Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Synthesis and Antibacterial Activity of Ultrasmall Silver Nanoparticles by Pulsed Laser Ablation in Deionized Water

Author(s): Sarwin Yaseen Hussein* and Tariq Abdul-Hameed Abbas

Volume 20, Issue 3, 2024

Published on: 11 October, 2023

Page: [409 - 419] Pages: 11

DOI: 10.2174/1573413719666230831152658

open access plus

Abstract

Background: The main objective of this work is the synthesis and evaluation of silver nanoparticles (Ag NPs) by using pulsed laser ablation of a silver (Ag) target in deionized water and examining their antibacterial activity.

Methods: Colloidal solutions of silver nanoparticles were prepared with different pulsed laser energies (620, 880, and 1000) mJ of wavelength 1064 nm and frequency 10 Hz. To determine their structure, optical, morphology, elemental composition, and infrared spectra, the synthesized Ag NPs were characterized using various high-throughput analytical techniques such as (UVVis) spectroscopy, transmission electron microgram (TEM), electron dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectra, and Zeta potential.

Results: The results show that the properties of synthesized Ag NPs depend much more on the laser energy. The laser energy can be used to control the properties of the prepared nanoparticles. Uniform distributions of spherical ultrasmall Ag NPs with an average size of (3) nm were obtained suspended in deionized water, which is the most effective size for antibacterial activity. However, the result indicated that the ablated Ag NPs were stable for 4 months in deionized water. The antibacterial activity of the colloidal solution of synthesized Ag NPs against Gramnegative Escherichia coli (E. coli) and Gram-positive Staphylococcus aureus (S. aureus) bacteria was then examined using the agar-well diffusion method.

Conclusion: It was found that the prepared nanoparticles exhibited strong activity against E. coli and S. aureus bacteria growth. The average zones of inhibition of Ag NPs were found to be about (26) mm for E. coli and (32) mm for S. aureus bacteria.

« Previous
Graphical Abstract

[1]
Bali, R.; Razak, N.; Lumb, A.; Harris, A.T. The synthesis of metallic nanoparticles inside live plants. 2006International Conference on Nanoscience and Nanotechnology, Brisbane, QLD, Australia03-07 July2006, p. 1.
[http://dx.doi.org/10.1109/ICONN.2006.340592]
[2]
Sudakar, C.; Dixit, A.; Regmi, R.; Naik, R.; Lawes, G.; Naik, V.M.; Vaishnava, P.P.; Toti, U.; Panyam, J. Fe3O4 incorporated AOT-alginate nanoparticles for drug delivery. IEEE Trans. Magn., 2008, 44(11), 2800-2803.
[http://dx.doi.org/10.1109/TMAG.2008.2001324]
[3]
Pugazhendhi, A.; Prabakar, D.; Jacob, J.M.; Karuppusamy, I.; Saratale, R.G. Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb. Pathog., 2018, 114, 41-45.
[http://dx.doi.org/10.1016/j.micpath.2017.11.013] [PMID: 29146498]
[4]
Shukla, A.K.; Iravani, S. Metallic nanoparticles: Green synthesis and spectroscopic characterization. Environ. Chem. Lett., 2017, 15(2), 223-231.
[http://dx.doi.org/10.1007/s10311-017-0618-2]
[5]
Nguyen, T.H.A.; Nguyen, V.C.; Phan, T.N.H.; Le, V.T.; Vasseghian, Y.; Trubitsyn, M.A.; Nguyen, A.T.; Chau, T.P.; Doan, V.D. Novel biogenic silver and gold nanoparticles for multifunctional applications: Green synthesis, catalytic and antibacterial activity, and colorimetric detection of Fe(III) ions. Chemosphere, 2022, 287(Pt 3), 132271.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132271] [PMID: 34547560]
[6]
Wasim, M.; Mushtaq, M.; Khan, S.U.; Farooq, A.; Naeem, M.A.; Khan, M.R.; Salam, A.; Wei, Q. Development of bacterial cellulose nanocomposites: An overview of the synthesis of bacterial cellulose nanocomposites with metallic and metallic-oxide nanoparticles by different methods and techniques for biomedical applications. J. Ind. Text., 2022, 51(2)(Suppl.), 1886S-1915S.
[http://dx.doi.org/10.1177/1528083720977201]
[7]
Hashemi, Z.; Shirzadi-Ahodashti, M.; Mortazavi-Derazkola, S.; Ebrahimzadeh, M.A. Sustainable biosynthesis of metallic silver nanoparticles using barberry phenolic extract: Optimization and evaluation of photocatalytic, in vitro cytotoxicity, and antibacterial activities against multidrug-resistant bacteria. Inorg. Chem. Commun., 2022, 139, 109320.
[http://dx.doi.org/10.1016/j.inoche.2022.109320]
[8]
Baran, A. Fırat Baran, M.; Keskin, C.; Hatipoğlu, A.; Yavuz, Ö.; Kandemir, I.S.; Adican, M.T.; Khalilov, R.; Mammadova, A.; Ahmadian, E.; Rosić G.; Selakovic, D.; Eftekhari, A. Investigation of antimicrobial and cytotoxic properties and specification of silver nanoparticles (AgNPs) derived from Cicer arietinum L. green leaf extract. Front. Bioeng. Biotechnol., 2022, 10, 855136.
[http://dx.doi.org/10.3389/fbioe.2022.855136] [PMID: 35330628]
[9]
Sharif, M.; Rahman, M.A.; Ahmed, B.; Abbas, R.Z.; Hassan, F. Copper Nanoparticles as growth promoter, antioxidant and anti-bacterial agents in poultry nutrition: Prospects and future implications. Biol. Trace Elem. Res., 2021, 199(10), 3825-3836.
[http://dx.doi.org/10.1007/s12011-020-02485-1] [PMID: 33216319]
[10]
Woźniak, A.; Malankowska, A.; Nowaczyk, G.; Grześkowiak, B.F.; Tuśnio, K.; Słomski, R.; Zaleska-Medynska, A.; Jurga, S. Size and shape-dependent cytotoxicity profile of gold nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med., 2017, 28(6), 92.
[http://dx.doi.org/10.1007/s10856-017-5902-y] [PMID: 28497362]
[11]
Lateef, A.; Ojo, S.A.; Elegbede, J.A.; Azeez, M.A.; Yekeen, T.A.; Akinboro, A. Evaluation of some biosynthesized silver nanoparticles for biomedical applications: Hydrogen peroxide scavenging, anticoagulant and thrombolytic activities. J. Cluster Sci., 2017, 28(3), 1379-1392.
[http://dx.doi.org/10.1007/s10876-016-1146-0]
[12]
Lazzeri, M.; Vittadini, A.; Selloni, A. Structure and energetics of stoichiometric TiO2 anatase surfaces. Phys. Rev. B Condens. Matter, 2001, 63(15), 155409.
[http://dx.doi.org/10.1103/PhysRevB.63.155409]
[13]
Hah, H.J.; Koo, S.M.; Lee, S.H. Preparation of silver nanoparticles through alcohol reduction with organoalkoxysilanes. J. Sol-Gel Sci. Technol., 2003, 26(1/3), 467-471.
[http://dx.doi.org/10.1023/A:1020710307359]
[14]
Norsyuhada, W.; Shukri, W.M.; Bidin, N.; Islam, S.; Krishnan, G. Synthesis of Au–Ag alloy nanoparticles in deionized water by pulsed laser ablation technique. J. Nanosci. Nanotechnol., 2018, 18(7), 4841-4851.
[http://dx.doi.org/10.1166/jnn.2018.15358] [PMID: 29442664]
[15]
Lee, S.; Jun, B.H. Silver nanoparticles: Synthesis and application for nanomedicine. Int. J. Mol. Sci., 2019, 20(4), 865.
[http://dx.doi.org/10.3390/ijms20040865] [PMID: 30781560]
[16]
Dos Santos, C.A.; Seckler, M.M.; Ingle, A.P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Silver nanoparticles: Therapeutical uses, toxicity, and safety issues. J. Pharm. Sci., 2014, 103(7), 1931-1944.
[http://dx.doi.org/10.1002/jps.24001] [PMID: 24824033]
[17]
Riaz Ahmed, K.B.; Nagy, A.M.; Brown, R.P.; Zhang, Q.; Malghan, S.G.; Goering, P.L. Silver nanoparticles: Significance of physicochemical properties and assay interference on the interpretation of in vitro cytotoxicity studies. Toxicol. In Vitro, 2017, 38, 179-192.
[http://dx.doi.org/10.1016/j.tiv.2016.10.012] [PMID: 27816503]
[18]
Tang, S.; Zheng, J. Antibacterial activity of silver nanoparticles: Structural effects. Adv. Healthc. Mater., 2018, 7(13), 1701503.
[http://dx.doi.org/10.1002/adhm.201701503] [PMID: 29808627]
[19]
Pareek, V.; Gupta, R.; Panwar, J. Do physico-chemical properties of silver nanoparticles decide their interaction with biological media and bactericidal action? A review. Mater. Sci. Eng. C, 2018, 90, 739-749.
[http://dx.doi.org/10.1016/j.msec.2018.04.093] [PMID: 29853145]
[20]
Akter, M.; Sikder, M.T.; Rahman, M.M.; Ullah, A.K.M.A.; Hossain, K.F.B.; Banik, S.; Hosokawa, T.; Saito, T.; Kurasaki, M. A systematic review on silver nanoparticles-induced cytotoxicity: Physicochemical properties and perspectives. J. Adv. Res., 2018, 9, 1-16.
[http://dx.doi.org/10.1016/j.jare.2017.10.008] [PMID: 30046482]
[21]
Dowding, C. Laser ablation. In: Advances in Laser Materials Processing; Woodhead Publishing, 2010; pp. 575-628.
[22]
Taccogna, F. Nucleation and growth of nanoparticles in a plasma by laser ablation in liquid. J. Plasma Phys., 2015, 81(5), 495810509.
[http://dx.doi.org/10.1017/S0022377815000793]
[23]
Naser, H.; Shanshool, H.M.; Imhan, K.I. Parameters affecting the size of gold nanoparticles prepared by pulsed laser ablation in liquid. Braz. J. Phys., 2021, 51(3), 878-898.
[http://dx.doi.org/10.1007/s13538-021-00875-x]
[24]
Gao, M.; Sun, L.; Wang, Z.; Zhao, Y. Controlled synthesis of Ag nanoparticles with different morphologies and their antibacterial properties. Mater. Sci. Eng. C, 2013, 33(1), 397-404.
[http://dx.doi.org/10.1016/j.msec.2012.09.005] [PMID: 25428087]
[25]
Chen, C.Y.; Chiang, C.L. Preparation of cotton fibers with antibacterial silver nanoparticles. Mater. Lett., 2008, 62(21-22), 3607-3609.
[http://dx.doi.org/10.1016/j.matlet.2008.04.008]
[26]
Jia, Z.; Sun, H.; Gu, Q. Preparation of Ag nanoparticles with triethanolamine as reducing agent and their antibacterial property. Colloids Surf. A Physicochem. Eng. Asp., 2013, 419, 174-179.
[http://dx.doi.org/10.1016/j.colsurfa.2012.12.003]
[27]
Hassanien, A.S.; Khatoon, U.T. Synthesis and characterization of stable silver nanoparticles, Ag-NPs: Discussion on the applications of Ag-NPs as antimicrobial agents. Physica B, 2019, 554, 21-30.
[http://dx.doi.org/10.1016/j.physb.2018.11.004]
[28]
Le Ouay, B.; Stellacci, F. Antibacterial activity of silver nanoparticles: A surface science insight. Nano Today, 2015, 10(3), 339-354.
[http://dx.doi.org/10.1016/j.nantod.2015.04.002]
[29]
Bae, C.H.; Nam, S.H.; Park, S.M. Formation of silver nanoparticles by laser ablation of a silver target in NaCl solution. Appl. Surf. Sci., 2002, 197-198, 628-634.
[http://dx.doi.org/10.1016/S0169-4332(02)00430-0]
[30]
Tsuji, T.; Thang, D.H.; Okazaki, Y.; Nakanishi, M.; Tsuboi, Y.; Tsuji, M. Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl. Surf. Sci., 2008, 254(16), 5224-5230.
[http://dx.doi.org/10.1016/j.apsusc.2008.02.048]
[31]
Rafique, M.; Rafique, M.S.; Kalsoom, U.; Afzal, A.; Butt, S.H.; Usman, A. Laser ablation synthesis of silver nanoparticles in water and dependence on laser nature. Opt. Quantum Electron., 2019, 51(6), 179.
[http://dx.doi.org/10.1007/s11082-019-1902-0]
[32]
Martínez-Carmona, M.; Vallet-Regí, M. Advances in laser ablation synthesized silicon-based nanomaterials for the prevention of bacterial infection. Nanomaterials, 2020, 10(8), 1443.
[http://dx.doi.org/10.3390/nano10081443] [PMID: 32722023]
[33]
Peng, S.; McMahon, J.M.; Schatz, G.C.; Gray, S.K.; Sun, Y. Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci., 2010, 107(33), 14530-14534.
[http://dx.doi.org/10.1073/pnas.1007524107] [PMID: 20671201]
[34]
Thirumagal, N.; Jeyakumari, A.P. Structural, optical and antibacterial properties of green synthesized silver nanoparticles (AgNPs) using Justicia adhatoda L. Leaf extract. J. Cluster Sci., 2020, 31(2), 487-497.
[http://dx.doi.org/10.1007/s10876-019-01663-z]
[35]
Yang, Z.; Wang, M.; Shi, M.; Shi, Y.; Yao, X. Optical properties of silver nanocrystal synthesized by a new srategies: Experiments supported by DDA calculation. 12th IEEE International Conference on Nanotechnology (IEEE-NANO), Birmingham2012, pp. 1-6.
[36]
Moura, C.G.; Pereira, R.S.F.; Andritschky, M.; Lopes, A.L.B.; Grilo, J.P.F.; Nascimento, R.M.; Silva, F.S. Effects of laser fluence and liquid media on preparation of small Ag nanoparticles by laser ablation in liquid. Opt. Laser Technol., 2017, 97, 20-28.
[http://dx.doi.org/10.1016/j.optlastec.2017.06.007]
[37]
Dong, Y.; Zhu, H.; Shen, Y.; Zhang, W.; Zhang, L. Antibacterial activity of silver nanoparticles of different particle size against Vibrio Natriegens. PLoS One, 2019, 14(9), e0222322.
[http://dx.doi.org/10.1371/journal.pone.0222322] [PMID: 31518380]
[38]
Suresh, A.K.; Doktycz, M.J.; Wang, W.; Moon, J.W.; Gu, B.; Meyer, H.M., III; Hensley, D.K.; Allison, D.P.; Phelps, T.J.; Pelletier, D.A. Monodispersed biocompatible silver sulfide nanoparticles: Facile extracellular biosynthesis using the γ-proteobacterium, Shewanella oneidensis. Acta Biomater., 2011, 7(12), 4253-4258.
[http://dx.doi.org/10.1016/j.actbio.2011.07.007] [PMID: 21798382]
[39]
Sadrolhosseini, A.R.; Abdul Rashid, S.; Shafie, S.; Soleimani, H. Laser ablation synthesis of Ag nanoparticles in graphene quantum dots aqueous solution and optical properties of nanocomposite. Appl. Phys., A Mater. Sci. Process., 2019, 125(2), 82.
[http://dx.doi.org/10.1007/s00339-018-2233-x]
[40]
Pandian, A.M.K.; Karthikeyan, C.; Rajasimman, M.; Dinesh, M.G. Synthesis of silver nanoparticle and its application. Ecotoxicol. Environ. Saf., 2015, 121, 211-217.
[http://dx.doi.org/10.1016/j.ecoenv.2015.03.039] [PMID: 25866204]
[41]
Mudunkotuwa, I.A.; Minshid, A.A.; Grassian, V.H. ATR-FTIR spectroscopy as a tool to probe surface adsorption on nanoparticles at the liquid–solid interface in environmentally and biologically relevant media. Analyst, 2014, 139(5), 870-881.
[http://dx.doi.org/10.1039/C3AN01684F] [PMID: 24350328]
[42]
Jyoti, K.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J. Radiation Res. Appl. Sc., 2016, 9(3), 217-227.
[http://dx.doi.org/10.1016/j.jrras.2015.10.002]
[43]
Kőrösi, L; Rodio, M; Dömötör, D; Kovács, T; Papp, S; Diaspro, A Ultrasmall, ligand-free Ag nanoparticles with high antibacterial activity prepared by pulsed laser ablation in liquid. J. Chem., 2016, 2016, 8.
[44]
Perito, B.; Giorgetti, E.; Marsili, P.; Muniz-Miranda, M. Antibacterial activity of silver nanoparticles obtained by pulsed laser ablation in pure water and in chloride solution. Beilstein J. Nanotechnol., 2016, 7, 465-473.
[http://dx.doi.org/10.3762/bjnano.7.40] [PMID: 27335737]
[45]
Hamad, A.; Khashan, K.S.; Hadi, A. Silver nanoparticles and silver ions as potential antibacterial agents. J. Inorg. Organomet. Polym. Mater., 2020, 30(12), 4811-4828.
[http://dx.doi.org/10.1007/s10904-020-01744-x]
[46]
Wang, L.; Hu, C.; Shao, L. The antimicrobial activity of nanoparticles: Present situation and prospects for the future. Int. J. Nanomedicine, 2017, 12, 1227-1249.
[http://dx.doi.org/10.2147/IJN.S121956] [PMID: 28243086]
[47]
Yin, I.X.; Zhang, J.; Zhao, I.S.; Mei, M.L.; Li, Q.; Chu, C.H. The antibacterial mechanism of silver nanoparticles and its application in dentistry. Int. J. Nanomedicine, 2020, 15, 2555-2562.
[http://dx.doi.org/10.2147/IJN.S246764] [PMID: 32368040]
[48]
Liao, S.; Zhang, Y.; Pan, X.; Zhu, F.; Jiang, C.; Liu, Q.; Cheng, Z.; Dai, G.; Wu, G.; Wang, L.; Chen, L. Antibacterial activity and mechanism of silver nanoparticles against multidrug-resistant Pseudomonas aeruginosa. Int. J. Nanomedicine, 2019, 14, 1469-1487.
[http://dx.doi.org/10.2147/IJN.S191340] [PMID: 30880959]

© 2025 Bentham Science Publishers | Privacy Policy