Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Mini-Review Article

Neurotrophic Factors in Cannabis-induced Psychosis: An Update

Author(s): Valerio Ricci*, Domenico de Berardis, Giovanni Martinotti and Giuseppe Maina

Volume 24, Issue 20, 2024

Published on: 31 August, 2023

Page: [1757 - 1772] Pages: 16

DOI: 10.2174/1568026623666230829152150

Price: $65

Abstract

Background: Cannabis is the most widely used illicit substance. Numerous scientific evidence confirm the strong association between cannabis and psychosis. Exposure to cannabis can induce the development of psychosis and schizophrenia in vulnerable individuals. However, the neurobiological processes underlying this relationship are unknown. Neurotrophins are a class of proteins that serve as survival factors for central nervous system (CNS) neurons. In particular, Nerve Growth Factor (NGF) plays an important role in the survival and function of cholinergic neurons while Brain Derived Neurotrophic Factor (BDNF) is involved in synaptic plasticity and the maintenance of midbrain dopaminergic and cholinergic neurons. Glial Cell Derived Neurotrophic Factor (GDNF) promotes the survival of midbrain dopaminergic neurons and Neuregulin 1 (NrG- 1) contributes to glutamatergic signals regulating the N-methyl-D-aspartate (NMDA). They have a remarkable influence on the neurons involved in the Δ-9-THC (tethra-hydro-cannabinol) action, such as dopaminergic and glutamatergic neurons, and can play dual roles: first, in neuronal survival and death, and, second, in activity-dependent plasticity.

Methods: In this brief update, reviewing in a narrative way the relevant literature, we will focus on the effects of cannabis on this class of proteins, which may be implicated, at least in part, in the mechanism of the psychostimulant-induced neurotoxicity and psychosis.

Conclusion: Since altered levels of neurotrophins may participate in the pathogenesis of psychotic disorders which are common in drug users, one possible hypothesis is that repeated cannabis exposure can cause psychosis by interfering with neurotrophins synthesis and utilization by CNS neurons.

[1]
Levi-Montalcini, R.; Meyer, H.; Hamburger, V. in vitro experiments on the effects of mouse sarcomas 180 and 37 on the spinal and sympathetic ganglia of the chick embryo. Cancer Res., 1954, 14(1), 49-57.
[PMID: 13126933]
[2]
Barde, Y.A.; Edgar, D.; Thoenen, H. Purification of a new neurotrophic factor from mammalian brain. EMBO J., 1982, 1(5), 549-553.
[http://dx.doi.org/10.1002/j.1460-2075.1982.tb01207.x] [PMID: 7188352]
[3]
Leibrock, J.; Lottspeich, F.; Hohn, A.; Hofer, M.; Hengerer, B.; Masiakowski, P.; Thoenen, H.; Barde, Y.A. Molecular cloning and expression of brain-derived neurotrophic factor. Nature, 1989, 341(6238), 149-152.
[http://dx.doi.org/10.1038/341149a0] [PMID: 2779653]
[4]
Barde, Y.A. The nerve growth factor family. Prog. Growth Factor Res., 1990, 2(4), 237-248.
[http://dx.doi.org/10.1016/0955-2235(90)90021-B] [PMID: 2133291]
[5]
Ip, N.Y.; Yancopoulos, G.D. Ciliary neurotrophic factor and its receptor complex. Prog. Growth Factor Res., 1992, 4(2), 139-155.
[http://dx.doi.org/10.1016/0955-2235(92)90028-G] [PMID: 1338574]
[6]
Lindsay, R.M.; Yancopoulos, G.D. GDNF in a bind with known orphan: Accessory implicated in new twist. Neuron, 1996, 17(4), 571-574.
[http://dx.doi.org/10.1016/S0896-6273(00)80189-0] [PMID: 8893014]
[7]
Doré, S.; Kar, S.; Quirion, R. Rediscovering an old friend, IGF-I: potential use in the treatment of neurodegenerative diseases. Trends Neurosci., 1997, 20(8), 326-331.
[PMID: 9246719]
[8]
Walicke, P.; Cowan, W.M.; Ueno, N.; Baird, A.; Guillemin, R. Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc. Natl. Acad. Sci. USA, 1986, 83(9), 3012-3016.
[http://dx.doi.org/10.1073/pnas.83.9.3012] [PMID: 3458259]
[9]
Farkas, L.M.; Dünker, N.; Roussa, E.; Unsicker, K.; Krieglstein, K. Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J. Neurosci., 2003, 23(12), 5178-5186.
[http://dx.doi.org/10.1523/JNEUROSCI.23-12-05178.2003] [PMID: 12832542]
[10]
Miao, N.; Wang, M.; Ott, J.A.; D’Alessandro, J.S.; Woolf, T.M.; Bumcrot, D.A.; Mahanthappa, N.K.; Pang, K. Sonic hedgehog promotes the survival of specific CNS neuron populations and protects these cells from toxic insult in vitro. J. Neurosci., 1997, 17(15), 5891-5899.
[http://dx.doi.org/10.1523/JNEUROSCI.17-15-05891.1997] [PMID: 9221786]
[11]
Halban, P.A; Irminger, J.C. Sorting and processing of secretory proteins. J. Biochem., 1994, 299(Pt 1), 1-18.
[http://dx.doi.org/10.1042/bj2990001]
[12]
Merighi, A. Costorage and coexistence of neuropeptides in the mammalian CNS. Prog. Neurobiol., 2002, 66(3), 161-190.
[http://dx.doi.org/10.1016/S0301-0082(01)00031-4] [PMID: 11943450]
[13]
Presley, J.F.; Cole, N.B.; Schroer, T.A.; Hirschberg, K.; Zaal, K.J.M.; Lippincott-Schwartz, J. ER-to-Golgi transport visualized in living cells. Nature, 1997, 389(6646), 81-85.
[http://dx.doi.org/10.1038/38001] [PMID: 9288971]
[14]
Rothman, J.E.; Orci, L. Molecular dissection of the secretory pathway. Nature, 1992, 355(6359), 409-415.
[http://dx.doi.org/10.1038/355409a0] [PMID: 1734280]
[15]
Fritzsch, B.; Silos-Santiago, I.; Bianchi, L.M.; Fariñas, I. The role of neurotrophic factors in regulating the development of inner ear innervation. Trends Neurosci., 1997, 20(4), 159-164.
[http://dx.doi.org/10.1016/S0166-2236(96)01007-7] [PMID: 9106356]
[16]
Murer, M.G.; Yan, Q.; Raisman-Vozari, R. Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog. Neurobiol., 2001, 63(1), 71-124.
[http://dx.doi.org/10.1016/S0301-0082(00)00014-9] [PMID: 11040419]
[17]
Seidah, N.G.; Benjannet, S.; Pareek, S.; Chrétien, M.; Murphy, R.A. Cellular processing of the neurotrophin precursors of NT3 and BDNF by the mammalian proprotein convertases. FEBS Lett., 1996, 379(3), 247-250.
[http://dx.doi.org/10.1016/0014-5793(95)01520-5] [PMID: 8603699]
[18]
Harter, C.; Reinhard, C. The secretory pathway from history to the state of the art. Subcell. Biochem., 2000, 34, 1-38.
[PMID: 10808330]
[19]
Lang, C.A.; Matheny, A.P., Jr; Mastropaolo, W.; Liu, M.C. Blood glutathione and cysteine concentrations in twin children. Exp. Biol. Med., 2001, 226(4), 349-352.
[http://dx.doi.org/10.1177/153537020122600413] [PMID: 11368428]
[20]
Castren, E.; Thoenen, H.; Lindholm, D. Brain-derived neurotrophic factor messenger RNA is expressed in the septum, hypothalamus and in adrenergic brain stem nuclei of adult rat brain and is increased by osmotic stimulation in the paraventricular nucleus. Neuroscience, 1995, 64(1), 71-80.
[http://dx.doi.org/10.1016/0306-4522(94)00386-J] [PMID: 7708216]
[21]
Lindholm, D.; da Penha Berzaghi, M.; Cooper, J.; Thoenen, H.; Castrén, E. Brain-derived neurotrophic factor and neurotrophin-4 increase neurotrophin-3 expression in the rat hippocampus. Int. J. Dev. Neurosci., 1994, 12(8), 745-751.
[http://dx.doi.org/10.1016/0736-5748(94)90054-X] [PMID: 7747601]
[22]
Lindvall, O.; Kokaia, Z.; Bengzon, J.; Elme´r, E.; Kokaia, M. Neurotrophins and brain insults. Trends Neurosci., 1994, 17(11), 490-496.
[http://dx.doi.org/10.1016/0166-2236(94)90139-2] [PMID: 7531892]
[23]
Zafra, F.; Hengerer, B.; Leibrock, J.; Thoenen, H.; Lindholm, D. Activity dependent regulation of BDNF and NGF mRNAs in the rat hippocampus is mediated by non-NMDA glutamate receptors. EMBO J., 1990, 9(11), 3545-3550.
[http://dx.doi.org/10.1002/j.1460-2075.1990.tb07564.x] [PMID: 2170117]
[24]
Isackson, P.J.; Huntsman, M.M.; Murray, K.D.; Gall, C.M. BDNF mRNA expression is increased in adult rat forebrain after limbic seizures: Temporal patterns of induction distinct from NGF. Neuron, 1991, 6(6), 937-948.
[http://dx.doi.org/10.1016/0896-6273(91)90234-Q] [PMID: 2054188]
[25]
Scarisbrick, I.A.; Jones, E.G. ; Isackson, P.J. Coexpression of mRNAs for NGF, BDNF, and NT-3 in the cardiovascular system of the pre- and postnatal rat. J. Neurosci., 1993, 13(3), 875-893.
[http://dx.doi.org/10.1523/JNEUROSCI.13-03-00875.1993] [PMID: 8441013]
[26]
Hiltunen, J.O.; Aruma¨e, U.; Moshnyakov, M.; Saarma, M. Expression of mRNAs for neurotrophins and their receptors in developing rat heart. Circ. Res., 1996, 79(5), 930-939.
[http://dx.doi.org/10.1161/01.RES.79.5.930] [PMID: 8888685]
[27]
Rosenfeld, R.D.; Zeni, L.; Haniu, N.; Talvenheimo, J.; Radka, S.F.; Bennett, L.; Miller, J.A.; Welcher, A.A. Purification and identification of brain-derived neurotrophic factor from human serum. Protein Expr. Purif., 1995, 6(4), 465-471.
[http://dx.doi.org/10.1006/prep.1995.1062] [PMID: 8527932]
[28]
Radka, S.F.; Hoist, P.A.; Fritsche, M.; Altar, C.A. Presence of brain-derived neurotrophic factor in brain and human and rat but not mouse serum detected by a sensitive and specific immunoassay. Brain Res., 1996, 709(1), 122-130.
[http://dx.doi.org/10.1016/0006-8993(95)01321-0] [PMID: 8869564]
[29]
Fujimura, H.; Chen, R.; Nakamura, T.; Nakahashi, T.; Kambayashi, J.; Sun, B.; Altar, C.; Tandon, N. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb. Haemost., 2002, 87(4), 728-734.
[http://dx.doi.org/10.1055/s-0037-1613072] [PMID: 12008958]
[30]
Gielen, A.; Khademi, M.; Muhallab, S.; Olsson, T.; Piehl, F. Increased brain-derived neurotrophic factor expression in white blood cells of relapsing-remitting multiple sclerosis patients. Scand. J. Immunol., 2003, 57(5), 493-497.
[http://dx.doi.org/10.1046/j.1365-3083.2003.01260.x] [PMID: 12753507]
[31]
Noga, O.; Englmann, C.; Hanf, G.; Grützkau, A.; Seybold, J.; Kunkel, G. The production, storage and release of the neurotrophins nerve growth factor, brain-derived neurotrophic factor and neurotrophin-3 by human peripheral eosinophils in allergics and non-allergics. Clin. Exp. Allergy, 2003, 33(5), 649-654.
[http://dx.doi.org/10.1046/j.1365-2222.2003.01586.x] [PMID: 12752594]
[32]
Kerschensteiner, M.; Gallmeier, E.; Behrens, L.; Leal, V.V.; Misgeld, T.; Klinkert, W.E.F.; Kolbeck, R.; Hoppe, E.; Oropeza-Wekerle, R.L.; Bartke, I.; Stadelmann, C.; Lassmann, H.; Wekerle, H.; Hohlfeld, R. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: A neuroprotective role of inflammation? J. Exp. Med., 1999, 189(5), 865-870.
[http://dx.doi.org/10.1084/jem.189.5.865] [PMID: 10049950]
[33]
Batchelor, P.; Porritt, M.J.; Martinello, P.; Parish, C.L.; Liberatore, G.T.; Donnan, G.A.; Howells, D.W. Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge. Mol. Cell. Neurosci., 2002, 21(3), 436-453.
[http://dx.doi.org/10.1006/mcne.2002.1185] [PMID: 12498785]
[34]
Aloe, L.; Micera, A. A role of nerve growth factor in oligodendrocyte growth and differentiation of EAE affected rats. Arch. Ital. Biol., 1998, 136(4), 247-256.
[PMID: 9834838]
[35]
Aloe, L.; Skaper, S.D.; Leon, A.; Levi-Montalcini, R. Nerve growth factor and autoimmune diseases. Autoimmunity, 1994, 19(2), 141-150.
[http://dx.doi.org/10.3109/08916939409009542] [PMID: 7772704]
[36]
Luigi Aloe; Paola Tirassa; Luisa Bracci-Laudiero Nerve growth factor in neurological and non-neurological diseases: basic findings and emerging pharmacological prospectives. Curr. Pharm. Des., 2001, 7(2), 113-123.
[http://dx.doi.org/10.2174/1381612013398383] [PMID: 11172703]
[37]
Levi-Montalcini, R. The nerve growth factor 35 years later. Science, 1987, 237(4819), 1154-1162.
[http://dx.doi.org/10.1126/science.3306916] [PMID: 3306916]
[38]
Lad, S.; Neet, K.; Mufson, E. Nerve growth factor: Structure, function and therapeutic implications for Alzheimer’s disease. Curr. Drug Targets CNS Neurol. Disord., 2003, 2(5), 315-334.
[http://dx.doi.org/10.2174/1568007033482724] [PMID: 14529363]
[39]
Browne, S.E.; Lin, L.; Mattsson, A.; Georgievska, B.; Isacson, O. Selective antibody-induced cholinergic cell and synapse loss produce sustained hippocampal and cortical hypometabolism with correlated cognitive deficits. Exp. Neurol., 2001, 170(1), 36-47.
[http://dx.doi.org/10.1006/exnr.2001.7700] [PMID: 11421582]
[40]
Aloe, L.; Bracci-Laudiero, L.; Bonini, S.; Manni, L.; Aloe, L. The expanding role of nerve growth factor: From neurotrophic activity to immunologic diseases. Allergy, 1997, 52(9), 883-994.
[http://dx.doi.org/10.1111/j.1398-9995.1997.tb01247.x] [PMID: 9298172]
[41]
Ibáñez, C.F.; Andresson, J.O. Biology of GDNF and its receptors - Relevance for disorders of the central nervous system. Neurobiol Dis, 2017, 97(Pt B), 80-89.
[42]
Hoffer, B.J.; Hoffman, A.; Bowenkamp, K.; Huettl, P.; Hudson, J.; Martin, D.; Lin, L.F.H.; Gerhardt, G.A. Glial cell line-derived neurotrophic factor reverses toxin-induced injury to midbrain dopaminergic neurons in vivo. Neurosci. Lett., 1994, 182(1), 107-111.
[http://dx.doi.org/10.1016/0304-3940(94)90218-6] [PMID: 7891873]
[43]
Bowenkamp, K.E.; Hoffman, A.F.; Gerhardt, G.A.; Henry, M.A.; Biddle, P.T.; Hoffer, B.J.; Granholm, A.C.E. Glial cell line-derived neurotrophic factor supports survival of injured midbrain dopaminergic neurons. J. Comp. Neurol., 1995, 355(4), 479-489.
[http://dx.doi.org/10.1002/cne.903550402] [PMID: 7636027]
[44]
Stefansson, H.; Steinthorsdottir, V.; Thorgeirsson, T.; Gulcher, J.; Stefansson, K. Neuregulin 1 and schizophrenia. Ann. Med., 2004, 36(1), 62-71.
[http://dx.doi.org/10.1080/07853890310017585] [PMID: 15000348]
[45]
Mostaid, M.S.; Lloyd, D.; Liberg, B.; Sundram, S.; Pereira, A.; Pantelis, C.; Karl, T.; Weickert, C.S.; Everall, I.P.; Bousman, C.A. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci. Biobehav. Rev., 2016, 68, 387-409.
[http://dx.doi.org/10.1016/j.neubiorev.2016.06.001] [PMID: 27283360]
[46]
Britsch, S. The neuregulin-I/ErbB signaling system in development and disease. Adv. Anat. Embryol. Cell Biol., 2007, 190, 1-65.
[PMID: 17432114]
[47]
Kataria, H.; Alizadeh, A.; Karimi-Abdolrezaee, S. Neuregulin-1/ErbB network: An emerging modulator of nervous system injury and repair. Prog. Neurobiol., 2019, 180, 101643.
[http://dx.doi.org/10.1016/j.pneurobio.2019.101643] [PMID: 31229498]
[48]
Lee, A.H.; Lange, C.; Ricken, R.; Hellweg, R.; Lang, U.E. Reduced brain-derived neurotrophic factor serum concentrations in acute schizophrenic patients increase during antipsychotic treatment. J. Clin. Psychopharmacol., 2011, 31(3), 334-336.
[http://dx.doi.org/10.1097/JCP.0b013e31821895c1] [PMID: 21508862]
[49]
Kaplan, D.R.; Miller, F.D. Neurotrophin signal transduction in the nervous system. Curr. Opin. Neurobiol., 2000, 10(3), 381-391.
[http://dx.doi.org/10.1016/S0959-4388(00)00092-1] [PMID: 10851172]
[50]
Baloh, R.H.; Enomoto, H.; Johnson, E.M., Jr; Milbrandt, J. The GDNF family ligands and receptors — implications for neural development. Curr. Opin. Neurobiol., 2000, 10(1), 103-110.
[http://dx.doi.org/10.1016/S0959-4388(99)00048-3] [PMID: 10679429]
[51]
Gaoni, Y.; Mechoulam, R. Isolation, structure, and partial synthesis of an active constituent of hashish. J. Am. Chem. Soc., 1964, 86(8), 1646-1647.
[http://dx.doi.org/10.1021/ja01062a046]
[52]
Howlett, A.C.; Breivogel, C.S.; Childers, S.R.; Deadwyler, S.A.; Hampson, R.E.; Porrino, L.J. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology, 2004, 47(Suppl. 1), 345-358.
[http://dx.doi.org/10.1016/j.neuropharm.2004.07.030] [PMID: 15464149]
[53]
Howlett, A.C.; Barth, F.; Bonner, T.I.; Cabral, G.; Casellas, P.; Devane, W.A.; Felder, C.C.; Herkenham, M.; Mackie, K.; Martin, B.R.; Mechoulam, R.; Pertwee, R.G. International Union of Pharmacology. XXVII. Classification of cannabinoid receptors. Pharmacol. Rev., 2002, 54(2), 161-202.
[http://dx.doi.org/10.1124/pr.54.2.161] [PMID: 12037135]
[54]
Pertwee, R.G. Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol. Ther., 1997, 74(2), 129-180.
[http://dx.doi.org/10.1016/S0163-7258(97)82001-3] [PMID: 9336020]
[55]
Jockers-Scherübl, M.C.; Rentzsch, J.; Danker-Hopfe, H.; Radzei, N.; Schürer, F.; Bahri, S.; Hellweg, R. Adequate antipsychotic treatment normalizes serum nerve growth factor concentrations in schizophrenia with and without cannabis or additional substance abuse. Neurosci. Lett., 2006, 400(3), 262-266.
[http://dx.doi.org/10.1016/j.neulet.2006.02.056] [PMID: 16540246]
[56]
Galiègue, S.; Mary, S.; Marchand, J.; Dussossoy, D.; Carrière, D.; Carayon, P.; Bouaboula, M.; Shire, D.; Fur, G.; Casellas, P. Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur. J. Biochem., 1995, 232(1), 54-61.
[http://dx.doi.org/10.1111/j.1432-1033.1995.tb20780.x] [PMID: 7556170]
[57]
Maresz, K.; Carrier, E.J.; Ponomarev, E.D.; Hillard, C.J.; Dittel, B.N. Modulation of the cannabinoid CB2 receptor in microglial cells in response to inflammatory stimuli. J. Neurochem., 2005, 95(2), 437-445.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03380.x] [PMID: 16086683]
[58]
Cabral, G.A.; Dove Pettit, D.A. Drugs and immunity: Cannabinoids and their role in decreased resistance to infectious disease. J. Neuroimmunol., 1998, 83(1-2), 116-123.
[http://dx.doi.org/10.1016/S0165-5728(97)00227-0] [PMID: 9610679]
[59]
Mukhopadhyay, S.; Das, S.; Williams, E.A.; Moore, D.; Jones, J.D.; Zahm, D.S.; Ndengele, M.M.; Lechner, A.J.; Howlett, A.C. Lipopolysaccharide and cyclic AMP regulation of CB2 cannabinoid receptor levels in rat brain and mouse RAW 264.7 macrophages. J. Neuroimmunol., 2006, 181(1-2), 82-92.
[http://dx.doi.org/10.1016/j.jneuroim.2006.08.002] [PMID: 17045344]
[60]
Molina-Holgado, F.; Alvarez, F.J.; Gonzalez, I.; Antonio, M.T.; Leret, M.L. Maternal exposure to delta 9-tetrahydrocannabinol (delta 9-THC) alters indolamine levels and turnover in adult male and female rat brain regions. Brain Res. Bull., 1997, 43(2), 173-178.
[http://dx.doi.org/10.1016/S0361-9230(96)00434-0] [PMID: 9222530]
[61]
Puffenbarger, R.A.; Boothe, A.C.; Cabral, G.A. Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia, 2000, 29(1), 58-69.
[http://dx.doi.org/10.1002/(SICI)1098-1136(20000101)29:1<58::AID-GLIA6>3.0.CO;2-W] [PMID: 10594923]
[62]
Melis, M.; Gessa, G.L.; Diana, M. Different mechanisms for dopaminergic excitation induced by opiates and cannabinoids in the rat midbrain. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2000, 24(6), 993-1006.
[http://dx.doi.org/10.1016/S0278-5846(00)00119-6] [PMID: 11041539]
[63]
Pistis, M.; Muntoni, A.L.; Pillolla, G.; Gessa, G.L. Cannabinoids inhibit excitatory inputs to neurons in the shell of the nucleus accumbens: an in vivo electrophysiological study. Eur. J. Neurosci., 2002, 15(11), 1795-1802.
[http://dx.doi.org/10.1046/j.1460-9568.2002.02019.x] [PMID: 12081659]
[64]
Tanda, G.; Pontieri, F.E.; Di Chiara, G. Cannabinoid and heroin activation of mesolimbic dopamine transmission by a common µ 1 opioid receptor mechanism. Science, 1979, 276(5321), 2048-2050.
[65]
Auclair, N.; Otani, S.; Soubrie, P.; Crepel, F. Cannabinoids modulate synaptic strength and plasticity at glutamatergic synapses of rat prefrontal cortex pyramidal neurons. J. Neurophysiol., 2000, 83(6), 3287-3293.
[http://dx.doi.org/10.1152/jn.2000.83.6.3287] [PMID: 10848548]
[66]
Andréasson, S.; Engström, A.; Allebeck, P.; Rydberg, U. Cannabis and schizophrenia. A longitudinal study of Swedish conscripts. Lancet, 1987, 330(8574), 1483-1486.
[http://dx.doi.org/10.1016/S0140-6736(87)92620-1] [PMID: 2892048]
[67]
Semple, D.M.; McIntosh, A.M.; Lawrie, S.M. Cannabis as a risk factor for psychosis: Systematic review. J. Psychopharmacol., 2005, 19(2), 187-194.
[http://dx.doi.org/10.1177/0269881105049040] [PMID: 15871146]
[68]
Moore, T.H.M.; Zammit, S.; Lingford-Hughes, A.; Barnes, T.R.E.; Jones, P.B.; Burke, M.; Lewis, G. Cannabis use and risk of psychotic or affective mental health outcomes: A systematic review. Lancet, 2007, 370(9584), 319-328.
[http://dx.doi.org/10.1016/S0140-6736(07)61162-3] [PMID: 17662880]
[69]
Realini, N. Cannabis and schizophrenia a longitudinal study of Swedish. J Clin Endocrinol Meta, 1971.
[70]
Realini, N.; Rubino, T.; Parolaro, D. Neurobiological alterations at adult age triggered by adolescent exposure to cannabinoids. Pharmacol. Res., 2009, 60(2), 132-138.
[http://dx.doi.org/10.1016/j.phrs.2009.03.006] [PMID: 19559364]
[71]
Shapiro, G.K.; Buckley-Hunter, L. What every adolescent needs to know: Cannabis can cause psychosis. J. Psychosom. Res., 2010, 69(6), 533-539.
[http://dx.doi.org/10.1016/j.jpsychores.2010.04.002] [PMID: 21109040]
[72]
Arseneault, L.; Cannon, M.; Poulton, R.; Murray, R.; Caspi, A.; Moffitt, T.E. Cannabis use in adolescence and risk for adult psychosis: longitudinal prospective study. BMJ, 2002, 325(7374), 1212-1213.
[http://dx.doi.org/10.1136/bmj.325.7374.1212] [PMID: 12446537]
[73]
Henquet, C.; Murray, R.; Linszen, D.; van Os, J. The environment and schizophrenia: The role of cannabis use. Schizophr. Bull., 2005, 31(3), 608-612.
[http://dx.doi.org/10.1093/schbul/sbi027] [PMID: 15976013]
[74]
Di Forti, M.; Quattrone, D.; Freeman, T.P.; Tripoli, G.; Gayer-Anderson, C.; Quigley, H.; Rodriguez, V.; Jongsma, H.E.; Ferraro, L.; La Cascia, C.; La Barbera, D.; Tarricone, I.; Berardi, D.; Szöke, A.; Arango, C.; Tortelli, A.; Velthorst, E.; Bernardo, M.; Del-Ben, C.M.; Menezes, P.R.; Selten, J.P.; Jones, P.B.; Kirkbride, J.B.; Rutten, B.P.F.; de Haan, L.; Sham, P.C.; van Os, J.; Lewis, C.M.; Lynskey, M.; Morgan, C.; Murray, R.M.; Amoretti, S.; Arrojo, M.; Baudin, G.; Beards, S.; Bernardo, M.; Bobes, J.; Bonetto, C.; Cabrera, B.; Carracedo, A.; Charpeaud, T.; Costas, J.; Cristofalo, D.; Cuadrado, P.; Díaz-Caneja, C.M.; Ferchiou, A.; Franke, N.; Frijda, F.; García Bernardo, E.; Garcia-Portilla, P.; González, E.; Hubbard, K.; Jamain, S.; Jiménez-López, E.; Leboyer, M.; López Montoya, G.; Lorente-Rovira, E.; Marcelino Loureiro, C.; Marrazzo, G.; Martínez, C.; Matteis, M.; Messchaart, E.; Moltó, M.D.; Nacher, J.; Olmeda, M.S.; Parellada, M.; González Peñas, J.; Pignon, B.; Rapado, M.; Richard, J-R.; Rodríguez Solano, J.J.; Roldán Díaz, L.; Ruggeri, M.; Sáiz, P.A.; Sánchez, E.; Sanjuán, J.; Sartorio, C.; Schürhoff, F.; Seminerio, F.; Shuhama, R.; Sideli, L.; Stilo, S.A.; Termorshuizen, F.; Tosato, S.; Tronche, A-M.; van Dam, D.; van der Ven, E. The contribution of cannabis use to variation in the incidence of psychotic disorder across Europe (EU-GEI): a multicentre case-control study. Lancet Psychiatry, 2019, 6(5), 427-436.
[http://dx.doi.org/10.1016/S2215-0366(19)30048-3] [PMID: 30902669]
[75]
Marconi, A.; Di Forti, M.; Lewis, C.M.; Murray, R.M.; Vassos, E. Meta-analysis of the association between the level of cannabis use and risk of psychosis. Schizophr. Bull., 2016, 42(5), 1262-1269.
[http://dx.doi.org/10.1093/schbul/sbw003] [PMID: 26884547]
[76]
Ortiz-Medina, M.B.; Perea, M.; Torales, J.; Ventriglio, A.; Vitrani, G.; Aguilar, L.; Roncero, C. Cannabis consumption and psychosis or schizophrenia development. Int. J. Soc. Psychiatry, 2018, 64(7), 690-704.
[http://dx.doi.org/10.1177/0020764018801690] [PMID: 30442059]
[77]
Ringen, P.A.; Nesvåg, R.; Helle, S.; Lagerberg, T.V.; Lange, E.H.; Løberg, E.M.; Agartz, I.; Andreassen, O.A.; Melle, I. Premorbid cannabis use is associated with more symptoms and poorer functioning in schizophrenia spectrum disorder. Psychol. Med., 2016, 46(15), 3127-3136.
[http://dx.doi.org/10.1017/S0033291716001999] [PMID: 27534999]
[78]
Seddon, J.L.; Birchwood, M.; Copello, A.; Everard, L.; Jones, P.B.; Fowler, D.; Amos, T.; Freemantle, N.; Sharma, V.; Marshall, M.; Singh, S.P. Cannabis use is associated with increased psychotic symptoms and poorer psychosocial functioning in first-episode psychosis: A report from the UK national EDEN study. Schizophr. Bull., 2016, 42(3), 619-625.
[http://dx.doi.org/10.1093/schbul/sbv154] [PMID: 26536902]
[79]
Hjorthøj, C.; Larsen, M.O.; Starzer, M.S.K.; Nordentoft, M. Annual incidence of cannabis-induced psychosis, other substance-induced psychoses and dually diagnosed schizophrenia and cannabis use disorder in Denmark from 1994 to 2016. Psychol. Med., 2021, 51(4), 617-622.
[http://dx.doi.org/10.1017/S0033291719003532] [PMID: 31839011]
[80]
Luzi, S.; Morrison, P.D.; Powell, J.; Di Forti, M.; Murray, R.M. What is the mechanism whereby cannabis use increases risk of psychosis? Neurotox. Res., 2008, 14(2-3), 105-112.
[http://dx.doi.org/10.1007/BF03033802] [PMID: 19073418]
[81]
Desfossés, J.; Stip, E.; Bentaleb, L.A.; Potvin, S. Endocannabinoids and schizophrenia. Pharmaceuticals, 2010, 3(10), 3101.
[http://dx.doi.org/10.3390/ph3103101]
[82]
Hernández, M.; Berrendero, F.; Suárez, I.; García-Gil, L.; Cebeira, M.; Mackie, K.; Ramos, J.A.; Fernández-Ruiz, J. Cannabinoid CB1 receptors colocalize with tyrosine hydroxylase in cultured fetal mesencephalic neurons and their activation increases the levels of this enzyme. Brain Res., 2000, 857(1-2), 56-65.
[http://dx.doi.org/10.1016/S0006-8993(99)02322-7] [PMID: 10700552]
[83]
Cheer, J.F.; Wassum, K.M.; Heien, M.L.A.V.; Phillips, P.E.M.; Wightman, R.M. Cannabinoids enhance subsecond dopamine release in the nucleus accumbens of awake rats. J. Neurosci., 2004, 24(18), 4393-4400.
[http://dx.doi.org/10.1523/JNEUROSCI.0529-04.2004] [PMID: 15128853]
[84]
Massi, L.; Elezgarai, I.; Puente, N.; Reguero, L.; Grandes, P.; Manzoni, O.J.; Georges, F. Cannabinoid receptors in the bed nucleus of the stria terminalis control cortical excitation of midbrain dopamine cells in vivo. J. Neurosci., 2008, 28(42), 10496-10508.
[http://dx.doi.org/10.1523/JNEUROSCI.2291-08.2008] [PMID: 18923026]
[85]
Di Forti, M.; Morgan, C.; Dazzan, P.; Pariante, C.; Mondelli, V.; Marques, T.R.; Handley, R.; Luzi, S.; Russo, M.; Paparelli, A.; Butt, A.; Stilo, S.A.; Wiffen, B.; Powell, J.; Murray, R.M. High- potency cannabis and the risk of psychosis. Br. J. Psychiatry, 2009, 195(6), 488-491.
[http://dx.doi.org/10.1192/bjp.bp.109.064220] [PMID: 19949195]
[86]
Murray, R.M.; Quigley, H.; Quattrone, D.; Englund, A.; Di Forti, M. Traditional marijuana, high-potency cannabis and synthetic cannabinoids: Increasing risk for psychosis. World Psychiatry, 2016, 15(3), 195-204.
[http://dx.doi.org/10.1002/wps.20341] [PMID: 27717258]
[87]
Schoeler, T.; Petros, N.; Di Forti, M.; Pingault, J.B.; Klamerus, E.; Foglia, E.; Small, A.; Murray, R.; Bhattacharyya, S. Association between continued cannabis use and risk of relapse in first-episode psychosis. JAMA Psychiatry, 2016, 73(11), 1173-1179.
[http://dx.doi.org/10.1001/jamapsychiatry.2016.2427] [PMID: 27680429]
[88]
Pope, L.G.; Manseau, M.W.; Kelley, M.E.; Compton, M.T. Symptomatology and neurocognition among first-episode psychosis patients with and without cannabis use in the three months prior to first hospitalization. Schizophr. Res., 2021, 228, 83-88.
[http://dx.doi.org/10.1016/j.schres.2020.12.012] [PMID: 33434738]
[89]
Quattrone, D.; Ferraro, L.; Tripoli, G.; La Cascia, C.; Quigley, H.; Quattrone, A.; Jongsma, H.E.; Del Peschio, S.; Gatto, G.; Gayer-Anderson, C.; Jones, P.B.; Kirkbride, J.B.; La Barbera, D.; Tarricone, I.; Berardi, D.; Tosato, S.; Lasalvia, A.; Szöke, A.; Arango, C.; Bernardo, M.; Bobes, J.; Del Ben, C.M.; Menezes, P.R.; Llorca, P.M.; Santos, J.L.; Sanjuán, J.; Tortelli, A.; Velthorst, E.; de Haan, L.; Rutten, B.P.F.; Lynskey, M.T.; Freeman, T.P.; Sham, P.C.; Cardno, A.G.; Vassos, E.; van Os, J.; Morgan, C.; Reininghaus, U.; Lewis, C.M.; Murray, R.M.; Di Forti, M. Daily use of high-potency cannabis is associated with more positive symptoms in first-episode psychosis patients: the EU-GEI case–control study. Psychol. Med., 2021, 51(8), 1329-1337.
[http://dx.doi.org/10.1017/S0033291720000082] [PMID: 32183927]
[90]
Baudin, G.; Godin, O.; Lajnef, M.; Aouizerate, B.; Berna, F.; Brunel, L.; Capdevielle, D.; Chereau, I.; Dorey, J.M.; Dubertret, C.; Dubreucq, J.; Faget, C.; Fond, G.; Gabayet, F.; Laouamri, H.; Lancon, C.; Le Strat, Y.; Tronche, A.M.; Misdrahi, D.; Rey, R.; Passerieux, C.; Schandrin, A.; Urbach, M.; Vidalhet, P.; Llorca, P.M.; Schürhoff, F. Differential effects of childhood trauma and cannabis use disorders in patients suffering from schizophrenia. Schizophr. Res., 2016, 175(1-3), 161-167.
[http://dx.doi.org/10.1016/j.schres.2016.04.042] [PMID: 27209524]
[91]
Patel, R.; Wilson, R.; Jackson, R.; Ball, M.; Shetty, H.; Broadbent, M.; Stewart, R.; McGuire, P.; Bhattacharyya, S. Association of cannabis use with hospital admission and antipsychotic treatment failure in first episode psychosis: an observational study. BMJ Open, 2016, 6(3), e009888.
[http://dx.doi.org/10.1136/bmjopen-2015-009888] [PMID: 26940105]
[92]
Hasan, A.; von Keller, R.; Friemel, C.M.; Hall, W.; Schneider, M.; Koethe, D.; Leweke, F.M.; Strube, W.; Hoch, E. Cannabis use and psychosis: A review of reviews. Eur. Arch. Psychiatry Clin. Neurosci., 2020, 270(4), 403-412.
[http://dx.doi.org/10.1007/s00406-019-01068-z] [PMID: 31563981]
[93]
Green, M.J.; Matheson, S.L.; Shepherd, A.; Weickert, C.S.; Carr, V.J. Brain-derived neurotrophic factor levels in schizophrenia: A systematic review with meta-analysis. Mol. Psychiatry, 2011, 16(9), 960-972.
[http://dx.doi.org/10.1038/mp.2010.88] [PMID: 20733577]
[94]
Fernandes, B. S.; Steiner, J.; Berk, M.; Molendijk, M. L.; Gonzalez-Pinto, A.; Turck, C. W.; Nardin, P.; Gonçalves, C. A. Peripheral brain-derived neurotrophic factor in schizophrenia and the role of antipsychotics: Meta-analysis and implications. Mol Psychiatry, 2015, 20, 1108-1119.
[http://dx.doi.org/10.1038/mp.2014.117]
[95]
Toll, A.; Mané, A. Brain-derived neurotrophic factor levels in first episode of psychosis: A systematic review. World J. Psychiatry, 2015, 5(1), 154-159.
[http://dx.doi.org/10.5498/wjp.v5.i1.154] [PMID: 25815265]
[96]
Mané, A.; Bergé, D.; Penzol, M.J.; Parellada, M.; Bioque, M.; Lobo, A.; González-Pinto, A.; Corripio, I.; Cabrera, B.; Sánchez- Torres, A.M.; Saiz-Ruiz, J.; Bernardo, M.; Group, P.E.P. Cannabis use, COMT, BDNF and age at first-episode psychosis. Psychiatry Res., 2017, 250, 38-43.
[http://dx.doi.org/10.1016/j.psychres.2017.01.045] [PMID: 28142064]
[97]
Blázquez, C.; Chiarlone, A.; Bellocchio, L.; Resel, E.; Pruunsild, P.; García-Rincón, D.; Sendtner, M.; Timmusk, T.; Lutz, B.; Galve-Roperh, I.; Guzmán, M. The CB1 cannabinoid receptor signals striatal neuroprotection via a PI3K/Akt/mTORC1/BDNF pathway. Cell Death Differ., 2015, 22(10), 1618-1629.
[http://dx.doi.org/10.1038/cdd.2015.11] [PMID: 25698444]
[98]
Derkinderen, P.; Valjent, E.; Toutant, M.; Corvol, J.C.; Enslen, H.; Ledent, C.; Trzaskos, J.; Caboche, J.; Girault, J.A. Regulation of extracellular signal-regulated kinase by cannabinoids in hippocampus. J. Neurosci., 2003, 23(6), 2371-2382.
[http://dx.doi.org/10.1523/JNEUROSCI.23-06-02371.2003] [PMID: 12657697]
[99]
Segal-Gavish, H.; Gazit, N.; Barhum, Y.; Ben-Zur, T.; Taler, M.; Hornfeld, S.H.; Gil-Ad, I.; Weizman, A.; Slutsky, I.; Niwa, M.; Kamiya, A.; Sawa, A.; Offen, D.; Barzilay, R. BDNF overexpression prevents cognitive deficit elicited by adolescent cannabis exposure and host susceptibility interaction. Hum. Mol. Genet., 2017, 26(13), 2462-2471.
[http://dx.doi.org/10.1093/hmg/ddx139] [PMID: 28402427]
[100]
Dong, C.; Tian, Z.; Zhang, K.; Chang, L.; Qu, Y.; Pu, Y.; Ren, Q.; Fujita, Y.; Ohgi, Y.; Futamura, T.; Hashimoto, K. Increased BDNF-TrkB signaling in the nucleus accumbens plays a role in the risk for psychosis after cannabis exposure during adolescence. Pharmacol. Biochem. Behav., 2019, 177, 61-68.
[http://dx.doi.org/10.1016/j.pbb.2019.01.002] [PMID: 30629965]
[101]
Numata, S.; Ueno, S.; Iga, J.; Yamauchi, K.; Hongwei, S.; Kinouchi, S.; Shibuya-Tayoshi, S.; Tayoshi, S.; Aki, H.; Sumitani, S.; Itakura, M.; Ohmori, T. Interaction between catechol-O-methyltransferase (COMT) Val108/158Met and brain-derived neurotrophic factor (BDNF) Val66Met polymorphisms in age at onset and clinical symptoms in schizophrenia. J. Neural Transm., 2007, 114(2), 255-259.
[http://dx.doi.org/10.1007/s00702-006-0543-1] [PMID: 16897602]
[102]
Naoe, Y.; Shinkai, T.; Hori, H.; Fukunaka, Y.; Utsunomiya, K.; Sakata, S.; Matsumoto, C.; Shimizu, K.; Hwang, R.; Ohmori, O.; Nakamura, J. No association between the brain-derived neurotrophic factor (BDNF) Val66Met polymorphism and schizophrenia in Asian populations: Evidence from a case–control study and meta-analysis. Neurosci. Lett., 2007, 415(2), 108-112.
[http://dx.doi.org/10.1016/j.neulet.2007.01.006] [PMID: 17267117]
[103]
Renou, J.; De Luca, V.; Zai, C. C.; Bulgin, N.; Remington, G.; Meltzer, H. Y.; Lieberman, J. A.; Le Foll, B.; Kennedy, J. L. Multiple variants of the DRD3, but not BDNF gene, influence age-at-onset of schizophrenia. Molecular psychiatry, 2007, 12(12), 1058-1060.
[104]
Decoster, J.; van Os, J.; Kenis, G.; Henquet, C.; Peuskens, J.; De Hert, M.; van Winkel, R. Age at onset of psychotic disorder: Cannabis, BDNF Val66Met, and sex-specific models of gene-environment interaction. Am J Med Genet B, 2011, 156B(3), 363-369.
[105]
Egan, M.F.; Weinberger, D.R.; Lu, B. Schizophrenia, III. Am. J. Psychiatry, 2003, 160(7), 1242.
[http://dx.doi.org/10.1176/appi.ajp.160.7.1242] [PMID: 12832235]
[106]
Begliuomini, S.; Lenzi, E.; Ninni, F.; Casarosa, E.; Merlini, S.; Pluchino, N.; Valentino, V.; Luisi, S.; Luisi, M.; Genazzani, A.R. Plasma brain-derived neurotrophic factor daily variations in men: correlation with cortisol circadian rhythm. J. Endocrinol., 2008, 197(2), 429-435.
[http://dx.doi.org/10.1677/JOE-07-0376] [PMID: 18434373]
[107]
D'Souza, D. C.; Perry, E.; MacDougall, L.; Ammerman, Y.; Cooper, T.; Wu, Y. T.; Braley, G.; Gueorguieva, R.; Krystal, J. The psychotomimetic effects of intravenous delta-9-tetrahydrocannabinol in healthy individuals: Implications for psychosis. Neuropsychopharmacology, 2004, 29(8), 1558-1572.
[108]
Bersani, G.; Iannitelli, A.; Maselli, P.; Pancheri, P.; Aloe, L.; Angelucci, F.; Alleva, E. Low nerve growth factor plasma levels in schizophrenic patients: A preliminary study. Schizophr. Res., 1999, 37(2), 201-203.
[PMID: 10374657]
[109]
Hörtnagl, H.; Hellweg, R. Insights into the role of the cholinergic component of the septohippocampal pathway: What have we learned from experimental lesion studies? Brain Res. Bull., 1997, 43(3), 245-255.
[http://dx.doi.org/10.1016/S0361-9230(97)00005-1] [PMID: 9227833]
[110]
Hellweg, R.; von Richthofen, S.; Anders, D.; Baethge, C.; Röpke, S.; Hartung, H. D.; Gericke, C. A. The time course of nerve growth factor content in different neuropsychiatric diseases-a unifying hypothesis. J. Neural Transm, 1998, 105(8-9), 871-903.
[111]
Angelucci, F.; Ricci, V.; Spalletta, G.; Caltagirone, C.; Mathé, A.A.; Bria, P. Effects of psychostimulants on neurotrophins implications for psychostimulant-induced neurotoxicity. Int. Rev. Neurobiol., 2009, 88, 1-24.
[http://dx.doi.org/10.1016/S0074-7742(09)88001-X] [PMID: 19897072]
[112]
Angelucci, F.; Ricci, V.; Spalletta, G.; Pomponi, M.; Tonioni, F.; Caltagirone, C.; Bria, P. Reduced serum concentrations of nerve growth factor, but not brain-derived neurotrophic factor, in chronic cannabis abusers. Eur Neuropsychopharmacol, 2008, 18(12), 882-887.
[113]
Acquas, E.; Pisanu, A.; Marrocu, P.; Di Chiara, G. Cannabinoid CB1 receptor agonists increase rat cortical and hippocampal acetylcholine release in vivo. Eur. J. Pharmacol., 2000, 401(2), 179-185.
[http://dx.doi.org/10.1016/S0014-2999(00)00403-9] [PMID: 10924924]
[114]
Gessa, G.L.; Mascia, M.S.; Casu, M.A.; Carta, G. Inhibition of hippocampal acetylcholine release by cannabinoids: Reversal by SR 141716A. Eur. J. Pharmacol., 1997, 327(1), R1-R2.
[http://dx.doi.org/10.1016/S0014-2999(97)89683-5] [PMID: 9185841]
[115]
Jockers-ScherüBl, M.C.; Matthies, U.; Danker-Hopfe, H.; Lang, U.E.; Mahlberg, R.; Hellweg, R. Chronic cannabis abuse raises nerve growth factor serum concentrations in drug-naive schizophrenic patients. J. Psychopharmacol., 2003, 17(4), 439-445.
[http://dx.doi.org/10.1177/0269881103174007] [PMID: 14870957]
[116]
Parikh, V.; Evans, D.R.; Khan, M.M.; Mahadik, S.P. Nerve growth factor in never-medicated first-episode psychotic and medicated chronic schizophrenic patients: possible implications for treatment outcome. Schizophr. Res., 2003, 60(2-3), 117-123.
[http://dx.doi.org/10.1016/S0920-9964(02)00434-6] [PMID: 12591576]
[117]
Pandey, S.C. A critical role of brain-derived neurotrophic factor in alcohol consumption. Biol. Psychiatry, 2016, 79(6), 427-429.
[http://dx.doi.org/10.1016/j.biopsych.2015.12.020] [PMID: 26893193]
[118]
Bonthius, D.; Karacay, B.; Dai, D.; Pantazis, N.J. FGF-2, NGF and IGF-1, but not BDNF, utilize a nitric oxide pathway to signal neurotrophic and neuroprotective effects against alcohol toxicity in cerebellar granule cell cultures. Brain Res. Dev. Brain Res., 2003, 140(1), 15-28.
[http://dx.doi.org/10.1016/S0165-3806(02)00549-7] [PMID: 12524173]
[119]
Aloe, L.; Tuveri, M.A.; Guerra, G.; Pinna, L.; Tirassa, P.; Micera, A.; Alleva, E. Changes in human plasma nerve growth factor level after chronic alcohol consumption and withdrawal. Alcohol. Clin. Exp. Res., 1996, 20(3), 462-465.
[http://dx.doi.org/10.1111/j.1530-0277.1996.tb01076.x] [PMID: 8727238]
[120]
Ricaurte, G. A.; McCann, U. D. Neurotoxic amphetamine analogues: effects in monkeys and implications for humans. Ann. N. Y. Acad. Sci, 1992, 648, 371-382.
[http://dx.doi.org/10.1111/j.1749-6632.1992.tb24586.x]
[121]
Ma, X.; Chen, C.; Zhu, F.; Jia, W.; Gao, C. Association of the GDNF gene with depression and heroin dependence, but not schizophrenia, in a Chinese population. Psychiatry Res., 2013, 210(3), 1296-1298.
[http://dx.doi.org/10.1016/j.psychres.2013.08.025] [PMID: 24022000]
[122]
Airavaara, M.; Tuomainen, H.; Piepponen, T.P.; Saarma, M.; Ahtee, L. Effects of repeated morphine on locomotion, place preference and dopamine in heterozygous glial cell line-derived neurotrophic factor knockout mice. Genes Brain Behav., 2007, 6(3), 287-298.
[http://dx.doi.org/10.1111/j.1601-183X.2006.00260.x] [PMID: 16879618]
[123]
Silveira, M. M.; Arnold, J. C.; Laviolette, S. R.; Hillard, C. J.; Celorrio, M.; Aymerich, M. S.; Adams, W. K. Seeing through the smoke: Human and animal studies of cannabis use and endocannabinoid signalling in corticolimbic networks. Neurosci Biobehav Rev, 2017, 76(Pt B), 380-395.
[124]
Aukst Margetic, B.; Peitl, V.; Vukasović, I.; Karlović, D. Neuregulin-1 is increased in schizophrenia patients with chronic cannabis abuse: Preliminary results. Schizophr. Res., 2019, 208, 473-474.
[http://dx.doi.org/10.1016/j.schres.2019.02.007] [PMID: 30799217]
[125]
Han, S.; Yang, B.Z.; Kranzler, H.R.; Oslin, D.; Anton, R.; Farrer, L.A.; Gelernter, J. Linkage analysis followed by association show NRG1 associated with cannabis dependence in African Americans. Biol. Psychiatry, 2012, 72(8), 637-644.
[http://dx.doi.org/10.1016/j.biopsych.2012.02.038] [PMID: 22520967]
[126]
Boucher, A.A.; Hunt, G.E.; Micheau, J.; Huang, X.; McGregor, I.S.; Karl, T.; Arnold, J.C. The schizophrenia susceptibility gene neuregulin 1 modulates tolerance to the effects of cannabinoids. Int. J. Neuropsychopharmacol., 2011, 14(5), 631-643.
[http://dx.doi.org/10.1017/S146114571000091X] [PMID: 20701826]
[127]
Ameri, A. The effects of cannabinoids on the brain. Prog. Neurobiol., 1999, 58(4), 315-348.
[http://dx.doi.org/10.1016/S0301-0082(98)00087-2] [PMID: 10368032]
[128]
Hermann, D.; Sartorius, A.; Welzel, H.; Walter, S.; Skopp, G.; Ende, G.; Mann, K. Dorsolateral prefrontal cortex N-acetylaspartate/total creatine (NAA/tCr) loss in male recreational cannabis users. Biol. Psychiatry, 2007, 61(11), 1281-1289.
[http://dx.doi.org/10.1016/j.biopsych.2006.08.027] [PMID: 17239356]
[129]
Matochik, J.A.; Eldreth, D.A.; Cadet, J.L.; Bolla, K.I. Altered brain tissue composition in heavy marijuana users. Drug Alcohol Depend., 2005, 77(1), 23-30.
[http://dx.doi.org/10.1016/j.drugalcdep.2004.06.011] [PMID: 15607838]
[130]
Asanuma, M.; Miyazaki, I.; Ogawa, N. Dopamine- or L-DOPA-induced neurotoxicity: The role of dopamine quinone formation and tyrosinase in a model of Parkinson’s disease. Neurotox. Res., 2003, 5(3), 165-176.
[http://dx.doi.org/10.1007/BF03033137] [PMID: 12835121]
[131]
Altar, C.A.; Siuciak, J.A.; Wright, P.; Ip, N.Y.; Lindsay, R.M.; Wiegand, S.J. In situ hybridization of trkB and trkC receptor mRNA in rat forebrain and association with high-affinity binding of [125I]BDNF, [125I]NT-4/5 and [125I]NT-3. Eur. J. Neurosci., 1994, 6(9), 1389-1405.
[http://dx.doi.org/10.1111/j.1460-9568.1994.tb01001.x] [PMID: 8000564]
[132]
Merlio, J.P.; Ernfors, P.; Kokaia, Z.; Middlemas, D.S.; Bengzon, J.; Kokaia, M.; Smith, M.L.; Siesjö, B.K.; Hunter, T.; Lindvall, O.; Persson, H. Increased production of the TrkB protein tyrosine kinase receptor after brain insults. Neuron, 1993, 10(2), 151-164.
[http://dx.doi.org/10.1016/0896-6273(93)90307-D] [PMID: 8439408]
[133]
Numan, S.; Seroogy, K.B. Expression of trkB andtrkC mRNAs by adult midbrain dopamine neurons: A double-label in situ hybridization study. J. Comp. Neurol., 1999, 403(3), 295-308.
[http://dx.doi.org/10.1002/(SICI)1096-9861(19990118)403:3<295::AID-CNE2>3.0.CO;2-L] [PMID: 9886032]
[134]
Hyman, C.; Hofer, M.; Barde, Y.A.; Juhasz, M.; Yancopoulos, G.D.; Squinto, S.P.; Lindsay, R.M. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature, 1991, 350(6315), 230-232.
[http://dx.doi.org/10.1038/350230a0] [PMID: 2005978]
[135]
Garcia, E.; Rios, C.; Sotelo, J. Ventricular injection of nerve growth factor increases dopamine content in the striata of MPTP-treated mice. Neurochem. Res., 1992, 17(10), 979-982.
[http://dx.doi.org/10.1007/BF00966824] [PMID: 1508308]
[136]
Hirata, Y.; Meguro, T.; Kiuchi, K. Differential effect of nerve growth factor on dopaminergic neurotoxin-induced apoptosis. J. Neurochem., 2006, 99(2), 416-425.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04006.x] [PMID: 17029596]
[137]
Nishio, T.; Furukawa, S.; Akiguchi, I.; Sunohara, N. Medial nigral dopamine neurons have rich neurotrophin support in humans. Neuroreport, 1998, 9(12), 2847-2851.
[http://dx.doi.org/10.1097/00001756-199808240-00030] [PMID: 9760132]
[138]
Lorigados, L.; Alvarez, P.; Pavón, N.; Serrano, T.; Blanco, L.; Macías, R. NGF in experimental models of parkinson disease. Mol. Chem. Neuropathol., 1996, 28(1-3), 225-228.
[http://dx.doi.org/10.1007/BF02815226] [PMID: 8871963]
[139]
Müller, T.; Lang, U.E.; Muhlack, S.; Welnic, J.; Hellweg, R. Impact of levodopa on reduced nerve growth factor levels in patients with Parkinson disease. Clin. Neuropharmacol., 2005, 28(5), 238-240.
[http://dx.doi.org/10.1097/01.wnf.0000183447.58529.79] [PMID: 16239764]
[140]
French, E.D. Δ9-Tetrahydrocannabinol excites rat VTA dopamine neurons through activation of cannabinoid CB1 but not opioid receptors. Neurosci. Lett., 1997, 226(3), 159-162.
[http://dx.doi.org/10.1016/S0304-3940(97)00278-4] [PMID: 9175591]
[141]
Campbell, V.A. Tetrahydrocannabinol-induced apoptosis of cultured cortical neurones is associated with cytochrome c release and caspase-3 activation. Neuropharmacology, 2001, 40(5), 702-709.
[http://dx.doi.org/10.1016/S0028-3908(00)00210-0] [PMID: 11311898]
[142]
Volkow, N.D.; Hampson, A.J.; Baler, R.D. Annual Reviews Inc., 2017, 57, 285-308.
[143]
Scallet, A.C.; Uemura, E.; Andrews, A.; Ali, S.F.; McMillan, D.E.; Paule, M.G.; Brown, R.M.; Slikker, W., Jr Morphometric studies of the rat hippocampus following chronic delta-9-tetrahydrocannabinol (THC). Brain Res., 1987, 436(1), 193-198.
[http://dx.doi.org/10.1016/0006-8993(87)91576-9] [PMID: 2825925]
[144]
Landfield, P.W.; Cadwallader, L.B.; Vinsant, S. Quantitative changes in hippocampal structure following long-term exposure to Δ9-tetrahydrocannabinol: Possible mediation by glucocorticoid systems. Brain Res., 1988, 443(1-2), 47-62.
[http://dx.doi.org/10.1016/0006-8993(88)91597-1] [PMID: 2834017]
[145]
Galve-Roperh, I.; Palazuelos, J.; Aguado, T.; Guzmán, M. The endocannabinoid system and the regulation of neural development: Potential implications in psychiatric disorders. Eur. Arch. Psychiatry Clin. Neurosci., 2009, 259(7), 371-382.
[http://dx.doi.org/10.1007/s00406-009-0028-y] [PMID: 19588184]
[146]
Kim, S.R.; Lee, D.Y.; Chung, E.S.; Oh, U.T.; Kim, S.U.; Jin, B.K. Transient receptor potential vanilloid subtype 1 mediates cell death of mesencephalic dopaminergic neurons in vivo and in vitro. J. Neurosci., 2005, 25(3), 662-671.
[http://dx.doi.org/10.1523/JNEUROSCI.4166-04.2005] [PMID: 15659603]
[147]
Downer, E.J.; Fogarty, M.P.; Campbell, V.A. Tetrahydrocannabinol-induced neurotoxicity depends on CB 1 receptor-mediated c-Jun N-terminal kinase activation in cultured cortical neurons. Br. J. Pharmacol., 2003, 140(3), 547-557.
[http://dx.doi.org/10.1038/sj.bjp.0705464] [PMID: 14522843]
[148]
Higuera-Matas, A.; Ucha, M.; Ambrosio, E. Long-term consequences of perinatal and adolescent cannabinoid exposure on neural and psychological processes. Neurosci. Biobehav. Rev., 2015, 55, 119-146.
[http://dx.doi.org/10.1016/j.neubiorev.2015.04.020] [PMID: 25960036]
[149]
Hasenoehrl, C.; Storr, M.; Schicho, R. Cannabinoids for treating inflammatory bowel diseases: Where are we and where do we go? Expert Rev. Gastroenterol. Hepatol., 2017, 11(4), 329-337.
[http://dx.doi.org/10.1080/17474124.2017.1292851] [PMID: 28276820]
[150]
Cohen, L.; Neuman, M.G. Cannabis and the gastrointestinal Tract. J. Pharm. Pharm. Sci., 2020, 23, 301-313.
[http://dx.doi.org/10.18433/jpps31242] [PMID: 32762830]
[151]
Nasser, Y.; Woo, M.; Andrews, C.N. Cannabis in gastroenterology: Watch your head! A review of use in inflammatory bowel disease, functional gut disorders, and gut-related adverse effects. Curr. Treat. Options Gastroenterol., 2020, 18(4), 519-530.
[http://dx.doi.org/10.1007/s11938-020-00323-w] [PMID: 33250629]
[152]
Kastin, A.J.; Pan, W.; Maness, L.M.; Banks, W.A. Peptides crossing the blood–brain barrier: Some unusual observations. Brain Res., 1999, 848(1-2), 96-100.
[http://dx.doi.org/10.1016/S0006-8993(99)01961-7] [PMID: 10612701]
[153]
Pan, W.; Banks, W.A.; Fasold, M.B.; Bluth, J.; Kastin, A.J. Transport of brain-derived neurotrophic factor across the blood–brain barrier. Neuropharmacology, 1998, 37(12), 1553-1561.
[http://dx.doi.org/10.1016/S0028-3908(98)00141-5] [PMID: 9886678]
[154]
Klein, T.W.; Newton, C.; Friedman, H. Cannabinoid receptors and immunity. Immunol. Today, 1998, 19(8), 373-381.
[http://dx.doi.org/10.1016/S0167-5699(98)01300-0] [PMID: 9709506]
[155]
Klein, T.W.; Newton, C.A.; Widen, R.; Friedman, H. The effect of delta-9-tetrahydrocannabinol and 11-hydroxy-delta-9-tetrahydrocannabinol on T-lymphocyte and B-lymphocyte mitogen responses. J. Immunopharmacol., 1985, 7(4), 451-466.
[http://dx.doi.org/10.3109/08923978509026487] [PMID: 3003204]
[156]
Friedman, H.; Klein, T.; Specter, S. Immunosuppression by marijuana and components. In: Psychoneuroimmunology; Academic Press, 1991; pp. 931-953.
[157]
Smith, S.R.; Terminelli, C.; Denhardt, G. Effects of cannabinoid receptor agonist and antagonist ligands on production of inflammatory cytokines and anti-inflammatory interleukin-10 in endotoxemic mice. J. Pharmacol. Exp. Ther., 2000, 293(1), 136-150.
[PMID: 10734163]
[158]
Kaminski, N.E.; Koh, W.S.; Yang, K.H.; Lee, M.; Kessler, F.K. Suppression of the humoral immune response by cannabinoids is partially mediated through inhibition of adenylate cyclase by a pertussis toxin-sensitive G-protein coupled mechanism. Biochem. Pharmacol., 1994, 48(10), 1899-1908.
[http://dx.doi.org/10.1016/0006-2952(94)90588-6] [PMID: 7986201]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy