Generic placeholder image

Current Drug Discovery Technologies

Editor-in-Chief

ISSN (Print): 1570-1638
ISSN (Online): 1875-6220

Review Article

Comprehensive Review on Drug-target Interaction Prediction - Latest Developments and Overview

Author(s): Ali K. Abdul Raheem* and Ban N. Dhannoon

Volume 21, Issue 2, 2024

Published on: 06 September, 2023

Article ID: e010923220652 Pages: 12

DOI: 10.2174/1570163820666230901160043

Price: $65

Abstract

Drug-target interactions (DTIs) are an important part of the drug development process. When the drug (a chemical molecule) binds to a target (proteins or nucleic acids), it modulates the biological behavior/function of the target, returning it to its normal state. Predicting DTIs plays a vital role in the drug discovery (DD) process as it has the potential to enhance efficiency and reduce costs. However, DTI prediction poses significant challenges and expenses due to the time-consuming and costly nature of experimental assays. As a result, researchers have increased their efforts to identify the association between medications and targets in the hopes of speeding up drug development and shortening the time to market. This paper provides a detailed discussion of the initial stage in drug discovery, namely drug–target interactions. It focuses on exploring the application of machine learning methods within this step. Additionally, we aim to conduct a comprehensive review of relevant papers and databases utilized in this field. Drug target interaction prediction covers a wide range of applications: drug discovery, prediction of adverse effects and drug repositioning. The prediction of drugtarget interactions can be categorized into three main computational methods: docking simulation approaches, ligand-based methods, and machine-learning techniques.

Graphical Abstract

[1]
Gasteiger J, Ed. Handbook of Chemoinformatics: From Data to Knowledge. Wiley-VCH 2003.
[http://dx.doi.org/10.1002/9783527618279]
[2]
Varnek A, Baskin II. Chemoinformatics as a theoretical chemistry discipline. Mol Inform 2011; 30(1): 20-32.
[http://dx.doi.org/10.1002/minf.201000100] [PMID: 27467875]
[3]
Bajorath JR, Ed. Chemoinformatics and Computational Chemical Biology. Humana Press 2011.
[http://dx.doi.org/10.1007/978-1-60761-839-3]
[4]
Kapetanovic IM. Computer-aided drug discovery and development (CADDD): In silico-chemico-biological approach. Chem Biol Interact 2008; 171(2): 165-76.
[http://dx.doi.org/10.1016/j.cbi.2006.12.006] [PMID: 17229415]
[5]
Patel L, Shukla T, Huang X, Ussery DW, Wang S. Machine learning methods in drug discovery. Molecules 2020; 25(22): 5277.
[http://dx.doi.org/10.3390/molecules25225277] [PMID: 33198233]
[6]
Wishart DS. Introduction to cheminformatics. Curr Protoc Bioinformatics 2007; Chapter 14: Unit 14.1.
[http://dx.doi.org/10.1002/0471250953.bi1401s18]
[7]
US Food and Drug Administration. The drug development process. 2018. Available from: https://www.fda.gov/patients/learnabout-drug-and-device-approvals/drug-development-process
[8]
Helleboid S, Haug C, Lamottke K, et al. The identification of naturally occurring neoruscogenin as a bioavailable, potent, and high-affinity agonist of the nuclear receptor RORα (NR1F1). SLAS Discov 2014; 19(3): 399-406.
[http://dx.doi.org/10.1177/1087057113497095] [PMID: 23896689]
[9]
US Food and Drug Administration. The drug development process: Step 3: Clinical research. 2018. Available from: https://www.fda.gov/patients/drug-developmentprocess/step-3-clinical-research (Accessed: December 18, 2019).
[10]
Duelen R, Corvelyn M, Tortorella I, Leonardi L, Chai Y, Sampaolesi M. Medicinal biotechnology for disease modeling, clinical therapy, and drug discovery and development. In: Introduction to Biotech Entrepreneurship: From Idea to Business. Cham: Springer 2019.
[11]
Klebe G. Virtual ligand screening: Strategies, perspectives and limitations. Drug Discov Today 2006; 11(13-14): 580-94.
[http://dx.doi.org/10.1016/j.drudis.2006.05.012] [PMID: 16793526]
[12]
Dickson M, Gagnon JP. Key factors in the rising cost of new drug discovery and development. Nat Rev Drug Discov 2004; 3(5): 417-29.
[http://dx.doi.org/10.1038/nrd1382] [PMID: 15136789]
[13]
Paul SM, Mytelka DS, Dunwiddie CT, et al. How to improve R&D productivity: The pharmaceutical industry’s grand challenge. Nat Rev Drug Discov 2010; 9(3): 203-14.
[http://dx.doi.org/10.1038/nrd3078] [PMID: 20168317]
[14]
Sachdev K, Gupta MK. A comprehensive review of feature based methods for drug target interaction prediction. J Biomed Inform 2019; 93: 103159.
[http://dx.doi.org/10.1016/j.jbi.2019.103159] [PMID: 30926470]
[15]
Pliakos K, Vens C. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction. BMC Bioinformatics 2020; 21(1): 49.
[http://dx.doi.org/10.1186/s12859-020-3379-z] [PMID: 32033537]
[16]
Shin B, Park S, Kang K, Ho JC. Self-attention based molecule representation for predicting drug-target interaction. Proceedings of the Machine Learning for Healthcare Conference, MLHC 2019. 9-10 Aug; Ann Arbor, MI, USA. 2019; pp. 230-48.
[17]
Wang L, You ZH, Chen X, et al. A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network. J Comput Biol 2018; 25(3): 361-73.
[http://dx.doi.org/10.1089/cmb.2017.0135] [PMID: 28891684]
[18]
Beck BR, Shin B, Choi Y, Park S, Kang K. Predicting commercially available antiviral drugs that may act on the novel coronavirus (SARS-CoV-2) through a drug-target interaction deep learning model. Comput Struct Biotechnol J 2020; 18: 784-90.
[http://dx.doi.org/10.1016/j.csbj.2020.03.025] [PMID: 32280433]
[19]
Nguyen T, Le H, Quinn TP, Nguyen T, Le TD, Venkatesh S. GraphDTA: Predicting drug–target binding affinity with graph neural networks. Bioinformatics 2021; 37(8): 1140-7.
[http://dx.doi.org/10.1093/bioinformatics/btaa921] [PMID: 33119053]
[20]
Ezzat A, Wu M, Li XL, Kwoh CK. Computational prediction of drug–target interactions using chemogenomic approaches: An empirical survey. Brief Bioinform 2019; 20(4): 1337-57.
[http://dx.doi.org/10.1093/bib/bby002] [PMID: 29377981]
[21]
Dudley JT, Deshpande T, Butte AJ. Exploiting drug-disease relationships for computational drug repositioning. Brief Bioinform 2011; 12(4): 303-11.
[http://dx.doi.org/10.1093/bib/bbr013] [PMID: 21690101]
[22]
Lounkine E, Keiser MJ, Whitebread S, et al. Large-scale prediction and testing of drug activity on side-effect targets. Nature 2012; 486(7403): 361-7.
[http://dx.doi.org/10.1038/nature11159] [PMID: 22722194]
[23]
Yao L, Evans JA, Rzhetsky A. Novel opportunities for computational biology and sociology in drug discovery. Trends Biotechnol 2010; 28(4): 161-70.
[http://dx.doi.org/10.1016/j.tibtech.2010.01.004] [PMID: 20349528]
[24]
Chen H, Zhang Z. A semi-supervised method for drug-target interaction prediction with consistency in networks. PLoS One 2013; 8(5): e62975.
[http://dx.doi.org/10.1371/journal.pone.0062975] [PMID: 23667553]
[25]
Frolov A, Chahwan S, Ochs M, et al. Response markers and the molecular mechanisms of action of Gleevec in gastrointestinal stromal tumors. Mol Cancer Ther 2003; 2(8): 699-709.
[PMID: 12939459]
[26]
Giacomini KM, Krauss RM, Roden DM, Eichelbaum M, Hayden MR, Nakamura Y. When good drugs go bad. Nature 2007; 446(7139): 975-7.
[http://dx.doi.org/10.1038/446975a] [PMID: 17460642]
[27]
Pauwels E, Stoven V, Yamanishi Y. Predicting drug side-effect profiles: A chemical fragment-based approach. BMC Bioinformatics 2011; 12(1): 169.
[http://dx.doi.org/10.1186/1471-2105-12-169] [PMID: 21586169]
[28]
Ezzat A, Wu M, Li XL, Kwoh CK, Kwoh CK. Drug-target interaction prediction via class imbalance-aware ensemble learning. BMC Bioinformatics 2016; 17(S19): 509.
[http://dx.doi.org/10.1186/s12859-016-1377-y] [PMID: 28155697]
[29]
Li Y, Huang YA, You ZH, Li LP, Wang Z. Drug-target interaction prediction based on drug fingerprint information and protein sequence. Molecules 2019; 24(16): 2999.
[http://dx.doi.org/10.3390/molecules24162999] [PMID: 31430892]
[30]
Ballesteros J, Palczewski K. G protein-coupled receptor drug discovery: Implications from the crystal structure of rhodopsin. Curr Opin Drug Discov Devel 2001; 4(5): 561-74.
[PMID: 12825452]
[31]
Hansch C, Maloney PP, Fujita T, Muir RM. Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients. Nature 1962; 194(4824): 178-80.
[http://dx.doi.org/10.1038/194178b0]
[32]
Chen R, Liu X, Jin S, Lin J, Liu J. Machine learning for drug-target interaction prediction. Molecules 2018; 23(9): 2208.
[http://dx.doi.org/10.3390/molecules23092208] [PMID: 30200333]
[33]
Ye Q, Zhang X, Lin X. Drug-target interaction prediction via multiple classification strategies. BMC Bioinformatics 2021; 22(S12): 461.
[http://dx.doi.org/10.1186/s12859-021-04366-3] [PMID: 35057737]
[34]
He T, Heidemeyer M, Ban F, Cherkasov A, Ester M. SimBoost: A read-across approach for predicting drug–target binding affinities using gradient boosting machines. J Cheminform 2017; 9(1): 24.
[http://dx.doi.org/10.1186/s13321-017-0209-z] [PMID: 29086119]
[35]
Wu Z, Li W, Liu G, Tang Y. Network-based methods for prediction of drug-target interactions. Front Pharmacol 2018; 9: 1134.
[http://dx.doi.org/10.3389/fphar.2018.01134] [PMID: 30356768]
[36]
Xuan P, Sun C, Zhang T, Ye Y, Shen T, Dong Y. Gradient boosting decision tree-based method for predicting interactions between target genes and drugs. Front Genet 2019; 10: 459.
[http://dx.doi.org/10.3389/fgene.2019.00459] [PMID: 31214240]
[37]
Tabei Y, Kotera M, Sawada R, Yamanishi Y. Network-based characterization of drug-protein interaction signatures with a space-efficient approach. BMC Syst Biol 2019; 13(S2): 39.
[http://dx.doi.org/10.1186/s12918-019-0691-1] [PMID: 30953486]
[38]
de Souza JG, Fernandes MAC, de Melo Barbosa R. A novel deep neural network technique for drug-target interaction. Pharmaceutics 2022; 14(3): 625.
[http://dx.doi.org/10.3390/pharmaceutics14030625] [PMID: 35336000]
[39]
ChEMBL. Available from: https://www.ebi.ac.uk/chembl/
[41]
Building the foundation for better health outcomes. Available from: http://www.drugbank.ca
[42]
KEGG: Kyoto Encyclopedia of Genes and Genomes. Available from: http://www.genome.jp/kegg
[43]
STITCH. Available from: http://stitch.embl.de/
[45]
BRENDA. Available from: http://www.brenda-enzymes.org/
[46]
Pubchem. Available from: https://pubchem.ncbi.nlm.nih.gov/
[47]
Binding DB. Available from: http://www.bindingdb.org/bind
[48]
Shim J, Hong ZY, Sohn I, Hwang C. Prediction of drug–target binding affinity using similarity-based convolutional neural network. Sci Rep 2021; 11(1): 4416.
[http://dx.doi.org/10.1038/s41598-021-83679-y] [PMID: 33627791]
[49]
Lee I, Nam H. Sequence-based prediction of protein binding regions and drug-target interactions. J Cheminform 2022; 14(1): 5.
[http://dx.doi.org/10.1186/s13321-022-00584-w] [PMID: 35135622]
[50]
Hu S, Zhang C, Chen P, Gu P, Zhang J, Wang B. Predicting drug-target interactions from drug structure and protein sequence using novel convolutional neural networks. BMC Bioinformatics 2019; 20(S25): 689.
[http://dx.doi.org/10.1186/s12859-019-3263-x] [PMID: 31874614]
[51]
You J, McLeod RD, Hu P. Predicting drug-target interaction network using deep learning model. Comput Biol Chem 2019; 80: 90-101.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.03.016] [PMID: 30939415]
[52]
Lee CY, Chen YPP. Prediction of drug adverse events using deep learning in pharmaceutical discovery. Brief Bioinform 2021; 22(2): 1884-901.
[http://dx.doi.org/10.1093/bib/bbaa040] [PMID: 32349125]
[53]
Huang K, Xiao C, Glass LM, Sun J. MolTrans: Molecular interaction transformer for drug–target interaction prediction. Bioinformatics 2021; 37(6): 830-6.
[http://dx.doi.org/10.1093/bioinformatics/btaa880] [PMID: 33070179]
[54]
Bagherian M, Sabeti E, Wang K, Sartor MA, Nikolovska-Coleska Z, Najarian K. Machine learning approaches and databases for prediction of drug–target interaction: A survey paper. Brief Bioinform 2021; 22(1): 247-69.
[http://dx.doi.org/10.1093/bib/bbz157] [PMID: 31950972]
[55]
Liu B, Papadopoulos D, Malliaros FD, Tsoumakas G, Papadopoulos AN. Multiple similarity drug-target interaction prediction with random walks and matrix factorization. arXiv 2022; 2022.
[56]
Öztürk H, Özgür A, Ozkirimli E. DeepDTA: Deep drug–target binding affinity prediction. Bioinformatics 2018; 34(17): i821-9.
[http://dx.doi.org/10.1093/bioinformatics/bty593] [PMID: 30423097]
[57]
Sachdev K, Gupta MK. A hybrid ensemble‐based technique for predicting drug-target interactions. Chem Biol Drug Des 2020; 96(6): 1447-55.
[http://dx.doi.org/10.1111/cbdd.13753] [PMID: 32638508]
[58]
Xu L, Ru X, Song R. Application of machine learning for drug-target interaction prediction. Front Genet 2021; 12: 680117.
[http://dx.doi.org/10.3389/fgene.2021.680117] [PMID: 34234813]
[59]
Lee CY, Chen YPP. Descriptive prediction of drug side‐effects using a hybrid deep learning model. Int J Intell Syst 2021; 36(6): 2491-510.
[http://dx.doi.org/10.1002/int.22389]
[60]
Liu B, Pliakos K, Vens C, Tsoumakas G. Drug-target interaction prediction via an ensemble of weighted nearest neighbors with interaction recovery. Appl Intell 2022; 52: 3705-27.
[61]
Mukherjee S, Ghosh M, Basuchowdhuri P. Deep Graph Convolutional Network and LSTM based approach for predicting drugtarget binding affinity. arXiv 2022; 06872.
[http://dx.doi.org/10.1137/1.9781611977172.82]
[62]
Ye Q, Hsieh CY, Yang Z, et al. A unified drug-target interaction prediction framework based on knowledge graph and recommendation system. Nat Commun 2021; 12(1): 6775.
[http://dx.doi.org/10.1038/s41467-021-27137-3] [PMID: 34811351]
[63]
Torng W, Altman RB. Graph convolutional neural networks for predicting drug-target interactions. J Chem Inf Model 2019; 59(10): 4131-49.
[http://dx.doi.org/10.1021/acs.jcim.9b00628] [PMID: 31580672]
[64]
Shao K, Zhang Z, He S, Bo XC. DTIGCCN: Prediction of drugtarget interactions based on GCN and CNN. IEEE 32nd International Conference on Tools with Artificial Intelligence (ICTAI). 09-11 Nov; Baltimore, MD, USA. 2020.
[65]
Tsubaki M, Tomii K, Sese J. Compound–protein interaction prediction with end-to-end learning of neural networks for graphs and sequences. Bioinformatics 2019; 35(2): 309-18.
[http://dx.doi.org/10.1093/bioinformatics/bty535] [PMID: 29982330]
[66]
Zhang W, Chen Y, Li D. Drug-target interaction prediction through label propagation with linear neighborhood information. Molecules 2017; 22(12): 2056.
[http://dx.doi.org/10.3390/molecules22122056] [PMID: 29186828]
[67]
Meng FR, You ZH, Chen X, Zhou Y, An JY. Prediction of drug-target interaction networks from the integration of protein sequences and drug chemical structures. Molecules 2017; 22(7): 1119.
[http://dx.doi.org/10.3390/molecules22071119] [PMID: 28678206]
[68]
Ranjan A, Shukla S, Datta D, Misra R. Generating novel molecule for target protein (SARS-CoV-2) using drug–target interaction based on graph neural network. Netw Model Anal Health Inform Bioinform 2022; 11(1): 6.
[http://dx.doi.org/10.1007/s13721-021-00351-1] [PMID: 34956815]
[69]
Thafar MA, Olayan RS, Ashoor H, et al. DTiGEMS+: Drug-target interaction prediction using graph embedding, graph mining, and similarity-based techniques. J Cheminform 2020; 12(1): 44.
[http://dx.doi.org/10.1186/s13321-020-00447-2] [PMID: 33431036]
[70]
Wen M, Zhang Z, Niu S, et al. Deep-learning-based drug-target interaction prediction. J Proteome Res 2017; 16(4): 1401-9.
[http://dx.doi.org/10.1021/acs.jproteome.6b00618] [PMID: 28264154]
[71]
Chen X, Yan CC, Zhang X, et al. Drug–target interaction prediction: Databases, web servers and computational models. Brief Bioinform 2016; 17(4): 696-712.
[http://dx.doi.org/10.1093/bib/bbv066] [PMID: 26283676]
[72]
Zhao T, Hu Y, Valsdottir LR, Zang T, Peng J. Identifying drug-target interactions based on graph convolutional network and deep neural network. Brief Bioinform 2021; 22(2): 2141-50.
[http://dx.doi.org/10.1093/bib/bbaa044] [PMID: 32367110]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy