Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Research Article

In vitro Study on Antioxidant and Antiglycation Activities, and Molecular Docking of Moroccan Medicinal Plants for Diabetes

Author(s): Abdnim Rhizlan, Elbouzidi Amine, Hayat Ouassou, Amal Elrherabi, Ali Berraaouan, Abdelkhaleq Legssyer, Abderrahim Ziyyat, Hassane Mekhfi and Mohamed Bnouham*

Volume 10, Issue 7, 2024

Published on: 08 September, 2023

Article ID: e310823220581 Pages: 14

DOI: 10.2174/2215083810666230831154738

Price: $65

Abstract

Background: Moroccan medicinal plants with a historical usage to treat diabetes have undergone analysis to explore their potential anti-glycation and antioxidant through in vitro experiments. These investigations were complemented by molecular socking.

Methods: The present study examined the in-vitro antioxidant and antiglycation properties of six aqueous extracts from six medicinal plants (Ammodaucus leucotrichus, Thymelaea hirsuta, Arbutus unedo, Urtica dioica, Ptychotis verticilata and Caralluma europaea), andtwo seeds oils from Argania spinosa and Opuntia dillenii. The antioxidant activity was performed by using DPPH Radical scavenging activity test and β-Carotene/Linoleic Acid β-Bleaching Assay. In addition, the antiglycation activity was detected by using hemoglobin protein model.

Results: All studied plants extractshave shown potent antioxidant and antiglycation activity Furthermore, to confirm the in silico antiglycation activity of the selected medicinal plants, molecular docking techniques were used assuming that binding energy decreases as compound affinity increases, the best molecules responsible for the remarkable antiglycation activity were highlighted.

Conclusion: Antidiabetic herbal medicines are responsible for inhibition of oxidative activity and glycation. The molecular docking analysis, which showed the following molecules, Catechein, Kaempferol-O-acetylhexoside, Luteolin, Luteolin-7-O-glucoside, Quercetin, and Zeaxanthin were found to have a high affinity to AGEs receptor and a potent inhibitory activity.

[1]
Coskun O, Kanter M, Korkmaz A, Oter S. Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and? -cell damage in rat pancreas. Pharmacol Res 2005; 51(2): 117-23.
[http://dx.doi.org/10.1016/j.phrs.2004.06.002] [PMID: 15629256]
[2]
Kim YM, Jeong YK, Wang MH, Lee WY, Rhee HI. Inhibitory effect of pine extract on α-glucosidase activity and postprandial hyperglycemia. Nutrition 2005; 21(6): 756-61.
[http://dx.doi.org/10.1016/j.nut.2004.10.014] [PMID: 15925302]
[3]
Saeedi P. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. In: 2019; Vol. 157: p. 107843.
[http://dx.doi.org/10.1016/j.diabres.2019.107843]
[4]
Cordain L, Eaton SB, Sebastian A, et al. Origins and evolution of the Western diet: Health implications for the 21st century1,2. Am J Clin Nutr 2005; 81(2): 341-54.
[http://dx.doi.org/10.1093/ajcn.81.2.341] [PMID: 15699220]
[5]
Sell DR, Monnier VM. Molecular basis of arterial stiffening: Role of glycation - a mini-review. Gerontology 2012; 58(3): 227-37.
[http://dx.doi.org/10.1159/000334668] [PMID: 22222677]
[6]
Rahbar S, Blumenfeld O, Ranney HM. Studies of an unusual hemoglobin in patients with diabetes mellitus. Biochem Biophys Res Commun 1969; 36(5): 838-43.
[http://dx.doi.org/10.1016/0006-291X(69)90685-8] [PMID: 5808299]
[7]
Cerami A, Vlassara H, Brownlee M. Role of nonenzymatic glycosylation in atherogenesis. J Cell Biochem 1986; 30(2): 111-20.
[http://dx.doi.org/10.1002/jcb.240300203] [PMID: 3517022]
[8]
Sarmah S, Roy AS. A review on prevention of glycation of proteins: Potential therapeutic substances to mitigate the severity of diabetes complications. Int J Biol Macromol 2022; 195: 565-88.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.12.041]
[9]
Monnier VM, Kohn RR, Cerami A. Accelerated age-related browning of human collagen in diabetes mellitus. Proc Natl Acad Sci 1984; 81(2): 583-7.
[http://dx.doi.org/10.1073/pnas.81.2.583] [PMID: 6582514]
[10]
Yamamoto M, Sugimoto T. Advanced glycation end products, diabetes, and bone strength. Curr Osteoporos Rep 2016; 14(6): 320-6.
[http://dx.doi.org/10.1007/s11914-016-0332-1] [PMID: 27704396]
[11]
Singh VP, Bali A, Singh N, Jaggi AS. Advanced glycation end products and diabetic complications. Korean J Physiol Pharmacol 2014; 18(1): 1-14.
[http://dx.doi.org/10.4196/kjpp.2014.18.1.1] [PMID: 24634591]
[12]
Yuan Y, Sun H, Sun Z. Advanced glycation end products (AGEs) increase renal lipid accumulation: A pathogenic factor of diabetic nephropathy (DN). Lipids Health Dis 2017; 16(1): 126.
[http://dx.doi.org/10.1186/s12944-017-0522-6] [PMID: 28659153]
[13]
Peng X, Zheng Z, Cheng K-W, et al. Inhibitory effect of mung bean extract and its constituents vitexin and isovitexin on the formation of advanced glycation endproducts. Food Chem 2008; 106(2): 475-81.
[http://dx.doi.org/10.1016/j.foodchem.2007.06.016]
[14]
Ziyyat A, Legssyer A, Mekhfi H, Dassouli A, Serhrouchni M, Benjelloun W. Phytotherapy of hypertension and diabetes in oriental Morocco. J Ethnopharmacol 1997; 58(1): 45-54.
[http://dx.doi.org/10.1016/S0378-8741(97)00077-9] [PMID: 9324004]
[15]
Akrout A, Gonzalez LA, El Jani H, Madrid PC. Antioxidant and antitumor activities of Artemisia campestris and Thymelaea hirsuta from southern Tunisia. Food Chem Toxicol 2011; 49(2): 342-7.
[http://dx.doi.org/10.1016/j.fct.2010.11.003] [PMID: 21075159]
[16]
Oudghiri M, Issiki Z, Moundir C, et al. Toxicological evaluation of the aqueous extract of Caralluma europaea and its immunomodulatory and inflammatory activities. Pharmacognosy Res 2017; 9(4): 390-5.
[http://dx.doi.org/10.4103/pr.pr_24_17] [PMID: 29263634]
[17]
Ouassou H, Bouhrim M, Kharchoufa L, et al. Caralluma europaea (Guss) N.E.Br.: A review on ethnomedicinal uses, phytochemistry, pharmacological activities, and toxicology. J Ethnopharmacol 2021; 273: 113769.
[http://dx.doi.org/10.1016/j.jep.2020.113769] [PMID: 33412248]
[18]
Ouassou H, Bouhrim M, Bencheikh N, et al. In vitro antioxidant properties, glucose-diffusion effects, α-amylase inhibitory activity, and antidiabetogenic effects of C. Europaea extracts in experimental animals. Antioxidants 2021; 10(11): 1747.
[http://dx.doi.org/10.3390/antiox10111747] [PMID: 34829618]
[19]
Sadaoui N, Bec N, Barragan-Montero V, et al. The essential oil of Algerian Ammodaucus leucotrichus Coss. & Dur. and its effect on the cholinesterase and monoamine oxidase activities. Fitoterapia 2018; 130: 1-5.
[http://dx.doi.org/10.1016/j.fitote.2018.07.015] [PMID: 30056187]
[20]
Jouad H, Haloui M, Rhiouani H, El Hilaly J, Eddouks M. Ethnobotanical survey of medicinal plants used for the treatment of diabetes, cardiac and renal diseases in the North centre region of Morocco (Fez–Boulemane). J Ethnopharmacol 2001; 77(2-3): 175-82.
[http://dx.doi.org/10.1016/S0378-8741(01)00289-6] [PMID: 11535361]
[21]
Dhouibi R, Affes H, Ben Salem M, et al. Screening of pharmacological uses of Urtica dioica and others benefits. Prog Biophys Mol Biol 2020; 150: 67-77.
[http://dx.doi.org/10.1016/j.pbiomolbio.2019.05.008] [PMID: 31163183]
[22]
Bellakhdar J. Pharmacopée marocaine traditionnelle. Ibis press 1997.
[23]
El-Hilaly J, Hmammouchi M, Lyoussi B. Ethnobotanical studies and economic evaluation of medicinal plants in Taounate province (Northern Morocco). J Ethnopharmacol 2003; 86(2-3): 149-58.
[http://dx.doi.org/10.1016/S0378-8741(03)00012-6] [PMID: 12738079]
[24]
Qiu YK, Zhao YY, Dou DQ, Xu BX, Liu K. Two new α-pyrones and other components from the cladodes of Opuntia dillenii. Arch Pharm Res 2007; 30(6): 665-9.
[http://dx.doi.org/10.1007/BF02977624] [PMID: 17679540]
[25]
Barkaoui M, Katiri A, Boubaker H, Msanda F. Ethnobotanical survey of medicinal plants used in the traditional treatment of diabetes in Chtouka Ait Baha and Tiznit (Western Anti-Atlas), Morocco. J Ethnopharmacol 2017; 198: 338-50.
[http://dx.doi.org/10.1016/j.jep.2017.01.023] [PMID: 28109915]
[26]
de la Rosa LA, Alvarez-Parrilla E, Shahidi F. Phenolic compounds and antioxidant activity of kernels and shells of Mexican pecan (Carya illinoinensis). J Agric Food Chem 2011; 59(1): 152-62.
[http://dx.doi.org/10.1021/jf1034306] [PMID: 21138247]
[27]
Herrera-Calderon O, Chacaltana-Ramos LJ, Huayanca-Gutiérrez IC, Algarni MA, Alqarni M, Batiha GES. Chemical constituents, in vitro antioxidant activity and in silico study on NADPH oxidase of Allium sativum L.(garlic) essential oil. Antioxidants 2021; 10(11): 1844.
[http://dx.doi.org/10.3390/antiox10111844] [PMID: 34829715]
[28]
Nair SS, Kavrekar V, Mishra A. Evaluation of in vitro antidiabetic activity of selected plant extracts. Int J Pharm Sci Invent 2013; 2(4): 12-9.
[29]
Kandsi F, Elbouzidi A, Lafdil FZ, et al. Antibacterial and antioxidant activity of Dysphania ambrosioides (L.) mosyakin and clemants essential oils: Experimental and computational approaches. Antibiotics 2022; 11(4): 482.
[http://dx.doi.org/10.3390/antibiotics11040482] [PMID: 35453233]
[30]
Anitha K, Gopi G, Girish SKP. Molecular docking study on dipeptidyl peptidase-4 inhibitors. Int J Res Dev Pharm Life Sci 2013; 2: 602-10.
[31]
Ammirati MJ, Andrews KM, Boyer DD, et al. (3,3-Difluoro-pyrrolidin-1-yl)-[(2S,4S)-(4-(4-pyrimidin-2-yl-piperazin-1-yl)-pyrrolidin-2-yl]-methanone: A potent, selective, orally active dipeptidyl peptidase IV inhibitor. Bioorg Med Chem Lett 2009; 19(7): 1991-5.
[http://dx.doi.org/10.1016/j.bmcl.2009.02.041] [PMID: 19275964]
[32]
Sinurat MR, Rahmayanti Y, Rizarullah R. Uji Aktivitas Antidiabetes Senyawa Baru Daun Yakon (Smallanthus sonchifolius) sebagaiInhibitor Enzim DPP-4: Studi in silico. J IPA pembelajaran IPA 2021; 5(2): 138-50.
[http://dx.doi.org/10.24815/jipi.v5i2.20068]
[33]
Eleftheriou P, Petrou A, Geronikaki A, Liaras K, Dirnali S, Anna M. Prediction of enzyme inhibition and mode of inhibitory action based on calculation of distances between hydrogen bond donor/acceptor groups of the molecule and docking analysis: An application on the discovery of novel effective PTP1B inhibitors. SAR QSAR Environ Res 2015; 26(7-9): 557-76.
[http://dx.doi.org/10.1080/1062936X.2015.1074939] [PMID: 26294069]
[34]
Ha MT, Park DH, Shrestha S, et al. PTP1B inhibitory activity and molecular docking analysis of stilbene derivatives from the rhizomes of Rheum undulatum L. Fitoterapia 2018; 131(September): 119-26.
[http://dx.doi.org/10.1016/j.fitote.2018.10.020] [PMID: 30352293]
[35]
Guenaou I, Nait Irahal I, Errami A, Lahlou FA, Hmimid F, Bourhim N. Bioactive compounds from ephedra fragilis: Extraction optimization, chemical characterization, antioxidant and antiglycation activities. Molecules 2021; 26(19): 5998.
[http://dx.doi.org/10.3390/molecules26195998] [PMID: 34641538]
[36]
Twarda-Clapa A, Olczak A, Białkowska AM, Koziołkiewicz M. Advanced glycation end-products (AGEs): Formation, chemistry, classification, receptors, and diseases related to AGEs. Cells 2022; 11(8): 1312.
[http://dx.doi.org/10.3390/cells11081312] [PMID: 35455991]
[37]
Kozlyuk N, Gilston BA, Salay LE, et al. A fragment‐based approach to discovery of Receptor for Advanced Glycation End products inhibitors. Proteins 2021; 89(11): 1399-412.
[http://dx.doi.org/10.1002/prot.26162] [PMID: 34156100]
[38]
Mentlein R. Dipeptidyl-peptidase IV (CD26)-role in the inactivation of regulatory peptides. Regul Pept 1999; 85(1): 9-24.
[http://dx.doi.org/10.1016/S0167-0115(99)00089-0] [PMID: 10588446]
[39]
Singh Q. Quercetin and coumarin inhibit dipeptidyl peptidase-iv and exhibits antioxidant properties: in silico, in vitro, ex vivo. Biomolecules 2020; 10(2): 207.
[http://dx.doi.org/10.3390/biom10020207]
[40]
Bjelke JR, Christensen J, Branner S, et al. Tyrosine 547 constitutes an essential part of the catalytic mechanism of dipeptidyl peptidase IV. J Biol Chem 2004; 279(33): 34691-7.
[http://dx.doi.org/10.1074/jbc.M405400200] [PMID: 15175333]
[41]
Küllertz G, Fischer G, Barth A. [Catalytic mechanism of dipeptidyl-peptidase IV]. Acta Biol Med Ger 1978; 37(4): 559-67.
[PMID: 735626]
[42]
Genovese M, Imperatore C, Casertano M, et al. Dual targeting of PTP1B and aldose reductase with marine drug phosphoeleganin: A promising strategy for treatment of type 2 diabetes. Mar Drugs 2021; 19(10): 535.
[http://dx.doi.org/10.3390/md19100535] [PMID: 34677434]
[43]
Elchebly M. Increased insulin sensitivity and obesity resistance in mice lacking the protein tyrosine phosphatase-1B gene. Science 1999; 283(5407): 1544-8.
[http://dx.doi.org/10.1126/science.283.5407.1544]
[44]
Roy AS, Tripathy DR, Chatterjee A, Dasgupta S. A spectroscopic study of the interaction of the antioxidant naringin with bovine serum albumin. J Biophys Chem 2010; 1(3): 141-52.
[http://dx.doi.org/10.4236/jbpc.2010.13017]
[45]
Awasthi S, Saraswathi NT. Sinigrin, a major glucosinolate from cruciferous vegetables restrains non-enzymatic glycation of albumin. Int J Biol Macromol 2016; 83: 410-5.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.11.019] [PMID: 26571343]
[46]
Arfin S, Siddiqui GA, Naeem A, Moin S. Inhibition of advanced glycation end products by isoferulic acid and its free radical scavenging capacity: An in vitro and molecular docking study. Int J Biol Macromol 2018; 118(Pt B): 1479-87.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.182] [PMID: 29969636]
[47]
Rahbar S, Figarola JL. Inhibitors and breakers of advanced glycation endproducts (AGEs): A Review. Curr Med ChemImun Endoc Metab Agents 2002; 2: 135-61.
[48]
Rahbar S, Figarola JL. Novel inhibitors of advanced glycation endproducts. Arch Biochem Biophys 2003; 419(1): 63-79.
[http://dx.doi.org/10.1016/j.abb.2003.08.009] [PMID: 14568010]
[49]
Wu CH, Huang SM, Lin JA, Yen GC. Inhibition of advanced glycation endproduct formation by foodstuffs. Food Funct 2011; 2(5): 224-34.
[http://dx.doi.org/10.1039/c1fo10026b] [PMID: 21779560]
[50]
Ramakrishnan S, Sulochana KN, Punitham R. Two new functions of inositol in the eye lens: Antioxidation and antiglycation and possible mechanisms. Indian J Biochem Biophys 1999; 36(2): 129-33.
[51]
Pinelli P, Ieri F, Vignolini P, Bacci L, Baronti S, Romani A. Extraction and HPLC analysis of phenolic compounds in leaves, stalks, and textile fibers of Urtica dioica L. J Agric Food Chem 2008; 56(19): 9127-32.
[http://dx.doi.org/10.1021/jf801552d] [PMID: 18778029]
[52]
Grauso L, de Falco B, Lanzotti V, Motti R. Stinging nettle, Urtica dioica L: botanical, phytochemical and pharmacological overview. Netherlands: Springer 2020.
[53]
Borris RP, Blaskó G, Cordell GA. Ethnopharmacologic and phytochemical studies of the Thymelaeaceae. J Ethnopharmacol 1988; 24(1): 41-91.
[http://dx.doi.org/10.1016/0378-8741(88)90138-9] [PMID: 3059068]
[54]
Fonseca D. Salvador Â, Santos S, et al. Bioactive phytochemicals from wild Arbutus unedo L. Berries from different locations in portugal: Quantification of lipophilic components. Int J Mol Sci 2015; 16(12): 14194-209.
[http://dx.doi.org/10.3390/ijms160614194] [PMID: 26110390]
[55]
Zitouni H, Hssaini L, Messaoudi Z, et al. Phytochemical components and bioactivity assessment among twelve strawberry (arbutus unedo l.) genotypes growing in morocco using chemometrics. Foods 2020; 9(10): 1345.
[http://dx.doi.org/10.3390/foods9101345] [PMID: 32977623]
[56]
Ziani BEC, Barros L, Boumehira AZ, et al. Profiling polyphenol composition by HPLC-DAD-ESI/MSn and the antibacterial activity of infusion preparations obtained from four medicinal plants. Food Funct 2018; 9(1): 149-59.
[http://dx.doi.org/10.1039/C7FO01315A] [PMID: 29152635]
[57]
Ziani BEC. Detailed chemical composition and functional properties of Ammodaucus leucotrichus Cross. & Dur. and Moringa oleifera Lamarck. J Funct Foods 2019; 53: 237-47.
[http://dx.doi.org/10.1016/j.jff.2018.12.023]
[58]
Kamal R, Kharbach M, Vander Heyden Y, et al. In vivo anti‐inflammatory response and bioactive compounds’ profile of polyphenolic extracts from edible Argan oil (Argania spinosa L.), obtained by two extraction methods. J Food Biochem 2019; 43(12): e13066.
[http://dx.doi.org/10.1111/jfbc.13066] [PMID: 31573102]
[59]
Chhavi S. Plant opuntia dillenii: A review on it’s traditional uses, phytochemical and pharmacological properties. Pharm Sciense 2014; pp. 29-43.
[60]
Sadowska-Bartosz I, Bartosz G. Prevention of protein glycation by natural compounds. Molecules 2015; 20(2): 3309-34.
[http://dx.doi.org/10.3390/molecules20023309] [PMID: 25690291]
[61]
Mohamed Said R, Benmansour N. Biological activities (antioxidant and antimicrobial activity) of the aqueous extracts and essential oil of Ammoides verticillata (Nounkha). Bull Univ Agric Sci Vet Med Cluj-Napoca Anim Sci Biotechnol 2018; 75(2): 64.
[http://dx.doi.org/10.15835/buasvmcn-asb:2018.0006]
[62]
Bouhrim M, Daoudi NE, Ouassou H, et al. Phenolic content and antioxidant, antihyperlipidemic, and antidiabetogenic effects of opuntia dillenii seed oil. ScientificWorldJ 2020; 2020: 1-8.
[http://dx.doi.org/10.1155/2020/5717052] [PMID: 33082717]
[63]
Manssouri M, Znini M, Majidi L. Studies on the antioxidant activity of essential oil and various extracts of Ammodaucus leucotrichus Coss. & Dur. Fruits from Morocco. J Taibah Univ Sci 2020; 14(1): 124-30.
[http://dx.doi.org/10.1080/16583655.2019.1710394]
[64]
Dakiche H, Khali M, Boutoumi H. Phytochemical characterization and in vivo anti-inflammatory and wound-healing activities of Argania spinosa (L.) skeels seed oil. Rec Nat Prod 2017; 11(2): 171-84.
[65]
Gkogkolou P, Böhm M. Advanced glycation end products. Dermatoendocrinol 2012; 4(3): 259-70.
[http://dx.doi.org/10.4161/derm.22028] [PMID: 23467327]
[66]
Khangholi S, Majid F, Berwary N, Ahmad F, Aziz R. The mechanisms of inhibition of advanced glycation end products formation through polyphenols in hyperglycemic condition. Planta Med 2015; 82(01/02): 32-45.
[http://dx.doi.org/10.1055/s-0035-1558086] [PMID: 26550791]
[67]
Yeh W-J, Hsia S-M, Lee W-H, Wu C-H. Polyphenols with antiglycation activity and mechanisms of action: A review of recent findings. Yao Wu Shi Pin Fen Xi 2017; 25(1): 84-92.
[PMID: 28911546]
[68]
Ho SC, Wu SP, Lin SM, Tang YL. Comparison of anti-glycation capacities of several herbal infusions with that of green tea. Food Chem 2010; 122(3): 768-74.
[http://dx.doi.org/10.1016/j.foodchem.2010.03.051]
[69]
Ravan A, Shafiei G, Eftekharian M, et al. Inhibition of albumin glycation at different stages by four anti-diabetic plant extracts correlates with polyphenols and antioxidant capacity in vitro. Br J Pharm Res 2016; 12(2): 1-8.
[http://dx.doi.org/10.9734/BJPR/2016/25898]
[70]
Grzegorczyk-Karolak I, Gołąb K, Gburek J, Wysokińska H, Matkowski A. Inhibition of advanced glycation end-product formation and antioxidant activity by extracts and polyphenols from Scutellaria alpina L. and S. altissima L. Molecules 2016; 21(6): 739.
[http://dx.doi.org/10.3390/molecules21060739] [PMID: 27314314]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy