Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Review Article

The Potential Role of Soybean Bioactive Peptides in the Prevention and Cure of Carcinoma and Cardiovascular Disorder

Author(s): Kuldeep Singh*, Jeetendra Kumar Gupta, Shivendra Kumar and Talever Singh

Volume 20, Issue 2, 2024

Published on: 08 September, 2023

Article ID: e070923220799 Pages: 14

DOI: 10.2174/1573407219666230907115809

Price: $65

Abstract

Bioactive peptides derived from soybeans have recently been identified as having potential health benefits for preventing and curing cancer and cardiovascular disorders. This narrative review focuses on the potential role of these peptides in such conditions and the possible mechanisms by which they may act. Soybean-derived bioactive peptides have been found to possess anti-tumor, antioxidant, anti-inflammatory, and cholesterol-lowering effects. Animal and in vitro studies have demonstrated that these peptides can modulate multiple signaling pathways, including those involved in the regulation of apoptosis, angiogenesis, and cell proliferation. Furthermore, they may protect against oxidative stress and lipid accumulation, which are associated with cancer and cardiovascular diseases. Also, soybean peptides have been shown to stop enzymes from breaking down cancer-causing chemicals and reduce the production of pro-inflammatory cytokines, which are linked to a higher risk of heart disease. The potential of soybean-derived peptides as a therapeutic tool in cancer and cardiovascular diseases is promising. However, further studies are needed to elucidate their mechanisms of action and assess their safety and efficacy in clinical settings.

Graphical Abstract

[1]
Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive peptides: Synthesis, sources, applications, and proposed mechanisms of action. Int. J. Mol. Sci., 2022, 23(3), 1445.
[http://dx.doi.org/10.3390/ijms23031445] [PMID: 35163367]
[2]
Tobeiha, M.; Jafari, A.; Fadaei, S.; Mirazimi, S.M.A.; Dashti, F.; Amiri, A.; Khan, H.; Asemi, Z.; Reiter, R.J.; Hamblin, M.R.; Mirzaei, H. Evidence for the benefits of melatonin in cardiovascular disease. Front. Cardiovasc. Med., 2022, 9, 888319.
[http://dx.doi.org/10.3389/fcvm.2022.888319] [PMID: 35795371]
[3]
Curigliano, G.; Lenihan, D.; Fradley, M.; Ganatra, S.; Barac, A.; Blaes, A.; Herrmann, J.; Porter, C.; Lyon, A.R.; Lancellotti, P.; Patel, A.; DeCara, J.; Mitchell, J.; Harrison, E.; Moslehi, J.; Witteles, R.; Calabro, M.G.; Orecchia, R.; de Azambuja, E.; Zamorano, J.L.; Krone, R.; Iakobishvili, Z.; Carver, J.; Armenian, S.; Ky, B.; Cardinale, D.; Cipolla, C.M.; Dent, S.; Jordan, K. Management of cardiac disease in cancer patients throughout oncological treatment: ESMO consensus recommendations. Ann. Oncol., 2020, 31(2), 171-190.
[http://dx.doi.org/10.1016/j.annonc.2019.10.023] [PMID: 31959335]
[4]
Nong, N.T.P.; Hsu, J.L. Bioactive peptides: An understanding from current screening methodology. Processes, 2022, 10(6), 1114.
[http://dx.doi.org/10.3390/pr10061114]
[5]
Marrero, A.D.; Quesada, A.R.; Martínez-Poveda, B.; Medina, M.Á. Antiangiogenic Phytochemicals constituent of diet as promising candidates for chemoprevention of cancer. Antioxidants, 2022, 11(2), 302.
[http://dx.doi.org/10.3390/antiox11020302] [PMID: 35204185]
[6]
Masoudkabir, F.; Sarrafzadegan, N.; Gotay, C.; Ignaszewski, A.; Krahn, A.D.; Davis, M.K.; Franco, C.; Mani, A. Cardiovascular disease and cancer: Evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis, 2017, 263, 343-351.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.06.001] [PMID: 28624099]
[7]
Bhatt, A. Evolution of clinical research: A history before and beyond james lind. Perspect. Clin. Res., 2010, 1(1), 6-10.
[http://dx.doi.org/10.4103/2229-3485.71839] [PMID: 21829774]
[8]
Zaky, A.A.; Simal-Gandara, J.; Eun, J.B.; Shim, J.H.; Abd El-Aty, A.M. Bioactivities, applications, safety, and health benefits of bioactive peptides from food and by-products: A review. Front. Nutr., 2022, 8, 815640.
[http://dx.doi.org/10.3389/fnut.2021.815640] [PMID: 35127796]
[9]
Cicero, A.F.G.; Fogacci, F.; Colletti, A. Potential role of bioactive peptides in prevention and treatment of chronic diseases: A narrative review. Br. J. Pharmacol., 2017, 174(11), 1378-1394.
[http://dx.doi.org/10.1111/bph.13608] [PMID: 27572703]
[10]
Yan, W.; Wistuba, I.I.; Emmert-Buck, M.R.; Erickson, H.S. Squamous cell carcinoma - similarities and differences among anatomical sites. Am. J. Cancer Res., 2011, 1(3), 275-300.
[PMID: 21938273]
[11]
Types of carcinoma (cancer): Symptoms, treatments, and more. Available from: https://www.medicalnewstoday.com/articles/types-of-carcinoma
[12]
Hinck, L.; Näthke, I. Changes in cell and tissue organization in cancer of the breast and colon. Curr. Opin. Cell Biol., 2014, 26(1), 87-95.
[http://dx.doi.org/10.1016/j.ceb.2013.11.003] [PMID: 24529250]
[13]
Parsa, N. Environmental factors inducing human cancers. Iran. J. Public Health, 2012, 41(11), 1-9.
[PMID: 23304670]
[14]
Cooper, G.M. The Development and Causes of Cancer. In: The Cell: A Molecular Approach, 2nd ed; Sinauer Associates: Sunderland (MA), 2000.
[15]
Symptoms of Cancer - NCI. Available from: https://www.cancer.gov/about-cancer/diagnosis-staging/symptoms
[16]
Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[17]
Anand, P.; Kunnumakara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res., 2008, 25(9), 2097-2116.
[http://dx.doi.org/10.1007/s11095-008-9661-9] [PMID: 18626751]
[18]
Feng, Y.; Spezia, M.; Huang, S.; Yuan, C.; Zeng, Z.; Zhang, L.; Ji, X.; Liu, W.; Huang, B.; Luo, W.; Liu, B.; Lei, Y.; Du, S.; Vuppalapati, A.; Luu, H.H.; Haydon, R.C.; He, T.C.; Ren, G. Breast cancer development and progression: Risk factors, cancer stem cells, signaling pathways, genomics, and molecular pathogenesis. Genes Dis., 2018, 5(2), 77-106.
[http://dx.doi.org/10.1016/j.gendis.2018.05.001] [PMID: 30258937]
[19]
Jones, G.; Srivastava, A. Understanding Lunasin’s biology and potential as a cancer therapeutic by utilizing Drosophila genetics. Exp Biol Med, 2014, 239(5), 519-528.
[http://dx.doi.org/10.1177/1535370214522180]
[20]
Hsieh, C.C.; Hernández-Ledesma, B.; de Lumen, B.O. Soybean peptide lunasin suppresses in vitro and in vivo 7,12-dimethylbenz[a]anthracene-induced tumorigenesis. J. Food Sci., 2010, 75(9), H311-H316.
[http://dx.doi.org/10.1111/j.1750-3841.2010.01861.x] [PMID: 21535606]
[21]
Hsieh, C.C.; Hernández-Ledesma, B.; de Lumen, B.O. Lunasin, a novel seed peptide, sensitizes human breast cancer MDA-MB-231 cells to aspirin-arrested cell cycle and induced apoptosis. Chem. Biol. Interact., 2010, 186(2), 127-134.
[http://dx.doi.org/10.1016/j.cbi.2010.04.027] [PMID: 20457246]
[22]
Gonzalez de Mejia, E.; Wang, W.; Dia, V.P. Lunasin, with an arginine-glycine-aspartic acid motif, causes apoptosis to L1210 leukemia cells by activation of caspase-3. Mol. Nutr. Food Res., 2010, 54(3), 406-414.
[http://dx.doi.org/10.1002/mnfr.200900073] [PMID: 19937853]
[23]
Garcés-Rimón, M.; Morales, D.; Miguel-Castro, M. Potential role of bioactive proteins and peptides derived from legumes towards metabolic syndrome. Nutrients, 2022, 14(24), 5271.
[http://dx.doi.org/10.3390/nu14245271]
[24]
Vuyyuri, S.B.; Shidal, C.; Davis, K.R. Development of the plant-derived peptide lunasin as an anticancer agent. Curr. Opin. Pharmacol., 2018, 41, 27-33.
[http://dx.doi.org/10.1016/j.coph.2018.04.006] [PMID: 29679803]
[25]
Bandyopadhyay, K.; Banères, J.L.; Martin, A.; Blonski, C.; Parello, J.; Gjerset, R. Spermidinyl-CoA-based HAT inhibitors block DNA repair and provide cancer- specific chemo-and radiosensitization. Cell Cycle, 2009, 8(17), 2779-2788.
[http://dx.doi.org/10.4161/cc.8.17.9416] [PMID: 19652528]
[26]
Alves de Souza, S.M.; Hernández-Ledesma, B.; de Souza, T.L.F. Lunasin as a promising plant-derived peptide for cancer therapy. Int. J. Mol. Sci., 2022, 23(17), 9548.
[http://dx.doi.org/10.3390/ijms23179548] [PMID: 36076946]
[27]
Hernández-Ledesma, B.; De Lumen, B.O. Lunasin: A novel cancer preventive seed Peptide. Perspect. Medicin. Chem., 2008, 2(2) PMC.S372.
[http://dx.doi.org/10.4137/PMC.S372] [PMID: 19787099]
[28]
Hernández-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Relationship between lunasin’s sequence and its inhibitory activity of histones H3 and H4 acetylation. Mol. Nutr. Food Res., 2011, 55(7), 989-998.
[http://dx.doi.org/10.1002/mnfr.201000632] [PMID: 21618425]
[29]
Rahman, K. Studies on free radicals, antioxidants, and co-factors. Clin. Interv. Aging, 2007, 2(2), 219-236.
[PMID: 18044138]
[30]
Basson, A.R.; Ahmed, S.; Almutairi, R.; Seo, B.; Cominelli, F. Regulation of Intestinal Inflammation by Soybean and Soy-Derived Compounds. Foods, 2021, 10(4), 774.
[http://dx.doi.org/10.3390/foods10040774] [PMID: 33916612]
[31]
Hernández-Ledesma, B.; Hsieh, C.C.; de Lumen, B.O. Antioxidant and anti-inflammatory properties of cancer preventive peptide lunasin in RAW 264.7 macrophages. Biochem. Biophys. Res. Commun., 2009, 390(3), 803-808.
[http://dx.doi.org/10.1016/j.bbrc.2009.10.053] [PMID: 19836349]
[32]
Chavda, V.P.; Patel, A.B.; Mistry, K.J.; Suthar, S.F.; Wu, Z.X.; Chen, Z.S.; Hou, K. Nano-drug delivery systems entrapping natural bioactive compounds for cancer: Recent progress and future challenges. Front. Oncol., 2022, 12, 867655.
[http://dx.doi.org/10.3389/fonc.2022.867655] [PMID: 35425710]
[33]
Dia, V.P.; Torres, S.; De Lumen, B.O.; Erdman, J.W., Jr; Gonzalez De Mejia, E. Presence of lunasin in plasma of men after soy protein consumption. J. Agric. Food Chem., 2009, 57(4), 1260-1266.
[http://dx.doi.org/10.1021/jf803303k] [PMID: 19199603]
[34]
Hsieh, C.C.; Hernández-Ledesma, B.; Jeong, H.J.; Park, J.H.; de Lumen, B.O. Complementary roles in cancer prevention: Protease inhibitor makes the cancer preventive peptide lunasin bioavailable. PLoS One, 2010, 5(1), e8890.
[http://dx.doi.org/10.1371/journal.pone.0008890] [PMID: 20126654]
[35]
Wan, X.; Liu, H.; Sun, Y.; Zhang, J.; Chen, X.; Chen, N. Lunasin: A promising polypeptide for the prevention and treatment of cancer. Oncol. Lett., 2017, 13(6), 3997-4001.
[http://dx.doi.org/10.3892/ol.2017.6017] [PMID: 28599405]
[36]
Ramírez-Rico, G.; Drago-Serrano, M.E.; León-Sicairos, N.; de la Garza, M. Lactoferrin: A nutraceutical with activity against colorectal cancer. Front. Pharmacol., 2022, 13, 855852.
[http://dx.doi.org/10.3389/fphar.2022.855852] [PMID: 35264972]
[37]
Zorko, M.; Jones, S.; Langel, Ü. Cell-penetrating peptides in protein mimicry and cancer therapeutics. Adv. Drug Deliv. Rev., 2022, 180, 114044.
[http://dx.doi.org/10.1016/j.addr.2021.114044] [PMID: 34774552]
[38]
Jafari, A.; Babajani, A.; Sarrami Forooshani, R.; Yazdani, M.; Rezaei-Tavirani, M. Clinical applications and anticancer effects of antimicrobial peptides: From bench to bedside. Front. Oncol., 2022, 12, 819563.
[http://dx.doi.org/10.3389/fonc.2022.819563] [PMID: 35280755]
[39]
Clemente, A.; Arques, M.C. Bowman-Birk inhibitors from legumes as colorectal chemopreventive agents. World J. Gastroenterol., 2014, 20(30), 10305-10315.
[http://dx.doi.org/10.3748/wjg.v20.i30.10305] [PMID: 25132747]
[40]
Cui, M.; Yang, H.; He, G. Apoptosis induction of colorectal cancer cells HTL-9 in vitro by the transformed products of soybean isoflavones by Ganoderma lucidum. J. Zhejiang Univ. Sci. B, 2017, 18(12), 1101-1112.
[http://dx.doi.org/10.1631/jzus.B1700189] [PMID: 29204990]
[41]
Serventi, L.; Cai, X.; Chen, R.; Dilrukshi, N.; Su, J.; Priskila, R.; Tuange, N.; Ham, E.E. Anticancer properties of aqueous extracts from leguminosae. Nutraceuticals., 2022, 2(4), 323-334.
[http://dx.doi.org/10.3390/nutraceuticals2040025]
[42]
Goh, Y.X.; Jalil, J.; Lam, K.W.; Husain, K.; Premakumar, C.M. Genistein: A review on its anti-inflammatory properties. Front. Pharmacol., 2022, 13, 820969.
[http://dx.doi.org/10.3389/fphar.2022.820969] [PMID: 35140617]
[43]
Chen, F.; Hao, Y.; Piao, X.S.; Ma, X.; Wu, G.Y.; Qiao, S.Y.; Li, D.F.; Wang, J.J. Soybean-derived β-conglycinin affects proteome expression in pig intestinal cells in vivo and in vitro. J. Anim. Sci., 2011, 89(3), 743-753.
[http://dx.doi.org/10.2527/jas.2010-3146] [PMID: 21057091]
[44]
Liang, X.H.; Jackson, S.; Seaman, M.; Brown, K.; Kempkes, B.; Hibshoosh, H.; Levine, B. Induction of autophagy and inhibition of tu-morigenesis by beclin 1. Nature, 1999, 402(6762), 672-676.
[http://dx.doi.org/10.1038/45257] [PMID: 10604474]
[45]
Anderson, G.R.; Farkas, B.K. The major anoxic stress response protein p34 is a distinct lactate dehydrogenase. Biochemistry, 1988, 27(6), 2187-2193.
[http://dx.doi.org/10.1021/bi00406a056] [PMID: 3378055]
[46]
Hsieh, C.C.; Wang, C.H.; Huang, Y.S.; Buechler, C.; Malemud, C.J. Lunasin attenuates obesity-associated metastasis of 4t1 breast cancer cell through anti-inflammatory property. Int J Mol Sci., 2016, 17(12), 2109.
[http://dx.doi.org/10.3390/ijms17122109]
[47]
Kim, I.S.; Yang, W.S.; Kim, C.H. Beneficial effects of soybean-derived bioactive peptides. Int J Mol Sci, 2021, 22(16), 8570.
[http://dx.doi.org/10.3390/ijms22168570]
[48]
Singh, B.P.; Vij, S.; Hati, S. Functional significance of bioactive peptides derived from soybean. Peptides, 2014, 54, 171-179.
[http://dx.doi.org/10.1016/j.peptides.2014.01.022] [PMID: 24508378]
[49]
Tadesse, S.A.; Emire, S.A. Production and processing of antioxidant bioactive peptides: A driving force for the functional food market. Heliyon, 2020, 6(8), e04765.
[http://dx.doi.org/10.1016/j.heliyon.2020.e04765] [PMID: 32913907]
[50]
Kaufman-Szymczyk, A.; Kaczmarek, W.; Fabianowska-Majewska, K.; Lubecka-Gajewska, K. Lunasin and its epigenetic impact in cancer chemoprevention. Int. J. Mol. Sci., 2023, 24(11), 9187.
[http://dx.doi.org/10.3390/ijms24119187] [PMID: 37298139]
[51]
Li, Y.; Kong, D.; Bao, B.; Ahmad, A.; Sarkar, F.H. Induction of cancer cell death by isoflavone: The role of multiple signaling pathways. Nutrients, 2011, 3(10), 877-896.
[http://dx.doi.org/10.3390/nu3100877]
[52]
Li, W.W.; Li, V.W.; Hutnik, M.; Chiou, A.S. Tumor angiogenesis as a target for dietary cancer prevention. J. Oncol., 2012, 2012, 1-23.
[http://dx.doi.org/10.1155/2012/879623] [PMID: 21977033]
[53]
Gupta, S.C.; Kim, J.H.; Prasad, S.; Aggarwal, B.B. Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev., 2010, 29(3), 405-434.
[http://dx.doi.org/10.1007/s10555-010-9235-2] [PMID: 20737283]
[54]
Díaz-Gómez, J.L.; Castorena-Torres, F.; Preciado-Ortiz, R.E.; García-Lara, S. Anti-cancer activity of maize bioactive peptides. Front Chem., 2017, 5, 44.
[http://dx.doi.org/10.3389/fchem.2017.00044] [PMID: 28680876]
[55]
Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.; Catapano, A.L.; Chugh, S.S.; Cooper, L.T.; Coresh, J.; Criqui, M.; DeCleene, N.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Solà, J.; Fowkes, G.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.; Koroshetz, W.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Temesgen, A.M.; Mokdad, A.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Moraes de Oliveira, G.; Otto, C.; Owolabi, M.; Pratt, M.; Rajagopalan, S.; Reitsma, M.; Ribeiro, A.L.P.; Rigotti, N.; Rodgers, A.; Sable, C.; Shakil, S.; Sliwa-Hahnle, K.; Stark, B.; Sundström, J.; Timpel, P.; Tleyjeh, I.M.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.; Murray, C.; Fuster, V.; Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.; Benjamin, E.J.; Benziger, C.P.; Bonny, A.; Brauer, M.; Brodmann, M.; Cahill, T.J.; Carapetis, J.R.; Catapano, A.L.; Chugh, S.; Cooper, L.T.; Coresh, J.; Criqui, M.H.; DeCleene, N.K.; Eagle, K.A.; Emmons-Bell, S.; Feigin, V.L.; Fernández-Sola, J.; Fowkes, F.G.R.; Gakidou, E.; Grundy, S.M.; He, F.J.; Howard, G.; Hu, F.; Inker, L.; Karthikeyan, G.; Kassebaum, N.J.; Koroshetz, W.J.; Lavie, C.; Lloyd-Jones, D.; Lu, H.S.; Mirijello, A.; Misganaw, A.T.; Mokdad, A.H.; Moran, A.E.; Muntner, P.; Narula, J.; Neal, B.; Ntsekhe, M.; Oliveira, G.M.M.; Otto, C.M.; Owolabi, M.O.; Pratt, M.; Rajagopalan, S.; Reitsma, M.B.; Ribeiro, A.L.P.; Rigotti, N.A.; Rodgers, A.; Sable, C.A.; Shakil, S.S.; Sliwa, K.; Stark, B.A.; Sundström, J.; Timpel, P.; Tleyjeh, I.I.; Valgimigli, M.; Vos, T.; Whelton, P.K.; Yacoub, M.; Zuhlke, L.J.; Abbasi-Kangevari, M.; Abdi, A.; Abedi, A.; Aboyans, V.; Abrha, W.A.; Abu-Gharbieh, E.; Abushouk, A.I.; Acharya, D.; Adair, T.; Adebayo, O.M.; Ademi, Z.; Advani, S.M.; Afshari, K.; Afshin, A.; Agarwal, G.; Agasthi, P.; Ahmad, S.; Ahmadi, S.; Ahmed, M.B.; Aji, B.; Akalu, Y.; Akande-Sholabi, W.; Aklilu, A.; Akunna, C.J.; Alahdab, F.; Al-Eyadhy, A.; Alhabib, K.F.; Alif, S.M.; Alipour, V.; Aljunid, S.M.; Alla, F.; Almasi-Hashiani, A.; Almustanyir, S.; Al-Raddadi, R.M.; Amegah, A.K.; Amini, S.; Aminorroaya, A.; Amu, H.; Amugsi, D.A.; Ancuceanu, R.; Anderlini, D.; Andrei, T.; Andrei, C.L.; Ansari-Moghaddam, A.; Anteneh, Z.A.; Antonazzo, I.C.; Antony, B.; Anwer, R.; Appiah, L.T.; Arabloo, J.; Ärnlöv, J.; Artanti, K.D.; Ataro, Z.; Ausloos, M.; Avila-Burgos, L.; Awan, A.T.; Awoke, M.A.; Ayele, H.T.; Ayza, M.A.; Azari, S. B, D.B.; Baheiraei, N.; Baig, A.A.; Bakhtiari, A.; Banach, M.; Banik, P.C.; Baptista, E.A.; Barboza, M.A.; Barua, L.; Basu, S.; Bedi, N.; Béjot, Y.; Bennett, D.A.; Bensenor, I.M.; Berman, A.E.; Bezabih, Y.M.; Bhagavathula, A.S.; Bhaskar, S.; Bhattacharyya, K.; Bijani, A.; Bikbov, B.; Birhanu, M.M.; Boloor, A.; Brant, L.C.; Brenner, H.; Briko, N.I.; Butt, Z.A.; Caetano dos Santos, F.L.; Cahill, L.E.; Cahuana-Hurtado, L.; Cámera, L.A.; Campos-Nonato, I.R.; Cantu-Brito, C.; Car, J.; Carrero, J.J.; Carvalho, F.; Castañeda-Orjuela, C.A.; Catalá-López, F.; Cerin, E.; Charan, J.; Chattu, V.K.; Chen, S.; Chin, K.L.; Choi, J-Y.J.; Chu, D-T.; Chung, S-C.; Cirillo, M.; Coffey, S.; Conti, S.; Costa, V.M.; Cundiff, D.K.; Dadras, O.; Dagnew, B.; Dai, X.; Damasceno, A.A.M.; Dandona, L.; Dandona, R.; Davletov, K.; De la Cruz-Góngora, V.; De la Hoz, F.P.; De Neve, J-W.; Denova-Gutiérrez, E.; Derbew Molla, M.; Derseh, B.T.; Desai, R.; Deuschl, G.; Dharmaratne, S.D.; Dhimal, M.; Dhungana, R.R.; Dianatinasab, M.; Diaz, D.; Djalalinia, S.; Dokova, K.; Douiri, A.; Duncan, B.B.; Duraes, A.R.; Eagan, A.W.; Ebtehaj, S.; Eftekhari, A.; Eftekharzadeh, S.; Ekholuenetale, M.; El Nahas, N.; Elgendy, I.Y.; Elhadi, M.; El-Jaafary, S.I.; Esteghamati, S.; Etisso, A.E.; Eyawo, O.; Fadhil, I.; Faraon, E.J.A.; Faris, P.S.; Farwati, M.; Farzadfar, F.; Fernandes, E.; Fernandez Prendes, C.; Ferrara, P.; Filip, I.; Fischer, F.; Flood, D.; Fukumoto, T.; Gad, M.M.; Gaidhane, S.; Ganji, M.; Garg, J.; Gebre, A.K.; Gebregiorgis, B.G.; Gebregzabiher, K.Z.; Gebremeskel, G.G.; Getacher, L.; Obsa, A.G.; Ghajar, A.; Ghashghaee, A.; Ghith, N.; Giampaoli, S.; Gilani, S.A.; Gill, P.S.; Gillum, R.F.; Glushkova, E.V.; Gnedovskaya, E.V.; Golechha, M.; Gonfa, K.B.; Goudarzian, A.H.; Goulart, A.C.; Guadamuz, J.S.; Guha, A.; Guo, Y.; Gupta, R.; Hachinski, V.; Hafezi-Nejad, N.; Haile, T.G.; Hamadeh, R.R.; Hamidi, S.; Hankey, G.J.; Hargono, A.; Hartono, R.K.; Hashemian, M.; Hashi, A.; Hassan, S.; Hassen, H.Y.; Havmoeller, R.J.; Hay, S.I.; Hayat, K.; Heidari, G.; Herteliu, C.; Holla, R.; Hosseini, M.; Hosseinzadeh, M.; Hostiuc, M.; Hostiuc, S.; Househ, M.; Huang, J.; Humayun, A.; Iavicoli, I.; Ibeneme, C.U.; Ibitoye, S.E.; Ilesanmi, O.S.; Ilic, I.M.; Ilic, M.D.; Iqbal, U.; Irvani, S.S.N.; Islam, S.M.S.; Islam, R.M.; Iso, H.; Iwagami, M.; Jain, V.; Javaheri, T.; Jayapal, S.K.; Jayaram, S.; Jayawardena, R.; Jeemon, P.; Jha, R.P.; Jonas, J.B.; Jonnagaddala, J.; Joukar, F.; Jozwiak, J.J.; Jürisson, M.; Kabir, A.; Kahlon, T.; Kalani, R.; Kalhor, R.; Kamath, A.; Kamel, I.; Kandel, H.; Kandel, A.; Karch, A.; Kasa, A.S.; Katoto, P.D.M.C.; Kayode, G.A.; Khader, Y.S.; Khammarnia, M.; Khan, M.S.; Khan, M.N.; Khan, M.; Khan, E.A.; Khatab, K.; Kibria, G.M.A.; Kim, Y.J.; Kim, G.R.; Kimokoti, R.W.; Kisa, S.; Kisa, A.; Kivimäki, M.; Kolte, D.; Koolivand, A.; Korshunov, V.A.; Koulmane Laxminarayana, S.L.; Koyanagi, A.; Krishan, K.; Krishnamoorthy, V.; Kuate Defo, B.; Kucuk Bicer, B.; Kulkarni, V.; Kumar, G.A.; Kumar, N.; Kurmi, O.P.; Kusuma, D.; Kwan, G.F.; La Vecchia, C.; Lacey, B.; Lallukka, T.; Lan, Q.; Lasrado, S.; Lassi, Z.S.; Lauriola, P.; Lawrence, W.R.; Laxmaiah, A.; LeGrand, K.E.; Li, M-C.; Li, B.; Li, S.; Lim, S.S.; Lim, L-L.; Lin, H.; Lin, Z.; Lin, R-T.; Liu, X.; Lopez, A.D.; Lorkowski, S.; Lotufo, P.A.; Lugo, A.; M, N.K.; Madotto, F.; Mahmoudi, M.; Majeed, A.; Malekzadeh, R.; Malik, A.A.; Mamun, A.A.; Manafi, N.; Mansournia, M.A.; Mantovani, L.G.; Martini, S.; Mathur, M.R.; Mazzaglia, G.; Mehata, S.; Mehndiratta, M.M.; Meier, T.; Menezes, R.G.; Meretoja, A.; Mestrovic, T.; Miazgowski, B.; Miazgowski, T.; Michalek, I.M.; Miller, T.R.; Mirrakhimov, E.M.; Mirzaei, H.; Moazen, B.; Moghadaszadeh, M.; Mohammad, Y.; Mohammad, D.K.; Mohammed, S.; Mohammed, M.A.; Mokhayeri, Y.; Molokhia, M.; Montasir, A.A.; Moradi, G.; Moradzadeh, R.; Moraga, P.; Morawska, L.; Moreno Velásquez, I.; Morze, J.; Mubarik, S.; Muruet, W.; Musa, K.I.; Nagarajan, A.J.; Nalini, M.; Nangia, V.; Naqvi, A.A.; Narasimha Swamy, S.; Nascimento, B.R.; Nayak, V.C.; Nazari, J.; Nazarzadeh, M.; Negoi, R.I.; Neupane Kandel, S.; Nguyen, H.L.T.; Nixon, M.R.; Norrving, B.; Noubiap, J.J.; Nouthe, B.E.; Nowak, C.; Odukoya, O.O.; Ogbo, F.A.; Olagunju, A.T.; Orru, H.; Ortiz, A.; Ostroff, S.M.; Padubidri, J.R.; Palladino, R.; Pana, A.; Panda-Jonas, S.; Parekh, U.; Park, E-C.; Parvizi, M.; Pashazadeh Kan, F.; Patel, U.K.; Pathak, M.; Paudel, R.; Pepito, V.C.F.; Perianayagam, A.; Perico, N.; Pham, H.Q.; Pilgrim, T.; Piradov, M.A.; Pishgar, F.; Podder, V.; Polibin, R.V.; Pourshams, A.; Pribadi, D.R.A.; Rabiee, N.; Rabiee, M.; Radfar, A.; Rafiei, A.; Rahim, F.; Rahimi-Movaghar, V.; Ur Rahman, M.H.; Rahman, M.A.; Rahmani, A.M.; Rakovac, I.; Ram, P.; Ramalingam, S.; Rana, J.; Ranasinghe, P.; Rao, S.J.; Rathi, P.; Rawal, L.; Rawasia, W.F.; Rawassizadeh, R.; Remuzzi, G.; Renzaho, A.M.N.; Rezapour, A.; Riahi, S.M.; Roberts-Thomson, R.L.; Roever, L.; Rohloff, P.; Romoli, M.; Roshandel, G.; Rwegerera, G.M.; Saadatagah, S.; Saber-Ayad, M.M.; Sabour, S.; Sacco, S.; Sadeghi, M.; Saeedi Moghaddam, S.; Safari, S.; Sahebkar, A.; Salehi, S.; Salimzadeh, H.; Samaei, M.; Samy, A.M.; Santos, I.S.; Santric-Milicevic, M.M.; Sarrafzadegan, N.; Sarveazad, A.; Sathish, T.; Sawhney, M.; Saylan, M.; Schmidt, M.I.; Schutte, A.E.; Senthilkumaran, S.; Sepanlou, S.G.; Sha, F.; Shahabi, S.; Shahid, I.; Shaikh, M.A.; Shamali, M.; Shamsizadeh, M.; Shawon, M.S.R.; Sheikh, A.; Shigematsu, M.; Shin, M-J.; Shin, J.I.; Shiri, R.; Shiue, I.; Shuval, K.; Siabani, S.; Siddiqi, T.J.; Silva, D.A.S.; Singh, J.A.; Mtech, A.S.; Skryabin, V.Y.; Skryabina, A.A.; Soheili, A.; Spurlock, E.E.; Stockfelt, L.; Stortecky, S.; Stranges, S.; Suliankatchi Abdulkader, R.; Tadbiri, H.; Tadesse, E.G.; Tadesse, D.B.; Tajdini, M.; Tariqujjaman, M.; Teklehaimanot, B.F.; Temsah, M-H.; Tesema, A.K.; Thakur, B.; Thankappan, K.R.; Thapar, R.; Thrift, A.G.; Timalsina, B.; Tonelli, M.; Touvier, M.; Tovani-Palone, M.R.; Tripathi, A.; Tripathy, J.P.; Truelsen, T.C.; Tsegay, G.M.; Tsegaye, G.W.; Tsilimparis, N.; Tusa, B.S.; Tyrovolas, S.; Umapathi, K.K.; Unim, B.; Unnikrishnan, B.; Usman, M.S.; Vaduganathan, M.; Valdez, P.R.; Vasankari, T.J.; Velazquez, D.Z.; Venketasubramanian, N.; Vu, G.T.; Vujcic, I.S.; Waheed, Y.; Wang, Y.; Wang, F.; Wei, J.; Weintraub, R.G.; Weldemariam, A.H.; Westerman, R.; Winkler, A.S.; Wiysonge, C.S.; Wolfe, C.D.A.; Wubishet, B.L.; Xu, G.; Yadollahpour, A.; Yamagishi, K.; Yan, L.L.; Yandrapalli, S.; Yano, Y.; Yatsuya, H.; Yeheyis, T.Y.; Yeshaw, Y.; Yilgwan, C.S.; Yonemoto, N.; Yu, C.; Yusefzadeh, H.; Zachariah, G.; Zaman, S.B.; Zaman, M.S.; Zamanian, M.; Zand, R.; Zandifar, A.; Zarghi, A.; Zastrozhin, M.S.; Zastrozhina, A.; Zhang, Z-J.; Zhang, Y.; Zhang, W.; Zhong, C.; Zou, Z.; Zuniga, Y.M.H.; Murray, C.J.L.; Fuster, V. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol., 2020, 76(25), 2982-3021.
[http://dx.doi.org/10.1016/j.jacc.2020.11.010] [PMID: 33309175]
[56]
Hu, S.; Liu, C.; Liu, X. The beneficial effects of soybean proteins and peptides on chronic diseases. Nutrients, 2023, 15(8), 1811.
[http://dx.doi.org/10.3390/nu15081811] [PMID: 37111030]
[57]
Wijesekara, I.; Kim, S.K. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar. Drugs, 2010, 8(4), 1080-1093.
[http://dx.doi.org/10.3390/md8041080] [PMID: 20479968]
[58]
Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; Prakash Mishra, A.; Nigam, M.; El Rayess, Y.; Beyrouthy, M.E.; Polito, L.; Iriti, M.; Martins, N.; Martorell, M.; Docea, A.O.; Setzer, W.N.; Calina, D.; Cho, W.C.; Sharifi-Rad, J. Lifestyle, oxidative stress, and antioxidants: Back and forth in the pathophysiology of chronic diseases. Front. Physiol., 2020, 11, 694.
[http://dx.doi.org/10.3389/fphys.2020.00694] [PMID: 32714204]
[59]
La Manna, S.; Di Natale, C.; Florio, D.; Marasco, D. Peptides as therapeutic agents for inflammatory-related diseases. Int. J. Mol. Sci., 2018, 19(9), 2714.
[http://dx.doi.org/10.3390/ijms19092714] [PMID: 30208640]
[60]
Rebollo-Hernanz, M.; Bringe, N.A.; Gonzalez de Mejia, E. Selected soybean varieties regulate hepatic ldl-cholesterol homeostasis depending on their glycinin:β-Conglycinin ratio. Antioxidants, 2022, 12(1), 20.
[http://dx.doi.org/10.3390/antiox12010020] [PMID: 36670883]
[61]
Hadi, H.A.R.; Carr, C.S.; Al Suwaidi, J. Endothelial dysfunction: Cardiovascular risk factors, therapy, and outcome. Vasc. Health Risk Manag., 2005, 1(3), 183-198.
[PMID: 17319104]
[62]
De Leo, F.; Panarese, S.; Gallerani, R.; Ceci, L. Angiotensin converting enzyme (ACE) inhibitory peptides: Production and implementation of functional food. Curr. Pharm. Des., 2009, 15(31), 3622-3643.
[http://dx.doi.org/10.2174/138161209789271834] [PMID: 19925416]
[63]
Raja Priya, R.; Khora, S.S. Antioxidant Potentials of Polysaccharides Derived from Marine Brown Algae; Elsevier, 2023.
[http://dx.doi.org/10.1016/B978-0-323-95086-2.00012-6]
[64]
Liu, M.; Wang, G.; Xu, R.; Shen, C.; Ni, H.; Lai, R. Soy isoflavones inhibit both GPIb-IX signaling and αIIbβ3 outside-in signaling via 14-3-3ζ in platelet. Molecules, 2021, 26(16), 4911.
[http://dx.doi.org/10.3390/molecules26164911] [PMID: 34443497]
[65]
Udenigwe, C.; Rouvinen-Watt, K. The Role of Food Peptides in Lipid Metabolism during Dyslipidemia and Associated Health Conditions. Int. J. Mol. Sci., 2015, 16(12), 9303-9313.
[http://dx.doi.org/10.3390/ijms16059303] [PMID: 25918936]
[66]
Fisher, N.D.L.; Hughes, M.; Gerhard-Herman, M.; Hollenberg, N.K. Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J. Hypertens., 2003, 21(12), 2281-2286.
[http://dx.doi.org/10.1097/00004872-200312000-00016] [PMID: 14654748]
[67]
Chakrabarti, S.; Wu, J. Bioactive peptides on endothelial function. Food Sci. Hum. Wellness, 2016, 5(1), 1-7.
[http://dx.doi.org/10.1016/j.fshw.2015.11.004]
[68]
Chen, Y.; Qi, Y.; Lu, W. Endogenous vasoactive peptides and vascular aging-related diseases. Oxid. Med. Cell. Longev., 2022, 2022, 1-22.
[http://dx.doi.org/10.1155/2022/1534470] [PMID: 36225176]
[69]
Sandoo, A.; Veldhuijzen van Zanten, J.J.C.S.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J., 2010, 4(1), 302-312.
[http://dx.doi.org/10.2174/1874192401004010302] [PMID: 21339899]
[70]
Delong, C.; Sharma, S. Physiology, Peripheral Vascular Resistance; StatPearls, 2023.
[71]
Lusis, A.J. Atherosclerosis. Nature, 2000, 407(6801), 233-241.
[http://dx.doi.org/10.1038/35025203] [PMID: 11001066]
[72]
Badimon, L.; Padró, T.; Vilahur, G. Atherosclerosis, platelets and thrombosis in acute ischaemic heart disease. Eur. Heart J. Acute Cardiovasc. Care, 2012, 1(1), 60-74.
[http://dx.doi.org/10.1177/2048872612441582] [PMID: 24062891]
[73]
Lichota, A.; Szewczyk, E.M.; Gwozdzinski, K. Factors affecting the formation and treatment of thrombosis by natural and synthetic com-pounds. Int J Mol Sci, 2020, 21(21), 7975.
[http://dx.doi.org/10.3390/ijms21217975]
[74]
Kalogeris, T.; Baines, C.P.; Krenz, M.; Korthuis, R.J. Cell biology of ischemia/reperfusion injury. Int. Rev. Cell Mol. Biol., 2012, 298, 229-317.
[http://dx.doi.org/10.1016/B978-0-12-394309-5.00006-7] [PMID: 22878108]
[75]
Antzelevitch, C.; Burashnikov, A. Overview of basic mechanisms of cardiac arrhythmia. Card. Electrophysiol. Clin., 2011, 3(1), 23-45.
[http://dx.doi.org/10.1016/j.ccep.2010.10.012] [PMID: 21892379]
[76]
Xie, J.; Bi, Y.; Zhang, H.; Dong, S.; Teng, L.; Lee, R.J.; Yang, Z. Cell-penetrating peptides in diagnosis and treatment of human diseases: From preclinical research to clinical application. Front. Pharmacol., 2020, 11, 697.
[http://dx.doi.org/10.3389/fphar.2020.00697] [PMID: 32508641]
[77]
Kummar, S.; Rubinstein, L.; Kinders, R.; Parchment, R.E.; Gutierrez, M.E.; Murgo, A.J.; Ji, J.; Mroczkowski, B.; Pickeral, O.K.; Simpson, M.; Hollingshead, M.; Yang, S.X.; Helman, L.; Wiltrout, R.; Collins, J.; Tomaszewski, J.E.; Doroshow, J.H. Phase 0 clinical trials: Conceptions and misconceptions. Cancer J., 2008, 14(3), 133-137.
[http://dx.doi.org/10.1097/PPO.0b013e318172d6f3] [PMID: 18536551]
[78]
Leopold, J.A.; Loscalzo, J. Emerging role of precision medicine in Cardiovascular Disease. Circ. Res., 2018, 122(9), 1302-1315.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.310782] [PMID: 29700074]
[79]
Dasgupta, C.; Zhang, L.; Angiotensin, I.I. Angiotensin II receptors and drug discovery in cardiovascular disease. Drug Discov. Today, 2011, 16(1-2), 22-34.
[http://dx.doi.org/10.1016/j.drudis.2010.11.016] [PMID: 21147255]
[80]
Su, J.B. Vascular endothelial dysfunction and pharmacological treatment. World J. Cardiol., 2015, 7(11), 719-741.
[http://dx.doi.org/10.4330/wjc.v7.i11.719] [PMID: 26635921]
[81]
Potter, L.R.; Yoder, A.R.; Flora, D.R.; Antos, L.K.; Dickey, D.M. Natriuretic peptides: Their structures, receptors, physiologic functions and therapeutic applications. Handb. Exp. Pharmacol., 2009, 191(191), 341-366.
[http://dx.doi.org/10.1007/978-3-540-68964-5_15] [PMID: 19089336]
[82]
Maguire, J.J.; Davenport, A.P. Endothelin receptors and their antagonists. Semin. Nephrol., 2015, 35(2), 125-136.
[http://dx.doi.org/10.1016/j.semnephrol.2015.02.002] [PMID: 25966344]
[83]
Johnson, M.B.; Young, A.D.; Marriott, I. The therapeutic potential of targeting substance P/NK-1R interactions in inflammatory cns disorders. Front. Cell. Neurosci., 2017, 10, 296.
[http://dx.doi.org/10.3389/fncel.2016.00296] [PMID: 28101005]
[84]
Zhang, G.; Yin, X.; Qi, Y.; Pendyala, L.; Chen, J.; Hou, D.; Tang, C. Ghrelin and cardiovascular diseases. Curr. Cardiol. Rev., 2010, 6(1), 62-70.
[http://dx.doi.org/10.2174/157340310790231662] [PMID: 21286280]
[85]
Suetomi, R.; Ohta, Y.; Akiyama, M.; Matsumura, T.; Taguchi, A.; Yamamoto, K.; Kamatani, T.; Tanizawa, Y. Adrenomedullin has a cytoprotective role against endoplasmic reticulum stress for pancreatic β‐cells in autocrine and paracrine manners. J. Diabetes Investig., 2020, 11(4), 823-833.
[http://dx.doi.org/10.1111/jdi.13218] [PMID: 31989791]
[86]
Matsumoto, Y.; Ueda, S.; Matsushita, S.; Ozawa, T.; Yamaguchi, H. Calcitonin gene-related peptide inhibits human platelet aggregation. Jpn. Circ. J., 1996, 60(10), 797-804.
[http://dx.doi.org/10.1253/jcj.60.797] [PMID: 8933243]
[87]
Airhart, N.; Yang, Y.F.; Roberts, C.T., Jr; Silberbach, M. Atrial natriuretic peptide induces natriuretic peptide receptor-cGMP-dependent protein kinase interaction. J. Biol. Chem., 2003, 278(40), 38693-38698.
[http://dx.doi.org/10.1074/jbc.M304098200] [PMID: 12855709]
[88]
Liu, W.; Yan, J.; Pan, W.; Tang, M. Apelin/Elabela-APJ: A novel therapeutic target in the cardiovascular system. Ann. Transl. Med., 2020, 8(5), 243-243.
[http://dx.doi.org/10.21037/atm.2020.02.07] [PMID: 32309390]
[89]
Sánchez, A.; Vázquez, A. Bioactive peptides: A review. Food Quality and Safety, 2017, 1(1), 29-46.
[http://dx.doi.org/10.1093/fqs/fyx006]
[90]
Samec, T.; Boulos, J.; Gilmore, S.; Hazelton, A.; Alexander-Bryant, A. Peptide-based delivery of therapeutics in cancer treatment. Mater. Today Bio, 2022, 14, 100248.
[http://dx.doi.org/10.1016/j.mtbio.2022.100248] [PMID: 35434595]
[91]
Pudlarz, A.; Szemraj, J. Nanoparticles as carriers of proteins, peptides and other therapeutic molecules. Open Life Sci., 2018, 13(1), 285-298.
[http://dx.doi.org/10.1515/biol-2018-0035] [PMID: 33817095]
[92]
Nakhaei, P.; Margiana, R.; Bokov, D.O.; Abdelbasset, W.K.; Jadidi Kouhbanani, M.A.; Varma, R.S.; Marofi, F.; Jarahian, M.; Beheshtkhoo, N. Liposomes: Structure, biomedical applications, and stability parameters with emphasis on cholesterol. Front. Bioeng. Biotechnol., 2021, 9, 705886.
[http://dx.doi.org/10.3389/fbioe.2021.705886] [PMID: 34568298]
[93]
Aldawood, F.K.; Andar, A.; Desai, S. A comprehensive review of microneedles: Types, materials, processes, characterizations and appli-cations. Polymers, 2021, 13(16), 2815.
[http://dx.doi.org/10.3390/polym13162815] [PMID: 34451353]
[94]
Liu, C.; Zhang, Q.; Zhu, S.; Liu, H.; Chen, J. Preparation and applications of peptide-based injectable hydrogels. RSC Advances, 2019, 9(48), 28299-28311.
[http://dx.doi.org/10.1039/C9RA05934B] [PMID: 35530460]
[95]
Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and limitations of dendrimers in biomedicine. Molecules, 2020, 25(17), 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[96]
Schwendeman, S.P.; Shah, R.B.; Bailey, B.A.; Schwendeman, A.S. Injectable controlled release depots for large molecules. J. Control. Release, 2014, 190, 240-253.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.057] [PMID: 24929039]
[97]
Lee, S.; Trinh, T.H.T.; Yoo, M.; Shin, J.; Lee, H.; Kim, J.; Hwang, E.; Lim, Y.B.; Ryou, C. Self-assembling peptides and their application in the treatment of diseases. Int. J. Mol. Sci., 2019, 20(23), 5850.
[http://dx.doi.org/10.3390/ijms20235850] [PMID: 31766475]
[98]
Machado, L.F.A.; Filho, L.R.G.; Santos, F.A.A.; Siravenha, L.Q.; Silva, A.N.M.R.; Queiroz, M.A.F.; Vallinoto, A.C.R.; Ishak, M.O.G.; Ishak, R. Bioprospection and selection of peptides by phage display as novel epitope-based diagnostic probes for serological detection of HTLV-1 and use in future vaccines. Front. Med., 2022, 9, 884738.
[http://dx.doi.org/10.3389/fmed.2022.884738] [PMID: 35755076]
[99]
Fan, H.; Liu, H.; Zhang, Y.; Zhang, S.; Liu, T.; Wang, D. Review on plant-derived bioactive peptides: Biological activities, mechanism of action and utilizations in food development. Journal of Future Foods, 2022, 2(2), 143-159.
[http://dx.doi.org/10.1016/j.jfutfo.2022.03.003]
[100]
Liu, M.; Fang, X.; Yang, Y.; Wang, C. Peptide-Enabled Targeted Delivery Systems for Therapeutic Applications. Front. Bioeng. Biotechnol., 2021, 9, 701504.
[http://dx.doi.org/10.3389/fbioe.2021.701504] [PMID: 34277592]
[101]
Mak, I.W.Y.; Evaniew, N.; Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. Am. J. Transl. Res., 2014, 6(2), 114-118.
[PMID: 24489990]
[102]
Vanneman, M.; Dranoff, G. Combining immunotherapy and targeted therapies in cancer treatment. Nat. Rev. Cancer, 2012, 12(4), 237-251.
[http://dx.doi.org/10.1038/nrc3237] [PMID: 22437869]
[103]
Wang, J.; Tan, G.J.; Han, L.N.; Bai, Y.Y.; He, M.; Liu, H.B. Novel biomarkers for cardiovascular risk prediction. J. Geriatr. Cardiol., 2017, 14(2), 135-150.
[http://dx.doi.org/10.11909/J.ISSN.1671-5411.2017.02.008] [PMID: 28491088]
[104]
Gentilucci, L.; De Marco, R.; Cerisoli, L. Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr. Pharm. Des., 2010, 16(28), 3185-3203.
[http://dx.doi.org/10.2174/138161210793292555] [PMID: 20687878]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy