy-naive patients with advanced malignant pleural mesothelioma (LUME-Meso): A double-blind, randomised, placebo-controlled phase 3 trial. Lancet Respir. Med., 2019, 7(7), 569-580.
[http://dx.doi.org/10.1016/S2213-2600(19)30139-0] [PMID: 31103412]
[173]
Huang, X.; Yang, Z.; Xie, Q.; Zhang, Z.; Zhang, H.; Ma, J. Natural products for treating colorectal cancer: A mechanistic review. Biomed. Pharmacother., 2019, 117109142
[http://dx.doi.org/10.1016/j.biopha.2019.109142] [PMID: 31238258]
[174]
Lai, H.; Hu, C.; Qu, M. Mesothelioma due to workplace exposure: A comprehensive bibliometric analysis of current situation and future trends. Int. J. Environ. Res. Public Health, 2023, 20(4), 2833.
[http://dx.doi.org/10.3390/ijerph20042833] [PMID: 36833533]
[175]
Pandey, S.K.; Mani, S.E.; Sudhakar, S.V.; Panwar, J.; Joseph, B.V.; Rajshekhar, V. Reliability of imaging-based diagnosis of lateral ventricular masses in children. World Neurosurg., 2019, 124, e693-e701.
[http://dx.doi.org/10.1016/j.wneu.2018.12.196] [PMID: 30660880]
[176]
Xu, Z.; Ni, R.; Chen, Y. Targeting breast cancer stem cells by a self-assembled, aptamer-conjugated DNA nanotrain with preloading doxorubicin. Int. J. Nanomedicine, 2019, 14, 6831-6842.
[http://dx.doi.org/10.2147/IJN.S200482] [PMID: 31695364]
[177]
Anello, M.G.; Miao, T.L.; Pandey, S.K.; Mandzia, J.L. Rare bilateral caudate infarction in a patient with a common circle of willis variant. Can. J. Neurol. Sci., 2019, 46(5), 593-594.
[http://dx.doi.org/10.1017/cjn.2019.233] [PMID: 31230603]
[178]
Chopra, D.; Boparai, J.K.; Pandey, S.; Bhandari, B. Generalized seizure following lignocaine administration: Case report and literature review. J. Family Med. Prim. Care, 2019, 8(10), 3440-3442.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_552_19] [PMID: 31742188]
[179]
Cho, C.; Jeon, E.; Pandey, S.K.; Ha, S.H.; Kim, J. LBD13 positively regulates lateral root formation in Arabidopsis. Planta, 2019, 249(4), 1251-1258.
[http://dx.doi.org/10.1007/s00425-018-03087-x] [PMID: 30627888]
[180]
Deybasso, H.A.; Roba, K.T.; Nega, B.; Belachew, T. Dietary and environmental determinants of oesophageal cancer in arsi zone, oromia, central ethiopia: A case–control study. Cancer Manag. Res., 2021, 13, 2071-2082.
[http://dx.doi.org/10.2147/CMAR.S298892] [PMID: 33664594]
[181]
Dutta, P.; Pandey, S.K. Effects of correlations and temperature on the electronic structures and related physical properties of FeSi and CoSi: A comprehensive study. J. Phys. Condens. Matter, 2019, 31(14)145602
[http://dx.doi.org/10.1088/1361-648X/aafdce] [PMID: 30634173]
[182]
Elsawy, H.; Algefare, A.I.; Alfwuaires, M. Naringin alleviates methotrexate-induced liver injury in male albino rats and enhances its antitumor efficacy in HepG2 cells. Biosci. Rep., 2020, 40(6)BSR20193686
[http://dx.doi.org/10.1042/BSR20193686] [PMID: 32458964]
[183]
Fels Elliott, D.R.; Jones, K.D. Diagnosis of mesothelioma. Surg. Pathol. Clin., 2020, 13(1), 73-89.
[http://dx.doi.org/10.1016/j.path.2019.10.001] [PMID: 32005436]
[184]
Govindaraj, G.N.; Roy, G.; Mohanty, B.S. Evaluation of effectiveness of mass vaccination campaign against peste des petits ruminants in chhattisgarh state, India. Transbound. Emerg. Dis., 2019, 66(3), 1349-1359.
[http://dx.doi.org/10.1111/tbed.13163] [PMID: 30839170]
[185]
Goyal, M.; Baranwal, M.; Pandey, S.K.; Reddy, M.S. Hetero-polysaccharides secreted from Dunaliella salina exhibit immunomodulatory activity against peripheral blood mononuclear cells and raw 264.7 macrophages. Indian J. Microbiol., 2019, 59(4), 428-435.
[http://dx.doi.org/10.1007/s12088-019-00818-w] [PMID: 31762505]
[186]
Gupta, M.K.; Vadde, R.; Sarojamma, V. Curcumin - a novel therapeutic agent in the prevention of colorectal cancer. Curr. Drug Metab., 2020, 20(12), 977-987.
[http://dx.doi.org/10.2174/1389200220666191007153238] [PMID: 31589120]
[187]
Gupta, S.; Kumar, A.; Singh, K. Rv1273c, an ABC transporter of Mycobacterium tuberculosis promotes mycobacterial intracellular survival within macrophages via modulating the host cell immune response. Int. J. Biol. Macromol., 2020, 142, 320-331.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.103] [PMID: 31593717]
[188]
Hansen, K.Ø.; Andersen, J.H.; Bayer, A. Kinase chemodiversity from the arctic: The breitfussins. J. Med. Chem., 2019, 62(22), 10167-10181.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01006] [PMID: 31647655]
[189]
Hassan, R.; Alley, E.; Kindler, H. Clinical response of live-attenuated, listeria monocytogenes expressing mesothelin (CRS-207) with chemotherapy in patients with malignant pleural mesothelioma. Clin. Cancer Res., 2019, 25(19), 5787-5798.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-0070] [PMID: 31263030]
[190]
Hegvik, T.A.; Waløen, K.; Pandey, S.K.; Faraone, S.V.; Haavik, J.; Zayats, T. Druggable genome in attention deficit/hyperactivity disorder and its co-morbid conditions. New avenues for treatment. Mol. Psychiatry, 2021, 26(8), 4004-4015.
[http://dx.doi.org/10.1038/s41380-019-0540-z] [PMID: 31628418]
[191]
Hua, T.N.M.; Kim, M.K.; Vo, V.T.A. Inhibition of oncogenic Src induces FABP4-mediated lipolysis via PPARγ activation exerting cancer growth suppression. EBioMedicine, 2019, 41, 134-145.
[http://dx.doi.org/10.1016/j.ebiom.2019.02.015] [PMID: 30755372]
[192]
Izquierdo, N.; Myers, J.C.; Seaton, N.C.A.; Pandey, S.K.; Campbell, S.A. Thin-film deposition of surface passivated black phosphorus. ACS Nano, 2019, 13(6), 7091-7099.
[http://dx.doi.org/10.1021/acsnano.9b02385] [PMID: 31145589]
[193]
Jadhav, A.; Gawde, N. Current asbestos exposure and future need for palliative care in India. Indian J. Palliat. Care, 2019, 25(4), 587-591.
[http://dx.doi.org/10.4103/IJPC.IJPC_51_19] [PMID: 31673217]
[194]
Kaup, S.; Pandey, S.K. Cataract surgery in patients with Fuchs’ endothelial corneal dystrophy. Community Eye Health, 2019, 31(104), 86-87.
[PMID: 31086438]
[195]
Kulwal, V.; Baxi, K.; Sawarkar, S.P.; Bhatt, L.K. Colorectal cancer management by herbal drug-based nanocarriers: An overview. Crit. Rev. Ther. Drug Carrier Syst., 2020, 37(1), 65-104.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2019030507] [PMID: 32450014]
[196]
Kumar, S.; Sharma, S.K.; Kaushik, G. Therapeutic potential of arachidonyl trifluromethyl ketone, a cytosolic phospholipaseA2 IVA specific inhibitor, in cigarette smoke condensate-induced pathological conditions in alveolar type I & II epithelial cells. Toxicol. In Vitro, 2019, 54, 215-223.
[http://dx.doi.org/10.1016/j.tiv.2018.09.013] [PMID: 30253184]
[197]
Kurth, L.; Mazurek, J.M.; Blackley, D.J. Malignant mesothelioma among US Medicare beneficiaries: Incidence, prevalence and therapy, 2016–2019. Occup. Environ. Med., 2023, 80(2), 86-92.
[http://dx.doi.org/10.1136/oemed-2022-108706] [PMID: 36635096]
[198]
Lee, H.W.; Cho, C.; Pandey, S.K.; Park, Y.; Kim, M.J.; Kim, J. LBD16 and LBD18 acting downstream of ARF7 and ARF19 are involved in adventitious root formation in Arabidopsis. BMC Plant Biol., 2019, 19(1), 46.
[http://dx.doi.org/10.1186/s12870-019-1659-4] [PMID: 30704405]
[199]
Lin, R.T.; Chien, L.C.; Jimba, M.; Furuya, S.; Takahashi, K. Implementation of national policies for a total asbestos ban: a global comparison. Lancet Planet. Health, 2019, 3(8), e341-e348.
[http://dx.doi.org/10.1016/S2542-5196(19)30109-3] [PMID: 31439315]
[200]
Liu, W.; Zhang, K.; Zhuang, L. Aptamer/photosensitizer hybridized mesoporous MnO2 based tumor cell activated ROS regulator for precise photodynamic therapy of breast cancer. Colloids Surf. B Biointerfaces, 2019, 184110536
[http://dx.doi.org/10.1016/j.colsurfb.2019.110536] [PMID: 31639567]
[201]
Miao, T.L.; Figueroa, E.L.; Bajunaid, K.; Mayich, M.; de Ribaupierre, S.; Pandey, S.K. Use of a radial artery ‘slender’ sheath for facilitating transfemoral arterial access for neuroendovascular embolization in a very young infant. Interv. Neuroradiol., 2019, 25(3), 353-356.
[http://dx.doi.org/10.1177/1591019918813212] [PMID: 30463500]
[202]
Mishra, N.; Arya, M.; Gupta, K.P.; Saraf, S.A. Optimization of inositol hexaphosphate colon targeted formulation for anticarcinogenic marker modulation. AAPS PharmSciTech, 2019, 20(8), 319.
[http://dx.doi.org/10.1208/s12249-019-1529-2] [PMID: 31641892]
[203]
Mo, Z.; Li, L.; Yu, H.; Wu, Y.; Li, H. Coumarins ameliorate diabetogenic action of dexamethasone via Akt activation and AMPK signaling in skeletal muscle. J. Pharmacol. Sci., 2019, 139(3), 151-157.
[http://dx.doi.org/10.1016/j.jphs.2019.01.001] [PMID: 30733181]
[204]
Mugale, M.N.; Shukla, S.; Chourasia, M.K. Regulatory safety pharmacology and toxicity assessments of a standardized stem extract of Cassia occidentalis Linn. in rodents. Regul. Toxicol. Pharmacol., 2021, 123104960
[http://dx.doi.org/10.1016/j.yrtph.2021.104960] [PMID: 34022260]
[205]
Mujeeb, A.A.; Alam, K.F.B.; Alshameri, A.W.F. Chaperone like attributes of biogenic fluorescent gold nanoparticles: Potential to alleviate toxicity induced by intermediate state fibrils against neuroblastoma cells. Front Chem., 2019, 7, 787.
[http://dx.doi.org/10.3389/fchem.2019.00787] [PMID: 31799242]
[206]
Muralidhar, V.; Raghav, P.; Das, P.; Goel, A. A case from India of pleural malignant mesothelioma probably due to domestic and environmental asbestos exposure: A posthumous report. BMJ Case Rep., 2019, 12(3)e227882
[http://dx.doi.org/10.1136/bcr-2018-227882] [PMID: 30936339]
[207]
Naran, K.; Nundalall, T.; Chetty, S.; Barth, S. Principles of immunotherapy: Implications for treatment strategies in cancer and infectious diseases. Front. Microbiol., 2018, 9, 3158.
[http://dx.doi.org/10.3389/fmicb.2018.03158] [PMID: 30622524]
[208]
Pandey, H.; Singh, K.; Ranjan, R. Clinical variability and molecular characterization of Hbs/Gγ (Aγδβ)0-thal and Hbs/HPFH in Indian sickle cell disease patients: AIIMS experience. Hematology, 2019, 24(1), 349-352.
[http://dx.doi.org/10.1080/16078454.2019.1579985] [PMID: 30777489]
[209]
Pandey, S.; Pandey, S.K.; Shah, V. Role of TfR2-Y250X and TfR1- rs3817672 single nucleotide polymorphism on pathophysiology of iron deficiency anemia. J. Assoc. Physicians India, 2019, 67(11), 36-39.
[PMID: 31793267]
[210]
Pandey, S.K. Computational study on the structure, stability, and electronic feature analyses of trapped halocarbons inside a novel bispyrazole organic molecular cage. ACS Omega, 2021, 6(17), 11711-11728.
[http://dx.doi.org/10.1021/acsomega.1c01019] [PMID: 34056325]
[211]
Pandey, S.K.; Bhandari, A.K.; Singh, H. A transfer learning based deep learning model to diagnose covid-19 CT scan images. Health Technol., 2022, 12(4), 845-866.
[http://dx.doi.org/10.1007/s12553-022-00677-4] [PMID: 35698586]
[212]
Pandey, S.K.; Ghosh, K.; Sengupta, G.; Shetty, G. Left atrial maze procedure using diathermy and high-frequency ultrasound as an adjunct to mitral valve replacement in mitral valve disease with atrial fibrillation: A comparative study. Indian J Thorac Cardiovasc Surg, 2020, 36(1), 37-43.
[http://dx.doi.org/10.1007/s12055-019-00863-6] [PMID: 33061092]
[213]
Pandey, S.K.; Janghel, R.R. Automatic detection of arrhythmia from imbalanced ECG database using CNN model with SMOTE. Australas. Phys. Eng. Sci. Med., 2019, 42(4), 1129-1139.
[http://dx.doi.org/10.1007/s13246-019-00815-9] [PMID: 31728941]
[214]
Pandey, S.K.; Koirala, P.; Maharjan, M. Molecular characterization of peste-des-petits ruminants virus from Nepal, 2005 to 2016. Virusdisease, 2019, 30(2), 315-318.
[http://dx.doi.org/10.1007/s13337-018-0504-y] [PMID: 31179373]
[215]
Pandey, S.K.; Mohanta, G.C.; Kumar, V.; Gupta, K. Diagnostic tools for rapid screening and detection of SARS-CoV-2 infection. Vaccines, 2022, 10(8), 1200.
[http://dx.doi.org/10.3390/vaccines10081200] [PMID: 36016088]
[216]
Pandey, S.K.; Nakka, H.; Ambhore, S.R.; Londhe, S.; Goyal, V.K.; Nirogi, R. Short-term toxicity study of 1-aminobenzotraizole, a CYP inhibitor, in Wistar rats. Drug Chem. Toxicol., 2022, 45(4), 1597-1605.
[http://dx.doi.org/10.1080/01480545.2020.1850755] [PMID: 33249936]
[217]
Pandey, S.; Sharma, V. Aggression and violence against doctors: How to address this frightening new epidemic? Indian J. Ophthalmol., 2019, 67(11), 1903-1905.
[http://dx.doi.org/10.4103/ijo.IJO_1322_19] [PMID: 31638071]
[218]
Pandey, S.; Sharma, V. Commentary: Increasing cases of litigations against ophthalmologists: How can we minimize litigations during ophthalmic practice? Indian J. Ophthalmol., 2019, 67(10), 1527-1530.
[http://dx.doi.org/10.4103/ijo.IJO_1551_19] [PMID: 31546474]
[219]
Pandey, S.; Sharma, V. Doctor, heal thyself: Addressing the shorter life expectancy of doctors in India. Indian J. Ophthalmol., 2019, 67(7), 1248-1250.
[http://dx.doi.org/10.4103/ijo.IJO_656_19] [PMID: 31238485]
[220]
Pandey, S.; Sharma, V. Commentary: Expanding indications of newer and economically viable phakic posterior chamber intraocular lens designs. Indian J. Ophthalmol., 2019, 67(7), 1066-1067.
[http://dx.doi.org/10.4103/ijo.IJO_173_19] [PMID: 31238412]
[221]
Pandey, S.; Sharma, V. Robotics and ophthalmology: Are we there yet? Indian J. Ophthalmol., 2019, 67(7), 988-994.
[http://dx.doi.org/10.4103/ijo.IJO_1131_18] [PMID: 31238393]
[222]
Pandey, S.; Sharma, V. A tribute to Dr. Babu Rajendran. Indian J. Ophthalmol., 2019, 67(4), 571-572.
[http://dx.doi.org/10.4103/ijo.IJO_320_19] [PMID: 30900605]
[223]
Pandey, S.; Sharma, V. Are ophthalmic conferences losing their relevance and how to reverse this trend? Indian J. Ophthalmol., 2019, 67(3), 440-441.
[http://dx.doi.org/10.4103/ijo.IJO_1898_18] [PMID: 30777983]
[224]
Pandey, S.K.; Upadhyay, R.K.; Gupta, V.K.; Worku, K.; Lamba, D. Phytoremediation potential of macrophytes of urban waterbodies in central India. J. Health Pollut., 2019, 9(24)191206
[http://dx.doi.org/10.5696/2156-9614-9.24.191206] [PMID: 31893167]
[225]
Pandey, S.K.; Yadav, S.; Goel, Y.; Temre, M.K.; Singh, V.K.; Singh, S.M. Molecular docking of anti-inflammatory drug diclofenac with metabolic targets: Potential applications in cancer therapeutics. J. Theor. Biol., 2019, 465, 117-125.
[http://dx.doi.org/10.1016/j.jtbi.2019.01.020] [PMID: 30653975]
[226]
Paw, M.; Gogoi, R.; Sarma, N. Study of anti-oxidant, anti-inflammatory, genotoxicity, and antimicrobial activities and analysis of different constituents found in rhizome essential oil of Curcuma caesia Roxb., collected from north East India. Curr. Pharm. Biotechnol., 2020, 21(5), 403-413.
[http://dx.doi.org/10.2174/1389201020666191118121609] [PMID: 31744446]
[227]
Pradel, W.; Gatto, M.; Hareau, G.; Pandey, S.K.; Bhardway, V. Adoption of potato varieties and their role for climate change adaptation in India. Clim. Risk Manage., 2019, 23, 114-123.
[http://dx.doi.org/10.1016/j.crm.2019.01.001] [PMID: 33344151]
[228]
Rață, D.M.; Cadinoiu, A.N.; Atanase, L.I. “In vitro” behaviour of aptamer-functionalized polymeric nanocapsules loaded with 5-fluorouracil for targeted therapy. Mater. Sci. Eng. C, 2019, 103109828
[http://dx.doi.org/10.1016/j.msec.2019.109828] [PMID: 31349496]
[229]
Rezaei, M.K.; Deokar, A.A.; Arganosa, G. Mapping quantitative trait loci for carotenoid concentration in three F2 populations of chickpea. Plant Genome, 2019, 12(3), 1-12.
[http://dx.doi.org/10.3835/plantgenome2019.07.0067] [PMID: 33016578]
[230]
Scherpereel, A.; Opitz, I.; Berghmans, T. ERS/ESTS/EACTS/ESTRO guidelines for the management of malignant pleural mesothelioma. Eur. Respir. J., 2020, 55(6)1900953
[http://dx.doi.org/10.1183/13993003.00953-2019] [PMID: 32451346]
[231]
Shastri, S.S.; Pandey, S.K. Two functionals approach in DFT for the prediction of thermoelectric properties of Fe 2 ScX (X = P, As, Sb) full-Heusler compounds. J. Phys. Condens. Matter, 2019, 31(43)435701
[http://dx.doi.org/10.1088/1361-648X/ab2dd5] [PMID: 31252427]
[232]
Sherborne, V.; Seymour, J.; Taylor, B.; Tod, A. What are the psychological effects of mesothelioma on patients and their carers? A scoping review. Psychooncology, 2020, 29(10), 1464-1473.
[http://dx.doi.org/10.1002/pon.5454] [PMID: 32596966]
[233]
Si, P.; Shi, J.; Zhang, P. MUC-1 recognition-based activated drug nanoplatform improves doxorubicin chemotherapy in breast cancer. Cancer Lett., 2020, 472, 165-174.
[http://dx.doi.org/10.1016/j.canlet.2019.12.019] [PMID: 31857156]
[234]
Singh, D.; Sharma, S.; Kumar, M. An AcOH-mediated metal free approach towards the synthesis of bis-carbolines and imidazopyridoindole derivatives and assessment of their photophysical properties. Org. Biomol. Chem., 2019, 17(4), 835-844.
[http://dx.doi.org/10.1039/C8OB02705F] [PMID: 30620351]
[235]
Singh, S.K.; Dwivedi, H.; Gunjan, S.; Chauhan, B.S.; Pandey, S.K.; Tripathi, R. Potential role of arteether on N-methyl-D-aspartate (NMDA) receptor expression in experimental cerebral malaria mice and extension of their survival. Parasitology, 2019, 146(12), 1571-1577.
[http://dx.doi.org/10.1017/S0031182019000878] [PMID: 31244453]
[236]
Tirkey, A.; Pandey, M.; Tiwari, A. Global distribution of microplastic contaminants in aquatic environments and their remediation strategies. Water Environ. Res., 2022, 94(12)e10819
[http://dx.doi.org/10.1002/wer.10819] [PMID: 36539344]
[237]
Tse, E.G.; Korsik, M.; Todd, M.H. The past, present and future of anti-malarial medicines. Malar. J., 2019, 18(1), 93.
[http://dx.doi.org/10.1186/s12936-019-2724-z] [PMID: 30902052]
[238]
Urso, L.; Cavallari, I.; Sharova, E.; Ciccarese, F.; Pasello, G.; Ciminale, V. Metabolic rewiring and redox alterations in malignant pleural mesothelioma. Br. J. Cancer, 2020, 122(1), 52-61.
[http://dx.doi.org/10.1038/s41416-019-0661-9] [PMID: 31819191]
[239]
Wang, D.J.; Pandey, S.K.; Lee, D.H.; Sharma, M. The interpeduncular angle: A practical and objective marker for the detection and diagnosis of intracranial hypotension on brain MRI. AJNR Am. J. Neuroradiol., 2019, 40(8), 1299-1303.
[http://dx.doi.org/10.3174/ajnr.A6120] [PMID: 31296521]
[240]
Wu, L.; Dell’Anno, I.; Lapidot, M. Progress of malignant mesothelioma research in basic science: A review of the 14th international conference of the international mesothelioma interest group (iMig2018). Lung Cancer, 2019, 127, 138-145.
[http://dx.doi.org/10.1016/j.lungcan.2018.11.034] [PMID: 30642542]
[241]
Yadav, A.; Pandey, S.K.; Agrawal, D.C.; Mishra, H.; Srivastava, A.; Kayastha, A.M. Carbon nanotubes molybdenum disulfide 3D nanocomposite as novel nanoscaffolds to immobilize Lens culinaris β-galactosidase (Lsbgal): Robust stability, reusability, and effective bioconversion of lactose in whey. Food Chem., 2019, 297125005
[http://dx.doi.org/10.1016/j.foodchem.2019.125005] [PMID: 31253325]
[242]
Yadav, S.; Pandey, S.K.; Goel, Y.; Temre, M.K.; Singh, S.M. Diverse stakeholders of tumor metabolism: An appraisal of the emerging approach of multifaceted metabolic targeting by 3-bromopyruvate. Front. Pharmacol., 2019, 10, 728.
[http://dx.doi.org/10.3389/fphar.2019.00728] [PMID: 31333455]
[243]
Yadav, S.; Pandey, S.K.; Goel, Y.; Temre, M.K.; Singh, S.M. Antimetabolic agent 3-bromopyruvate exerts myelopotentiating action in a murine host bearing a progressively growing ascitic thymoma. Immunol. Invest., 2020, 49(4), 425-442.
[http://dx.doi.org/10.1080/08820139.2019.1627368] [PMID: 31264492]
[244]
Zara, Z.; Mishra, D.; Pandey, S.K. Surface interaction of ionic liquids: Stabilization of polyethylene terephthalate-degrading enzymes in solution. Molecules, 2021, 27(1), 119.
[http://dx.doi.org/10.3390/molecules27010119] [PMID: 35011351]
[245]
Zhang, M.; Xin, X.; Lai, F.; Zhang, X.; Li, X.; Wu, H. Cellular transport of esculin and its acylated derivatives in caco-2 cell monolayers and their antioxidant properties in vitro. J. Agric. Food Chem., 2017, 65(34), 7424-7432.
[http://dx.doi.org/10.1021/acs.jafc.7b02525] [PMID: 28805379]
[246]
Bajaj, M.; Pandey, S.K.; Nain, T. Stabilized cationic dipeptide capped gold/silver nanohybrids: Towards enhanced antibacterial and antifungal efficacy. Colloids Surf. B Biointerfaces, 2017, 158, 397-407.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.009] [PMID: 28719861]
[247]
Fang, D.; Chen, H.; Zhu, J.Y. Epithelial–mesenchymal transition of ovarian cancer cells is sustained by Rac1 through simultaneous activation of MEK1/2 and Src signaling pathways. Oncogene, 2017, 36(11), 1546-1558.
[http://dx.doi.org/10.1038/onc.2016.323] [PMID: 27617576]
[248]
Lee, H.W.; Kang, N.Y.; Pandey, S.K.; Cho, C.; Lee, S.H.; Kim, J. Dimerization in LBD16 and LBD18 transcription factors is critical for lateral root formation. Plant Physiol., 2017, 174(1), 301-311.
[http://dx.doi.org/10.1104/pp.17.00013] [PMID: 28336771]
[249]
Pandey, S.K.; Kim, J. Coiled-coil motif in LBD16 and LBD18 transcription factors are critical for dimerization and biological function in arabidopsis. Plant Signal. Behav., 2018, 13(1)e1411450
[http://dx.doi.org/10.1080/15592324.2017.1411450] [PMID: 29227192]
[250]
Alves, L.N.; Missailidis, S.; Lage, C.A.S.; De Almeida, C.E.B. Anti-MUC1 aptamer as carrier tool of the potential radiosensitizer 1,10 phenanthroline in MCF-7 breast cancer cells. Anticancer Res., 2019, 39(4), 1859-1867.
[http://dx.doi.org/10.21873/anticanres.13293] [PMID: 30952726]
[251]
Pandey, S.K.; Biswas, A.; Kumar, D.; Vardhan, H. Post coronavirus disease-2019 vaccination Guillain-Barré syndrome. Indian J. Public Health, 2021, 65(4), 422-424.
[http://dx.doi.org/10.4103/ijph.ijph_1716_21] [PMID: 34975092]
[252]
Esfandyari-Manesh, M.; Mohammadi, A.; Atyabi, F. Enhancement mitochondrial apoptosis in breast cancer cells by paclitaxel-triphenylphosphonium conjugate in DNA aptamer modified nanoparticles. J. Drug Deliv. Sci. Technol., 2019, 54101228
[http://dx.doi.org/10.1016/j.jddst.2019.101228]
[253]
Pandey, S.; Pandey, S.K.; Tripathi, G.; Shah, V.; Singh, J. Burden of inherited hematological disorders in population of Vindhyan Region, Madhya Pradesh. Indian J. Clin. Biochem., 2020, 35(2), 255-256.
[http://dx.doi.org/10.1007/s12291-019-00836-x] [PMID: 32226260]
[254]
Pandey, S.K.; Chaube, M.K.; Tripathi, D. Corrigendum to “Peristaltic transport of multilayered power-law fluids with distinct viscosities: A mathematical model for intestinal flows” [Journal of Theoretical Biology 278 (2011) 11–19]. J. Theor. Biol., 2019, 470, 119.
[http://dx.doi.org/10.1016/j.jtbi.2019.02.023] [PMID: 30844371]
[255]
Schulz, D.C.; Pandey, S.K.; Bursztyn, L.L.C.D. Optic nerve atrophy in n-methyl-d-aspartate (NMDA) Encephalitis. Can. J. Neurol. Sci., 2020, 47(1), 139-141.
[http://dx.doi.org/10.1017/cjn.2019.325] [PMID: 31724524]
[256]
Yang, X.; Chen, X.; Zhuang, M. Smoking and alcohol drinking in relation to the risk of esophageal squamous cell carcinoma: A population-based case-control study in China. Sci. Rep., 2017, 7(1), 17249.
[http://dx.doi.org/10.1038/s41598-017-17617-2] [PMID: 29222520]
[257]
Zhao, Z.; Zhang, Y.; Wang, X.; Geng, X.; Zhu, L.; Li, M. Clinical response to chemoradiotherapy in esophageal carcinoma is associated with survival and benefit of consolidation chemotherapy. Cancer Med., 2020, 9(16), 5881-5888.
[http://dx.doi.org/10.1002/cam4.3273] [PMID: 32627960]
[258]
Yadav, R.; Arora, A.; Pandey, S.K. Piezoelectric harvest of osteo-odonto-lamina in modified osteo-odonto keratoprosthesis: A maxillofacial perspective. Natl. J. Maxillofac. Surg., 2018, 9(2), 167-173.
[http://dx.doi.org/10.4103/njms.NJMS_32_16] [PMID: 30546231]
[259]
Cheadle, E.J.; Sheard, V.; Hombach, A.A. Chimeric antigen receptors for T-cell based therapy. Methods Mol. Biol., 2012, 907, 645-666.
[http://dx.doi.org/10.1007/978-1-61779-974-7_36] [PMID: 22907378]
[260]
Choi, S.J.; Lee, I.; Jang, B.H. Selective diagnosis of diabetes using Pt-functionalized WO3 hemitube networks as a sensing layer of acetone in exhaled breath. Anal. Chem., 2013, 85(3), 1792-1796.
[http://dx.doi.org/10.1021/ac303148a] [PMID: 23252728]
[261]
Croft, S.L.; Duparc, S.; Arbe-Barnes, S.J. Review of pyronaridine anti-malarial properties and product characteristics. Malar. J., 2012, 11(1), 270.
[http://dx.doi.org/10.1186/1475-2875-11-270] [PMID: 22877082]
[262]
Dubecz, A.; Gall, I.; Solymosi, N. Temporal trends in long-term survival and cure rates in esophageal cancer: A SEER database analysis. J. Thorac. Oncol., 2012, 7(2), 443-447.
[http://dx.doi.org/10.1097/JTO.0b013e3182397751] [PMID: 22173700]
[263]
Hu, Y.; Duan, J.; Zhan, Q.; Wang, F.; Lu, X.; Yang, X.D. Novel MUC1 aptamer selectively delivers cytotoxic agent to cancer cells in vitro. PLoS One, 2012, 7(2)e31970
[http://dx.doi.org/10.1371/journal.pone.0031970] [PMID: 22384115]
[264]
Huang, Y.; Mucke, L. Alzheimer mechanisms and therapeutic strategies. Cell, 2012, 148(6), 1204-1222.
[http://dx.doi.org/10.1016/j.cell.2012.02.040] [PMID: 22424230]
[265]
Illian, D.N.; Hafiz, I.; Meila, O. Current status, distribution, and future directions of natural products against colorectal cancer in Indonesia: A systematic review. Molecules, 2021, 26(16), 4984.
[http://dx.doi.org/10.3390/molecules26164984] [PMID: 34443572]
[266]
Kapoor, A.; Kumar, V.; Beniwal, S.K.; Kumar, H.S.; Singhal, M.K.; Nirban, R.K. Sociodemographic parameters of Esophageal Cancer in northwest India: A regional cancer center experience of 10 years. Indian J. Community Med., 2015, 40(4), 264-267.
[http://dx.doi.org/10.4103/0970-0218.164399] [PMID: 26435600]
[267]
Matsuzaki, H.; Maeda, M.; Lee, S. Asbestos-induced cellular and molecular alteration of immunocompetent cells and their relationship with chronic inflammation and carcinogenesis. J. Biomed. Biotechnol., 2012, 2012, 1-9.
[http://dx.doi.org/10.1155/2012/492608] [PMID: 22500091]
[268]
Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA Cancer J. Clin., 2015, 65(2), 87-108.
[http://dx.doi.org/10.3322/caac.21262] [PMID: 25651787]
[269]
Ward, P.S.; Thompson, C.B. Signaling in control of cell growth and metabolism. Cold Spring Harb. Perspect. Biol., 2012, 4(7)a006783
[http://dx.doi.org/10.1101/cshperspect.a006783] [PMID: 22687276]
[270]
Ghahremani, F.; Kefayat, A.; Shahbazi-Gahrouei, D.; Motaghi, H.; Mehrgardi, M.A.; Haghjooy-Javanmard, S. AS1411 aptamer-targeted gold nanoclusters effect on the enhancement of radiation therapy efficacy in breast tumor-bearing mice. Nanomedicine, 2018, 13(20), 2563-2578.
[http://dx.doi.org/10.2217/nnm-2018-0180] [PMID: 30334677]
[271]
Abdulridha, M.K.; Al-Marzoqi, A.H.; Al-awsi, G.R.L.; Mubarak, S.M.H.; Heidarifard, M.; Ghasemian, A. Anticancer effects of herbal medicine compounds and novel formulations: A literature review. J. Gastrointest. Cancer, 2020, 51(3), 765-773.
[http://dx.doi.org/10.1007/s12029-020-00385-0] [PMID: 32140897]
[272]
Agarwal, A.K.; Singh, A.P.; Gupta, T. Toxicity of exhaust particulates and gaseous emissions from gasohol (ethanol blended gasoline)-fuelled spark ignition engines. Environ. Sci. Process. Impacts, 2020, 22(7), 1540-1553.
[http://dx.doi.org/10.1039/D0EM00082E] [PMID: 32573620]
[273]
Ahmad, M.F.; Naseem, N.; Rahman, I. Naringin attenuates the diabetic neuropathy in STZ-induced type 2 diabetic wistar rats. Life, 2022, 12(12), 2111.
[http://dx.doi.org/10.3390/life12122111] [PMID: 36556476]
[274]
Ali, M.A.; Pan, T.K.; Gurung, A.B. Plastome of Saraca asoca (Detarioideae, Fabaceae): Annotation, comparison among subfamily and molecular typing. Saudi J. Biol. Sci., 2021, 28(2), 1487-1493.
[http://dx.doi.org/10.1016/j.sjbs.2020.12.008] [PMID: 33613076]
[275]
Al-Obeed, O.; El-Obeid, A.S.; Matou-Nasri, S. Herbal melanin inhibits colorectal cancer cell proliferation by altering redox balance, inducing apoptosis, and modulating MAPK signaling. Cancer Cell Int., 2020, 20(1), 126.
[http://dx.doi.org/10.1186/s12935-020-01206-x] [PMID: 32322173]
[276]
Apple, D.J.; Peng, Q.; Visessook, N. Eradication of posterior capsule opacification. Ophthalmology, 2020, 127(4), S29-S42.
[http://dx.doi.org/10.1016/j.ophtha.2020.01.026] [PMID: 32200823]
[277]
Asciak, R.; George, V.; Rahman, N.M. Update on biology and management of mesothelioma. Eur. Respir. Rev., 2021, 30(159)200226
[http://dx.doi.org/10.1183/16000617.0226-2020] [PMID: 33472960]
[278]
Awasthi, S.; Pandey, S.K.; Arunan, E.; Srivastava, C. A review on hydroxyapatite coatings for the biomedical applications: Experimental and theoretical perspectives. J. Mater. Chem. B Mater. Biol. Med., 2021, 9(2), 228-249.
[http://dx.doi.org/10.1039/D0TB02407D] [PMID: 33231240]
[279]
Belete, T.M. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des. Devel. Ther., 2020, 14, 3875-3889.
[http://dx.doi.org/10.2147/DDDT.S265602] [PMID: 33061294]
[280]
Boonyalai, N.; Vesely, B.A.; Thamnurak, C. Piperaquine resistant Cambodian Plasmodium falciparum clinical isolates: in vitro genotypic and phenotypic characterization. Malar. J., 2020, 19(1), 269.
[http://dx.doi.org/10.1186/s12936-020-03339-w] [PMID: 32711538]
[281]
Chaturvedi, S.K.; Zaidi, N.; Alam, P. Unraveling comparative anti-amyloidogenic behavior of pyrazinamide and d-cycloserine: A mechanistic biophysical insight. PLoS One, 2015, 10(8)e0136528
[http://dx.doi.org/10.1371/journal.pone.0136528] [PMID: 26312749]
[282]
Chen, T.; Zheng, M.; Li, Y.; Liu, S.; He, L. The role of CCR5 in the protective effect of Esculin on lipopolysaccharide-induced depressive symptom in mice. J. Affect. Disord., 2020, 277, 755-764.
[http://dx.doi.org/10.1016/j.jad.2020.08.065] [PMID: 33065814]
[283]
Pandey, V.; Choksi, D.; Kolhe, K.M. Esophageal carcinoma: An epidemiological analysis and study of the time trends over the last 20 years from a single center in India. J. Family Med. Prim. Care, 2020, 9(3), 1695-1699.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_1111_19] [PMID: 32509674]
[284]
Dhansu, P.; Ram, B.; Singh, A.K. Different treatments for sugarcane juice preservation. Foods, 2023, 12(2), 311.
[http://dx.doi.org/10.3390/foods12020311] [PMID: 36673403]
[285]
Furtado, R.; Chorro, L.; Zimmerman, N. Blockade of LAG-3 in PD-L1-deficient mice enhances clearance of blood stage malaria independent of humoral responses. Front. Immunol., 2021, 11576743
[http://dx.doi.org/10.3389/fimmu.2020.576743] [PMID: 33519801]
[286]
Gehlawat, A.; Prakash, R.; Pandey, S.K. An efficient enantioselective approach to multifunctionalized γ-butyrolactone: concise synthesis of (+)-nephrosteranic acid. RSC Advances, 2020, 10(33), 19655-19658.
[http://dx.doi.org/10.1039/D0RA04267F] [PMID: 35515420]
[287]
Gogoi, R.; Loying, R.; Sarma, N.; Begum, T.; Pandey, S.K.; Lal, M. Comparative analysis of in-vitro biological activities of methyl eugenol rich cymbopogon khasianus hack., leaf essential oil with pure methyl eugenol compound. Curr. Pharm. Biotechnol., 2020, 21(10), 927-938.
[http://dx.doi.org/10.2174/1389201021666200217113921] [PMID: 32065101]
[288]
Guttormsen, Y.; Fairhurst, M.E.; Pandey, S.K.; Isaksson, J.; Haug, B.E.; Bayer, A. Total synthesis of phorbazole B. Molecules, 2020, 25(20), 4848.
[http://dx.doi.org/10.3390/molecules25204848] [PMID: 33096668]
[289]
Hephzibah, A.; Pandey, S.K.; Rupa, V.; Moorthy, R.K.; Rajshekhar, V. Changes in pattern of presentation of patients with unilateral vestibular schwannoma over two decades: Influence of cell phone use in early diagnosis. J. Clin. Neurosci., 2021, 94, 102-106.
[http://dx.doi.org/10.1016/j.jocn.2021.10.004] [PMID: 34863422]
[290]
Ismail-Khan, R.; Robinson, L.A.; Williams, C.C., Jr; Garrett, C.R.; Bepler, G.; Simon, G.R. Malignant pleural mesothelioma: A comprehensive review. Cancer Contr., 2006, 13(4), 255-263.
[http://dx.doi.org/10.1177/107327480601300402] [PMID: 17075562]
[291]
Khan, M.V.; Ishtikhar, M.; Siddiqui, M.K. Biophysical insight reveals tannic acid as amyloid inducer and conformation transformer from amorphous to amyloid aggregates in Concanavalin A (ConA). J. Biomol. Struct. Dyn., 2018, 36(5), 1261-1273.
[http://dx.doi.org/10.1080/07391102.2017.1318718] [PMID: 28399705]
[292]
Korša, L.; Lukač, A.; Kovačević, L.; Bilić, I.; Prutki, M.; Marušić, Z. Breast metastasis as the initial presentation of malignant pleural mesothelioma. Breast J., 2020, 26(10), 2063-2064.
[http://dx.doi.org/10.1111/tbj.13898] [PMID: 32475021]
[293]
Lee, G.Y.; Lee, J.S.; Son, C.G.; Lee, N.H. Combating drug resistance in colorectal cancer using herbal medicines. Chin. J. Integr. Med., 2021, 27(7), 551-560.
[http://dx.doi.org/10.1007/s11655-020-3425-8] [PMID: 32740824]
[294]
Malik, S.; Zaidi, N.; Siddiqi, M.K. Mechanistic insight into inhibition of amyloid fibrillation of human serum albumin by Vildagliptin. Colloids Surf. B Biointerfaces, 2022, 216112563
[http://dx.doi.org/10.1016/j.colsurfb.2022.112563] [PMID: 35588684]
[295]
Mallik, A.K.; Pandey, S.K.; Srivastava, A.; Kumar, S.; Kumar, A. Comparison of relative benefits of mirror therapy and mental imagery in phantom limb pain in amputee patients at a tertiary care center. Arch Rehabil Res Clin Transl, 2020, 2(4)100081
[http://dx.doi.org/10.1016/j.arrct.2020.100081] [PMID: 33543104]
[296]
Marinaccio, A.; Gariazzo, C.; Di Marzio, D. Predictors of filing claims and receiving compensation in malignant mesothelioma patients. Health Policy, 2020, 124(9), 1032-1040.
[http://dx.doi.org/10.1016/j.healthpol.2020.06.005] [PMID: 32600665]
[297]
Masroor, A.; Zaidi, N.; Chandel, T.I.; Aqueel, Z.; Malik, S.; Khan, R.H. Probing the nongeneralized amyloid inhibitory mechanism of hydrophobic chaperone. ACS Chem. Neurosci., 2020, 11(3), 373-384.
[http://dx.doi.org/10.1021/acschemneuro.9b00593] [PMID: 31935057]
[298]
Meena, M.R.; Kumar, R.; Ramaiyan, K. Biomass potential of novel interspecific and intergeneric hybrids of Saccharum grown in sub-tropical climates. Sci. Rep., 2020, 10(1), 21560.
[http://dx.doi.org/10.1038/s41598-020-78329-8] [PMID: 33299008]
[299]
Nandi, P.; Pandey, S.K.; Giri, C. Probing the electronic structure of hybrid perovskites in the orientationally disordered cubic phase. J. Phys. Chem. Lett., 2020, 11(14), 5719-5727.
[http://dx.doi.org/10.1021/acs.jpclett.0c01386] [PMID: 32609525]
[300]
Ndukwe, I.E.; Lam, Y.; Pandey, S.K. Unequivocal structure confirmation of a breitfussin analog by anisotropic NMR measurements. Chem. Sci., 2020, 11(44), 12081-12088.
[http://dx.doi.org/10.1039/D0SC03664A] [PMID: 34094423]
[301]
Nirogi, R.; Mudigonda, K.; Bhyrapuneni, G. Safety, tolerability, and pharmacokinetics of SUVN-G3031, a novel histamine-3 receptor inverse agonist for the treatment of narcolepsy, in healthy human subjects following single and multiple oral doses. Clin. Drug Investig., 2020, 40(7), 603-615.
[http://dx.doi.org/10.1007/s40261-020-00920-8] [PMID: 32399853]
[302]
Nizam, S.; Sen, I.S.; Vinoj, V. Biomass-derived provenance dominates glacial surface organic carbon in the western himalaya. Environ. Sci. Technol., 2020, 54(14), 8612-8621.
[http://dx.doi.org/10.1021/acs.est.0c02710] [PMID: 32584029]
[303]
Pandey, S.K.; Anand, U.; Siddiqui, W.A.; Tripathi, R. Drug development strategies for Malaria: With the hope for new antimalarial drug discovery—an update. Adv. Med., 2023, 2023, 1-10.
[http://dx.doi.org/10.1155/2023/5060665] [PMID: 36960081]
[304]
Pandey, S.K.; Das, R.; Mahadevan, P. Layer-dependent electronic structure changes in transition metal dichalcogenides: The microscopic origin. ACS Omega, 2020, 5(25), 15169-15176.
[http://dx.doi.org/10.1021/acsomega.0c01138] [PMID: 32637790]
[305]
Pandey, S.K.; Kalmar, C.L.; Bonfield, C.M.; Golinko, M.S. Frontal sinus hypoplasia in unoperated older patients with craniosynostosis: A pilot study. Childs Nerv. Syst., 2023, 39(8), 2139-2146.
[http://dx.doi.org/10.1007/s00381-023-05927-y] [PMID: 37133486]
[306]
Pandey, S.K.; Melichercik, M.; Řeha, D.; Ettrich, R.H.; Carey, J. Conserved dynamic mechanism of allosteric response to l-arg in divergent bacterial arginine repressors. Molecules, 2020, 25(9), 2247.
[http://dx.doi.org/10.3390/molecules25092247] [PMID: 32397647]
[307]
Pandey, S.K.; Ojha, P.K.; Roy, K. Exploring QSAR models for assessment of acute fish toxicity of environmental transformation products of pesticides (ETPPs). Chemosphere, 2020, 252126508
[http://dx.doi.org/10.1016/j.chemosphere.2020.126508] [PMID: 32240857]
[308]
Pandey, S.K.; Roy, K. QSPR modeling of octanol-water partition coefficient and organic carbon normalized sorption coefficient of diverse organic chemicals using Extended Topochemical Atom (ETA) indices. Ecotoxicol. Environ. Saf., 2021, 208111411
[http://dx.doi.org/10.1016/j.ecoenv.2020.111411] [PMID: 33080425]
[309]
Pandey, S.; Sharma, V. Lockdown diary of an ophthalmologist: Nineteen tips for unlocking your life during the ongoing COVID-19 pandemic. Indian J. Ophthalmol., 2020, 68(7), 1483-1485.
[http://dx.doi.org/10.4103/ijo.IJO_1157_20] [PMID: 32587208]
[310]
Pandey, S.; Sharma, V. Toolkit for survival: How to run and manage ophthalmic practices during the difficult time of COVID-19 crisis. Indian J. Ophthalmol., 2020, 68(5), 944-947.
[http://dx.doi.org/10.4103/ijo.IJO_823_20] [PMID: 32317501]
[311]
Pandey, S.; Sharma, V. A tribute to frontline corona warriors––Doctors who sacrificed their life while saving patients during the ongoing COVID-19 pandemic. Indian J. Ophthalmol., 2020, 68(5), 939-942.
[http://dx.doi.org/10.4103/ijo.IJO_754_20] [PMID: 32317499]
[312]
Paustenbach, D.; Brew, D.; Ligas, S.; Heywood, J. A critical review of the 2020 EPA risk assessment for chrysotile and its many shortcomings. Crit. Rev. Toxicol., 2021, 51(6), 509-539.
[http://dx.doi.org/10.1080/10408444.2021.1968337] [PMID: 34651555]
[313]
Pelz, D.M.; Lownie, S.P.; Mayich, M.S.; Pandey, S.K.; Sharma, M. Interventional neuroradiology: A review. Can. J. Neurol. Sci., 2021, 48(2), 172-188.
[http://dx.doi.org/10.1017/cjn.2020.153] [PMID: 32669144]
[314]
Punetha, D.; Kar, M.; Pandey, S.K. A new type low-cost, flexible and wearable tertiary nanocomposite sensor for room temperature hydrogen gas sensing. Sci. Rep., 2020, 10(1), 2151.
[http://dx.doi.org/10.1038/s41598-020-58965-w] [PMID: 32034226]
[315]
Qais, F.A.; Sarwar, T.; Ahmad, I.; Khan, R.A.; Shahzad, S.A.; Husain, F.M. Glyburide inhibits non-enzymatic glycation of HSA: An approach for the management of AGEs associated diabetic complications. Int. J. Biol. Macromol., 2021, 169, 143-152.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.096] [PMID: 33338529]
[316]
Rai, D.K.; Kumar, R.; Pandey, S.K. Problems faced by tuberculosis patients during COVID-19 pandemic: Urgent need to intervene. Indian J. Tuberc., 2020, 67(4), S173-S174.
[http://dx.doi.org/10.1016/j.ijtb.2020.07.013] [PMID: 33308666]
[317]
Saggam, A.; Tillu, G.; Dixit, S. Withania somnifera (L.) Dunal: A potential therapeutic adjuvant in cancer. J. Ethnopharmacol., 2020, 255112759
[http://dx.doi.org/10.1016/j.jep.2020.112759] [PMID: 32173425]
[318]
Sallam, Y.T.; Zhang, Q.; Pandey, S.K. Cortically based cystic supratentorial RELA fusion-positive ependymoma: a case report with unusual presentation and appearance and review of literature. Radiol. Case Rep., 2020, 15(12), 2495-2499.
[http://dx.doi.org/10.1016/j.radcr.2020.09.022] [PMID: 33033550]
[319]
Shastri, S.S.; Pandey, S.K. First-principles electronic structure, phonon properties, lattice thermal conductivity and prediction of figure of merit of FeVSb half-Heusler. J. Phys. Condens. Matter, 2020, 33(8)085704
[http://dx.doi.org/10.1088/1361-648X/abcc0f] [PMID: 33212432]
[320]
Shastri, S.S.; Pandey, S.K. Thermoelectric properties, efficiency and thermal expansion of ZrNiSn half-Heusler by first-principles calculations. J. Phys. Condens. Matter, 2020, 32(35)355705
[http://dx.doi.org/10.1088/1361-648X/ab8b9e] [PMID: 32315993]
[321]
Siddiqi, M.K.; Alam, P.; Chaturvedi, S.K.; Khan, R.H. Anti-amyloidogenic behavior and interaction of Diallylsulfide with Human Serum Albumin. Int. J. Biol. Macromol., 2016, 92, 1220-1228.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.08.035] [PMID: 27527697]
[322]
Kaeley, N.; Subramanyam, V.N.; Kumar, M.; Pandey, S.; Bhardwaj, B.; Reddy, K. Acute undifferentiated febrile illness: Protocol in emergency department. J. Family Med. Prim. Care, 2020, 9(5), 2232-2236.
[http://dx.doi.org/10.4103/jfmpc.jfmpc_214_19] [PMID: 32754479]
[323]
Suryavanshi, S.V.; Kulkarni, Y.A. Escin alleviates peripheral neuropathy in streptozotocin induced diabetes in rats. Life Sci., 2020, 254117777
[http://dx.doi.org/10.1016/j.lfs.2020.117777] [PMID: 32407839]
[324]
Vishnoi, S.; Matre, H.; Garg, P.; Pandey, S.K. Artificial intelligence and machine learning for protein toxicity prediction using proteomics data. Chem. Biol. Drug Des., 2020, 96(3), 902-920.
[http://dx.doi.org/10.1111/cbdd.13701] [PMID: 33058462]
[325]
Wicht, K.J.; Mok, S.; Fidock, D.A. Molecular mechanisms of drug resistance in Plasmodium falciparum Malaria. Annu. Rev. Microbiol., 2020, 74(1), 431-454.
[http://dx.doi.org/10.1146/annurev-micro-020518-115546] [PMID: 32905757]
[326]
Taghavi, S. HashemNia A, Mosaffa F, Askarian S, Abnous K, Ramezani M. Preparation and evaluation of polyethylenimine-functionalized carbon nanotubes tagged with 5TR1 aptamer for targeted delivery of Bcl-xL shRNA into breast cancer cells. Colloids Surf. B Biointerfaces, 2016, 140, 28-39.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.021] [PMID: 26731195]
[327]
Aashima, Pandey SK, Singh S, Mehta SK. Ultrasonication assisted fabrication of l-lysine functionalized gadolinium oxide nanoparticles and its biological acceptability. Ultrason. Sonochem., 2018, 49, 53-62.
[http://dx.doi.org/10.1016/j.ultsonch.2018.07.016] [PMID: 30057179]
[328]
Ahmad, I.; Sharma, S.; Gupta, N. Antithrombotic potential of esculin 7, 3′, 4′, 5′, 6′-O-pentasulfate (EPS) for its role in thrombus reduction using rat thrombosis model. Int. J. Biol. Macromol., 2018, 119, 360-368.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.07.048] [PMID: 30009901]
[329]
Luo, S.; Wang, S.; Luo, N.; Chen, F.; Hu, C.; Zhang, K. The application of aptamer 5TR1 in triple negative breast cancer target therapy. J. Cell. Biochem., 2018, 119(1), 896-908.
[http://dx.doi.org/10.1002/jcb.26254] [PMID: 28671278]
[330]
Pandey, S.K. Diary of an ophthalmology resident: Recollections from Post Graduate Institute, Chandigarh. Indian J. Ophthalmol., 2021, 69(1), 160-161.
[http://dx.doi.org/10.4103/ijo.IJO_2741_20] [PMID: 33323607]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy