Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Mini-Review Article

Fabrication of Graphene-based Ammonia Sensors: A Review

Author(s): Ke Xu* and Wei Zheng

Volume 20, Issue 5, 2024

Published on: 06 September, 2023

Page: [578 - 598] Pages: 21

DOI: 10.2174/1573413719666230829142724

open access plus

Abstract

Graphene gas sensors have gained much scientific interest due to their high sensitivity, selectivity, and fast detection of various gases. This article summarizes the research progress of graphene gas sensors for detecting ammonia gas at room temperature. Firstly, the performance and development trends of the graphene/semiconductor Schottky diode sensor are discussed. Secondly, manufacturing methods and the latest developments in graphene field-effect transistor sensors are reviewed. Finally, the basic challenges and latest efforts of functional ammonia gas sensors are studied. The discussion delves into each sensor type's detection principles and performance indicators, including selectivity, stability, measurement range, response time, recovery time, and relative humidity. A comparative analysis is conducted to highlight the progress achieved in research, elucidating the advantages, disadvantages, and potential solutions associated with various sensors. As a result, the paper concludes by exploring the future development prospects of graphene-based ammonia sensors.

Graphical Abstract

[1]
Li, D.; Shen, L.; Zhang, D.; Wang, X.; Wang, Q.; Qin, W.; Gao, Y.; Li, X. Ammonia-induced oxidative stress triggered proinflammatory response and apoptosis in pig lungs. J. Environ. Sci. (China), 2023, 126, 683-696.
[http://dx.doi.org/10.1016/j.jes.2022.05.005] [PMID: 36503793]
[2]
Chai, Y.; Peng, R.; Jiang, M.; Jiang, X.; Han, Q.; Han, Z. Effects of ammonia nitrogen stress on the blood cell immunity and liver antioxidant function of Sepia pharaonis. Aquaculture, 2022, 546, 737417.
[http://dx.doi.org/10.1016/j.aquaculture.2021.737417]
[3]
Ågren, L.; Elfsmark, L.; Akfur, C.; Jonasson, S. High concentrations of ammonia induced cytotoxicity and bronchoconstriction in a precision-cut lung slices rat model. Toxicol. Lett., 2021, 349, 51-60.
[http://dx.doi.org/10.1016/j.toxlet.2021.06.001] [PMID: 34118312]
[4]
Li, Y.; Tong, R.; Li, Z.; Zhang, X.; Pan, L.; Li, Y.; Zhang, N. Toxicological mechanism of ammonia-N on haematopoiesis and apoptosis of haemocytes in Litopenaeus vannamei. Sci. Total Environ., 2023, 879, 163039.
[http://dx.doi.org/10.1016/j.scitotenv.2023.163039] [PMID: 36966842]
[5]
Ma, R.; Zou, J.; Han, Z.; Yu, K.; Wu, S.; Li, Z.; Liu, S.; Niu, S.; Horwath, W.R.; Zhu-Barker, X. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: A refinement based on regional and crop-specific emission factors. Glob. Change Biol., 2021, 27(4), 855-867.
[http://dx.doi.org/10.1111/gcb.15437] [PMID: 33155724]
[6]
Hsu, C.Y.; Hsu, T.C.; Chang, Y.T.; Shie, R.H. Using hybrid methodologies to characterize temporal behavior and source of ambient ammonia. Atmos. Pollut. Res., 2023, 14(2), 101663.
[http://dx.doi.org/10.1016/j.apr.2023.101663]
[7]
Sun, X.; Zong, Z.; Li, Q.; Shi, X.; Wang, K.; Lu, L.; Li, B.; Qi, H.; Tian, C. Assessing the emission sources and reduction potential of atmospheric ammonia at an urban site in Northeast China. Environ. Res., 2021, 198, 111230.
[http://dx.doi.org/10.1016/j.envres.2021.111230] [PMID: 33984305]
[8]
Feng, S.; Xu, W.; Cheng, M.; Ma, Y.; Wu, L.; Kang, J.; Wang, K.; Tang, A.; Collett, J.L., Jr; Fang, Y.; Goulding, K.; Liu, X.; Zhang, F. Overlooked nonagricultural and wintertime agricultural NH3 emissions in Quzhou County, North China Plain: Evidence from 15N-stable isotopes. Environ. Sci. Technol. Lett., 2022, 9(2), 127-133.
[http://dx.doi.org/10.1021/acs.estlett.1c00935]
[9]
Ding, L.; Huang, Z.; Lu, Y.; Liang, L.; Li, N.; Xu, Z.; Zhang, J.; Shi, H.; Hong, M. Toxic effects of ammonia on intestinal health and microbiota in red-eared slider (Trachemys scripta elegans). Chemosphere, 2021, 280, 130630.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130630] [PMID: 33930609]
[10]
Lee, H.S.; Kim, J.; Moon, H.; Lee, W. Hydrogen gas sensors using palladium nanogaps on an elastomeric substrate. Adv. Mater., 2021, 33(47), 2005929.
[http://dx.doi.org/10.1002/adma.202005929] [PMID: 33978972]
[11]
Rayappa, M.K.; Viswanathan, P.A.; Rattu, G.; Krishna, P.M. Nanomaterials enabled and bio/chemical analytical sensors for acrylamide detection in thermally processed foods: Advances and outlook. J. Agric. Food Chem., 2021, 69(16), 4578-4603.
[http://dx.doi.org/10.1021/acs.jafc.0c07956] [PMID: 33851531]
[12]
Liu, C.Y.; Deb, M.; Sadhu, A.S.; Karmakar, R.; Huang, P.T.; Lin, Y.N.; Chu, C.S.; Pal, B.N.; Chang, S.H.; Biring, S. Resolving cross-sensitivity effect in fluorescence quenching for simultaneously sensing oxygen and ammonia concentrations by an optical dual gas sensor. Sensors, 2021, 21(20), 6940.
[http://dx.doi.org/10.3390/s21206940] [PMID: 34696153]
[13]
Zhao, J.H.; Zhang, Y.T.; Wang, H.A.; Sun, Y.; Hu, Y.F.; Yu, J.H.; Xie, F.X. Design of extended Kalman filter observer coupled to ammonia cross-sensitivity model for an SCR system. Int. J. Engine Res., 2022, 2022, 14680874221140447.
[14]
Piqueras, P.; Pla, B.; Sanchis, E.J.; Aronis, A. Ammonia Slip Estimation Based on ASC Control-Oriented Modelling And OBD NOx Sensor Cross-Sensitivity Analysis. J. Eng. Gas Turbines. Power, 2023, 145(4), 041014.
[http://dx.doi.org/10.1115/ICEF2021-67710]
[15]
Chen, W.; Yang, P.; Shen, W.; Zhu, C.; Lv, D.; Tan, R.; Song, W. Flexible room temperature ammonia gas sensor based on in suit polymerized PANI/PVDF porous composite film. J. Mater. Sci. Mater. Electron., 2020, 31(14), 11870-11877.
[http://dx.doi.org/10.1007/s10854-020-03741-9]
[16]
Wang, D.; Zhang, D.; Yang, Y.; Mi, Q.; Zhang, J.; Yu, L. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal–organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano, 2021, 15(2), 2911-2919.
[http://dx.doi.org/10.1021/acsnano.0c09015] [PMID: 33554603]
[17]
Yu, W.; Gong, K.; Li, Y.; Ding, B.; Li, L.; Xu, Y.; Wang, R.; Li, L.; Zhang, G.; Lin, S. Flexible 2D materials beyond graphene: synthesis, properties, and applications. Small, 2022, 18(14), 2105383.
[http://dx.doi.org/10.1002/smll.202105383] [PMID: 35048521]
[18]
Zhang, F.; Yang, K.; Liu, G.; Chen, Y.; Wang, M.; Li, S.; Li, R. Recent advances on graphene: Synthesis, properties and applications. Compos., Part A Appl. Sci. Manuf., 2022, 160, 107051.
[http://dx.doi.org/10.1016/j.compositesa.2022.107051]
[19]
Lee, S.J.; Theerthagiri, J.; Nithyadharseni, P.; Arunachalam, P.; Balaji, D.; Madan Kumar, A.; Madhavan, J.; Mittal, V.; Choi, M.Y. Heteroatom-doped graphene-based materials for sustainable energy applications: A review. Renew. Sustain. Energy Rev., 2021, 143, 110849.
[http://dx.doi.org/10.1016/j.rser.2021.110849]
[20]
Muchuweni, E.; Mombeshora, E.T. Recent advances in thermoelectric performance by incorporating graphene-based materials for energy harvesting. Renewable Energy Focus, 2023, 45, 40-52.
[http://dx.doi.org/10.1016/j.ref.2023.02.005]
[21]
Huang, S.; Panes-Ruiz, L.A.; Croy, A.; Löffler, M.; Khavrus, V.; Bezugly, V.; Cuniberti, G. Highly sensitive room temperature ammonia gas sensor using pristine graphene: The role of biocompatible stabilizer. Carbon, 2021, 173, 262-270.
[http://dx.doi.org/10.1016/j.carbon.2020.11.001]
[22]
Ghosh, R.; Aslam, M.; Kalita, H. Graphene derivatives for chemiresistive gas sensors: A review. Mater. Today Commun., 2022, 30, 103182.
[http://dx.doi.org/10.1016/j.mtcomm.2022.103182]
[23]
Iravani, S.; Varma, R.S. Green synthesis, biomedical and biotechnological applications of carbon and graphene quantum dots. A review. Environ. Chem. Lett., 2020, 18(3), 703-727.
[http://dx.doi.org/10.1007/s10311-020-00984-0] [PMID: 32206050]
[24]
Das, P.; Pal, B.; Datta, J.; Das, M.; Sil, S.; Ray, P.P. Improved charge transport properties of graphene incorporated tin oxide based Schottky diode over pure one. J. Phys. Chem. Solids, 2021, 148, 109706.
[http://dx.doi.org/10.1016/j.jpcs.2020.109706]
[25]
M. Hizam. S.M.; Al-Dhahebi, A.M.; Mohamed Saheed, M.S. Recent advances in graphene-based nanocomposites for ammonia detection. Polymers, 2022, 14(23), 5125.
[http://dx.doi.org/10.3390/polym14235125] [PMID: 36501520]
[26]
Tang, X.; Debliquy, M.; Lahem, D.; Yan, Y.; Raskin, J.P. A review on functionalized graphene sensors for detection of ammonia. Sensors, 2021, 21(4), 1443.
[http://dx.doi.org/10.3390/s21041443] [PMID: 33669589]
[27]
Mukherjee, A.; Yun, H.; Shin, D.H.; Nam, J.; Munshi, A.M.; Dheeraj, D.L.; Fimland, B.O.; Weman, H.; Kim, K.S.; Lee, S.W.; Kim, D.C. Single GaAs nanowire/graphene hybrid devices fabricated by a position-controlled microtransfer and an imprinting technique for an embedded structure. ACS Appl. Mater. Interfaces, 2019, 11(14), 13514-13522.
[http://dx.doi.org/10.1021/acsami.8b20581] [PMID: 30892012]
[28]
Bag, A.; Moon, D.B.; Park, K.H.; Cho, C.Y.; Lee, N.E. Room-temperature-operated fast and reversible vertical-heterostructure-diode gas sensor composed of reduced graphene oxide and AlGaN/GaN. Sens. Actuators B Chem., 2019, 296, 126684.
[http://dx.doi.org/10.1016/j.snb.2019.126684]
[29]
Zhu, Y.; Chen, C.; Wu, S.; Cheng, R.; Gao, J.; Yu, Y.; Zhou, W. Phosphomolybdic acid-decorated carbon nanotubes for low-power sensing of NH 3 and NO 2 at room temperature. ACS Appl. Nano Mater., 2021, 4(2), 1976-1984.
[http://dx.doi.org/10.1021/acsanm.0c03333]
[30]
Biswas, M.R.U.D.; Oh, W.C. Comparative study on gas sensing by a Schottky diode electrode prepared with graphene–semicon-ductor–polymer nanocomposites. RSC Advances, 2019, 9(20), 11484-11492.
[http://dx.doi.org/10.1039/C9RA00007K] [PMID: 35520227]
[31]
Wang, Y.; Zhang, J.; Zhang, S.; Huang, J. OFET chemical sensors: Chemical sensors based on ultrathin organic field-effect transistors. Polym. Int., 2021, 70(4), 414-425.
[http://dx.doi.org/10.1002/pi.6095]
[32]
Bushra, K.A.; Prasad, K.S. Paper-based field-effect transistor sensors. Talanta, 2022, 239, 123085.
[http://dx.doi.org/10.1016/j.talanta.2021.123085] [PMID: 34890939]
[33]
Tang, X.; Raskin, J.P.; Reckinger, N.; Yan, Y.; André, N.; Lahem, D.; Debliquy, M. Enhanced gas detection by altering gate voltage polarity of polypyrrole/graphene field-effect transistor sensor. Chemosensors, 2022, 10(11), 467.
[http://dx.doi.org/10.3390/chemosensors10110467]
[34]
Falak, A.; Tian, Y.; Yan, L.; Xu, L.; Song, Z.; Hu, H.; Dong, F.; Adamu, B.I.; Zhao, M.; Chen, P.; Wang, H.; Chu, W. Ultrathin MoOx/graphene hybrid field effect transistor sensors prepared simply by a shadow mask approach for selective ppb-level NH3 sensing with simultaneous superior response and fast recovery. Adv. Mater. Interfaces, 2020, 7(10), 1902002.
[http://dx.doi.org/10.1002/admi.201902002]
[35]
Chourasia, N.K.; Singh, A.K.; Rai, S.; Sharma, A.; Chakrabarti, P.; Srivastava, A.; Pal, B.N. A lithography-free fabrication of low-operating voltage-driven, very large channel length graphene field-effect transistor with NH3 sensing application. IEEE Trans. Electron Dev., 2020, 67(10), 4385-4391.
[http://dx.doi.org/10.1109/TED.2020.3016606]
[36]
Falak, A.; Tian, Y.; Yan, L.; Zhang, X.; Xu, L.; Song, Z.; Dong, F.; Chen, P.; Zhao, M.; Wang, H.; Chu, W. Simultaneous achievement of superior response and full recovery of titanium dioxide/graphene hybrid FET sensors for NH 3 through p- to n-mode switch. Phys. Chem. Chem. Phys., 2020, 22(29), 16701-16711.
[http://dx.doi.org/10.1039/D0CP02070B] [PMID: 32658227]
[37]
Kumar, C.; Rawat, G.; Kumar, H.; Kumar, Y.; Prakash, R.; Jit, S. Electrical and ammonia gas sensing properties of poly (3,3”'-dialkylquaterthiophene) based organic thin film transistors fabricated by floating-film transfer method. Org. Electron., 2017, 48, 53-60.
[http://dx.doi.org/10.1016/j.snb.2017.08.014]
[38]
Kumar, C.; Rawat, G.; Kumar, H.; Kumar, Y.; Kumar, A.; Prakash, R.; Jit, S. Electrical and ammonia gas sensing properties of poly (3,3”'-dialkylquaterthiophene) based organic thin film transistors fabricated by floating-film transfer method. Sensors and Actuators B: Chemical., 2018, 255, 203-209.
[http://dx.doi.org/10.1109/JSEN.2018.2845873]
[39]
Kumar, C.; Rawat, G.; Kumar, H.; Kumar, Y.; Kumar, A.; Prakash, R.; Jit, S. Electrical and ammonia gas sensing properties of PQT-12/CdSe quantum dots composite-based organic thin film transistors. IEEE Sens. J., 2018, 18(15), 6085-6091.
[http://dx.doi.org/10.1109/JSEN.2018.2845873]
[40]
Singh, A.K.; Pandey, A.; Chakrabarti, P. Poly[2,5-bis(3-tetradecylthiophen-2-yl) thieno [3,2-b] thiophene] organic polymer based-interdigitated channel enabled thin film transistor for detection of selective low ppm ammonia sensing at 25°C. IEEE Sens. J., 2020, 20(8), 4047-4055.
[http://dx.doi.org/10.1109/JSEN.2019.2963269]
[41]
Sahu, P.K.; Pandey, M.; Kumar, C.; Pandey, S.S.; Takashima, W.; Mishra, V.N.; Prakash, R. Air-stable vapor phase sensing of ammonia in sub-threshold regime of poly(2,5-bis(3-tetradecyl-thiophen-2yl)thieno(3,2-b)thiophene) based polymer thin-film transistor. Sens. Actuators B Chem., 2017, 246, 243-251.
[http://dx.doi.org/10.1016/j.snb.2017.02.063]
[42]
Das, M.; Roy, S. Polypyrrole and associated hybrid nanocomposites as chemiresistive gas sensors: A comprehensive review. Mater. Sci. Semicond. Process., 2021, 121, 105332.
[http://dx.doi.org/10.1016/j.mssp.2020.105332]
[43]
Wang, X.; Tang, Y.; Cheng, S.; Gao, Q.; Yuan, Y.; Li, A.; Guan, S. PDMS-based conductive elastomeric composite with 3D reduced graphene oxide conductive network for flexible strain sensor. Compos., Part A Appl. Sci. Manuf., 2022, 161, 107113.
[http://dx.doi.org/10.1016/j.compositesa.2022.107113]
[44]
Fang, S.; Li, F.; Liu, J.; Zhang, L.; Wang, D.; Liu, B.; Wu, S.; Tang, Z.; Guo, B. Rubber-reinforced rubbers toward the combination of high reinforcement and low energy loss. Nano Energy, 2021, 83, 105822.
[http://dx.doi.org/10.1016/j.nanoen.2021.105822]
[45]
Chen, X.; Zhang, X.; Xiang, D.; Wu, Y.; Zhao, C.; Li, H.; Li, Z.; Wang, P.; Li, Y. 3D printed high-performance spider web-like flexible strain sensors with directional strain recognition based on conductive polymer composites. Mater. Lett., 2022, 306, 130935.
[http://dx.doi.org/10.1016/j.matlet.2021.130935]
[46]
Liu, L.; Zhang, X.; Xiang, D.; Wu, Y.; Sun, D.; Shen, J.; Wang, M.; Zhao, C.; Li, H.; Li, Z.; Wang, P.; Li, Y. Highly stretchable, sensitive and wide linear responsive fabric-based strain sensors with a self-segregated carbon nanotube (CNT)/Polydimethyl-siloxane (PDMS) coating. Prog. Nat. Sci., 2022, 32(1), 34-42.
[http://dx.doi.org/10.1016/j.pnsc.2021.10.012]
[47]
Rathinasabapathi, G.; Krishnamoorthy, A. Cole-cole plot of graphene nano filler disseminated glass fiber reinforced polymer composites. Mater. Today Proc., 2021, 44, 3816-3822.
[http://dx.doi.org/10.1016/j.matpr.2020.12.335]
[48]
Luo, G.; Xie, L.; He, M.; Jaisutti, R.; Zhu, Z. Flexible fabric gas sensors based on reduced graphene-polyaniline nanocomposite for highly sensitive NH 3 detection at room temperature. Nanotechnology, 2021, 32(30), 305501.
[http://dx.doi.org/10.1088/1361-6528/abf455]
[49]
Chen, H.; Chen, J.; Liu, Y.; Li, B.; Li, H.; Zhang, X.; Lv, C.; Dong, H. Wearable dual-signal NH3 sensor with high sensitivity for non-invasive diagnosis of chronic kidney disease. Langmuir, 2023, 39(9), 3420-3430.
[http://dx.doi.org/10.1021/acs.langmuir.2c03347] [PMID: 36880227]
[50]
Xing, X.; Du, L.; Feng, D.; Wang, C.; Tian, Y.; Li, Z.; Liu, H.; Yang, D. Twistable and tailorable V2O5/PANI/GO nanocomposites textile for wearable ammonia sensing. Sens. Actuators B Chem., 2022, 351, 130944.
[http://dx.doi.org/10.1016/j.snb.2021.130944]
[51]
Chen, Y.; Yuan, M.; Zhang, Y.; Wang, X.; Ke, F.; Wang, H. One-pot synthesis of tin oxide/reduced graphene oxide composite coated fabric for wearable ammonia sensor with fast response/recovery rate. J. Alloys Compd., 2023, 931, 167585.
[http://dx.doi.org/10.1016/j.jallcom.2022.167585]
[52]
Xu, X.; Wang, Z.H.; Zhan, K.; Bao, C.X.; Zhu, Z.R.; Chang, B.; Chen, Q.C.; Jing, X.; Tao, L. Energy-efficient Flexible Ammonia Sensors Enabled by Polypyrrole-Graphene. 2021 IEEE 16th Nanotechnology Materials and Devices Conference (NMDC), Vancouver, BC, Canada 2021.
[53]
Chang, J.; Zhang, X.; Wang, Z.; Li, C.; Hu, Q.; Gao, J.; Feng, L. Polyaniline-reduced graphene oxide nanosheets for room temperature NH3 Detection. ACS Appl. Nano Mater., 2021, 4(5), 5263-5272.
[http://dx.doi.org/10.1021/acsanm.1c00633]
[54]
Gao, J.; Qin, J.; Chang, J.; Liu, H.; Wu, Z.S.; Feng, L. NH3 sensor based on 2D wormlike polypyrrole/graphene heterostructures for a self-powered integrated system. ACS Appl. Mater. Interfaces, 2020, 12(34), 38674-38681.
[http://dx.doi.org/10.1021/acsami.0c10794] [PMID: 32805960]
[55]
Nadekar, B.; Khollam, Y.B.; Shaikh, S.F.; Trimukhe, A.; Deshmukh, R.; More, P.S.; Siddiqui, M.U.H.; Rana, A.H.S.; Palaniswami, M. Plasma-polymerized thiophene-reduced graphene oxide composite film sensor for ammonia/amine detection at room temperature. Chemosensors, 2023, 11(1), 42.
[http://dx.doi.org/10.3390/chemosensors11010042]
[56]
Kundu, S.; Majumder, R.; Bhagat, B.R.; Roy, S.; Gayen, R.; Dashora, A.; Pal Chowdhury, M. An in situ synthesis of polyaniline/reduced graphene oxide nanocomposite flexible thin film on PET for the room temperature detection of trace level ammonia at ppb level. J. Mater. Sci., 2023, 58(7), 3147-3170.
[http://dx.doi.org/10.1007/s10853-023-08219-7]
[57]
Hadano, F.S.; Gavim, A.E.X.; Stefanelo, J.C.; Gusso, S.L.; Macedo, A.G.; Rodrigues, P.C.; Mohd Yusoff, A.R.; Schneider, F.K.; Deus, J.F.; José da Silva, W. NH3 sensor based on rGO-PANI composite with improved sensitivity. Sensors, 2021, 21(15), 4947.
[http://dx.doi.org/10.3390/s21154947] [PMID: 34372184]
[58]
Shoeb, M.; Mobin, M.; Ahmad, S.; Naqvi, A.H. Facile synthesis of polypyrrole coated graphene Gr/Ag–Ag2O/PPy nanocomposites for a rapid and selective response towards ammonia sensing at room temperature. J. Sci. Adv. Mater. Devices, 2021, 6(2), 223-233.
[http://dx.doi.org/10.1016/j.jsamd.2021.02.003]
[59]
Casanova-Chafer, J.; Umek, P.; Acosta, S.; Bittencourt, C.; Llobet, E. Graphene loading with polypyrrole nanoparticles for trace-level detection of ammonia at room temperature. ACS Appl. Mater. Interfaces, 2021, 13(34), 40909-40921.
[http://dx.doi.org/10.1021/acsami.1c10559] [PMID: 34410097]
[60]
Li, Q.; Xu, M.; Jiang, C.; Song, S.; Li, T.; Sun, M.; Chen, W.; Peng, H. Highly sensitive graphene-based ammonia sensor enhanced by electrophoretic deposition of MXene. Carbon, 2023, 202, 561-570.
[http://dx.doi.org/10.1016/j.carbon.2022.11.033]
[61]
Shahmoradi, A.; Hosseini, A.; Akbarinejad, A.; Alizadeh, N. Noninvasive detection of ammonia in the breath of hemodialysis patients using a highly sensitive ammonia sensor based on a polypyrrole/sulfonated graphene nanocomposite. Anal. Chem., 2021, 93(17), 6706-6714.
[http://dx.doi.org/10.1021/acs.analchem.1c00171] [PMID: 33881307]
[62]
Wu, G.; Du, H.; Lee, D.; Cha, Y.L.; Kim, W.; Zhang, X.; Kim, D.J. Polyaniline/graphene-functionalized flexible waste mask sensors for ammonia and volatile sulfur compound monitoring. ACS Appl. Mater. Interfaces, 2022, 14(50), 56056-56064.
[http://dx.doi.org/10.1021/acsami.2c15443] [PMID: 36507693]
[63]
Mohammed, H.Y.; Farea, M.A.; Sayyad, P.W.; Ingle, N.N.; Al-Gahouari, T.; Mahadik, M.M.; Bodkhe, G.A.; Shirsat, S.M.; Shirsat, M.D. Selective and sensitive chemiresistive sensors based on polyaniline/graphene oxide nanocomposite: A cost-effective approach. J. Sci. Adv. Mater. Devices, 2022, 7(1), 100391.
[http://dx.doi.org/10.1016/j.jsamd.2021.08.004]
[64]
Lu, X.; Chen, Z.; Wu, H.; Cao, E.; Wang, Y.; Du, S.; Wu, Y.; Ren, Z. Isolating metallophthalocyanine sites into graphene-supported microporous polyaniline enables highly efficient sensing of ammonia. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(7), 4150-4158.
[http://dx.doi.org/10.1039/D0TA10451E]
[65]
Javadian-Saraf, A.; Hosseini, E.; Wiltshire, B.D.; Zarifi, M.H.; Arjmand, M. Graphene oxide/polyaniline-based microwave split-ring resonator: A versatile platform towards ammonia sensing. J. Hazard. Mater., 2021, 418, 126283.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126283] [PMID: 34116273]
[66]
Hung, T.T.; Chung, M.H.; Wu, J.Y.; Shen, C.Y. A Room-temperature surface acoustic wave ammonia sensor based on rGO/DPP2T-TT composite films. Sensors, 2022, 22(14), 5280.
[http://dx.doi.org/10.3390/s22145280] [PMID: 35890960]
[67]
Li, Q.; Chen, W.; Liu, W.; Sun, M.; Xu, M.; Peng, H.; Wu, H.; Song, S.; Li, T.; Tang, X. Highly sensitive graphene ammonia sensor enhanced by concentrated nitric acid treatment. Appl. Surf. Sci., 2022, 586, 152689.
[http://dx.doi.org/10.1016/j.apsusc.2022.152689]
[68]
Yabaş, E.; Biçer, E.; Altındal, A. Novel reduced graphene oxide/zinc phthalocyanine and reduced graphene oxide/cobalt phthalocyanine hybrids as high sensitivity room temperature volatile organic compound gas sensors. J. Mol. Struct., 2023, 1271, 134076.
[http://dx.doi.org/10.1016/j.molstruc.2022.134076]
[69]
Kumar, R.; Singh, R.; Kumar, A.; Kashyap, R.; Kumar, D.; Kumar, M. Chemically functionalized graphene oxide thin films for selective ammonia gas sensing. Mater. Res. Express, 2020, 7(1), 015612.
[http://dx.doi.org/10.1088/2053-1591/ab66f1]
[70]
Lee, S.W.; Jung, H.G.; Jang, J.W.; Park, D.; Lee, D.; Kim, I.; Kim, Y.; Cheong, D.Y.; Hwang, K.S.; Lee, G.; Yoon, D.S. Graphene-based electronic textile sheet for highly sensitive detection of NO2 and NH3. Sens. Actuators B Chem., 2021, 345, 130361.
[http://dx.doi.org/10.1016/j.snb.2021.130361]
[71]
Xu, B.; Huang, J.; Ding, L.; Zhang, H.; Zhang, H. A sensitive ammonia sensor using long period fiber grating coated with graphene oxide/cellulose acetate. IEEE Sens. J., 2021, 21(15), 16691-16700.
[http://dx.doi.org/10.1109/JSEN.2021.3081745]
[72]
Dacrory, S.; Saeed, A.M.; Abouzeid, R.E. A novel ammonia sensor based on cellulose/graphene oxide functionalized with ethylenediamine. Express Polym. Lett., 2022, 16(8), 786-797.
[http://dx.doi.org/10.3144/expresspolymlett.2022.58]
[73]
Jilani, A.; Hussain, S.Z.; Ansari, M.O.; Kumar, R.; Dustgeer, M.R.; Othman, M.H.D.; Barakat, M.A.; Melaibari, A.A. Facile synthesis of silver decorated reduced graphene oxide@zinc oxide as ternary nanocomposite: An efficient photocatalyst for the enhanced degradation of organic dye under UV–visible light. J. Mater. Sci., 2021, 56(12), 7434-7450.
[http://dx.doi.org/10.1007/s10853-021-05783-8]
[74]
Chen, S.Y.; Wu, M.; Shi, L.; Hong, C.L. Graphene-oxide-loaded Fe3O4-Pd-Ag nanoparticles allow sensitive detection of CEA through a signal enhancement strategy. ChemistrySelect, 2023, 8, 202203063.
[75]
Tran, Q.T.; Hoa, H.T.M.; Yoo, D.H.; Cuong, T.V.; Hur, S.H.; Chung, J.S.; Kim, E.J.; Kohl, P.A. Reduced graphene oxide as an over-coating layer on silver nanostructures for detecting NH3 gas at room temperature. Sens. Actuators B Chem., 2014, 194, 45-50.
[http://dx.doi.org/10.1016/j.snb.2013.12.062]
[76]
Lakshmanamoorthy, K.; Manivannan, S. Silver microrods decorated reduced graphene oxide based flexible film for room temperature NH3 vapor sensing. Mater. Today Proc., 2022, 68, 105-109.
[http://dx.doi.org/10.1016/j.matpr.2022.06.180]
[77]
Su, P.G.; Tsai, M.S.; Lu, C.J. Fabrication of noble metal (Au, Ag, Pt)/polythiophene/reduced graphene oxide ternary nanocomposites for NH 3 gas sensing at room temperature. Anal. Methods, 2022, 14(41), 4113-4121.
[http://dx.doi.org/10.1039/D2AY01317G] [PMID: 36214083]
[78]
Kakanakova-Georgieva, A.; Giannazzo, F.; Nicotra, G.; Cora, I.; Gueorguiev, G.K.; Persson, P.O.Å.; Pécz, B. Material proposal for 2D indium oxide. Appl. Surf. Sci., 2021, 548, 149275.
[http://dx.doi.org/10.1016/j.apsusc.2021.149275]
[79]
Srirattanapibul, S.; Nakarungsee, P.; Issro, C.; Tang, I.M.; Thongmee, S. Performance of NiO intercalated rGO nanocomposites for NH3 sensing at room temperature. Mater. Sci. Semicond. Process., 2022, 137, 106221.
[http://dx.doi.org/10.1016/j.mssp.2021.106221]
[80]
Srirattanapibul, S.; Nakarungsee, P.; Issro, C.; Tang, I.M.; Thongmee, S. Enhanced room temperature NH3 sensing of rGO/Co3O4 nanocomposites. Mater. Chem. Phys., 2021, 272, 125033.
[http://dx.doi.org/10.1016/j.matchemphys.2021.125033]
[81]
Jha, R.; Nanda, A.; Bhat, N. Ammonia sensing performance of RGO-based chemiresistive gas sensor decorated with exfoliated MoSe2 nanosheets. IEEE Sens. J., 2021, 21(9), 10211-10218.
[http://dx.doi.org/10.1109/JSEN.2021.3061740]
[82]
Gupta, S.; Ravikant, C.; Kaur, A. One-pot wet chemical synthesis of reduced graphene oxide-zinc oxide nanocomposites for fast and selective ammonia sensing at room temperature. Sens. Actuators A Phys., 2021, 331, 112965.
[http://dx.doi.org/10.1016/j.sna.2021.112965]
[83]
Sima, Z.; Ma, Z.; Song, P.; Wang, Q. Ultra-low concentration detection of NH3 using rGO/Cu2O nanocomposites at low temperature. J. Mater. Sci. Mater. Electron., 2021, 32(17), 22617-22628.
[http://dx.doi.org/10.1007/s10854-021-06746-0]
[84]
Amarnath, M.; Gurunathan, K. Selective ammonia sensing response of vanadium doped cerium oxide nanorods wrapped reduced graphene oxide electrodes at room temperature. Sens. Actuators B Chem., 2021, 336, 129679.
[http://dx.doi.org/10.1016/j.snb.2021.129679]
[85]
Ou, Y.; Zhou, Y.; Guo, Y.; Zhu, X.; Liu, B.; Gao, C. Room-temperature high-performance ammonia gas sensing based on rGO nanosheets/MoO3 nanoribbons nanocomposites film. FlatChem, 2022, 32, 100333.
[http://dx.doi.org/10.1016/j.flatc.2021.100333]
[86]
Ghule, B.G.; Shinde, N.M.; Raut, S.D.; Shaikh, S.F.; Al-Enizi, A.M.; Kim, K.H.; Mane, R.S. Porous metal-graphene oxide nanocomposite sensors with high ammonia detectability. J. Colloid Interface Sci., 2021, 589, 401-410.
[http://dx.doi.org/10.1016/j.jcis.2020.12.096] [PMID: 33482537]
[87]
Linto Sibi, S.P.; Rajkumar, M.; Govindharaj, K.; Mobika, J.; Nithya Priya, V.; Rajendra Kumar, R.T. Electronic sensitization enhanced p-type ammonia gas sensing of zinc doped MoS2/RGO composites. Anal. Chim. Acta, 2023, 1248, 340932.
[http://dx.doi.org/10.1016/j.aca.2023.340932] [PMID: 36813461]
[88]
Ayesh, A.I.; El-Muraikhi, M.D. Adsorption of ammonia on ZrOx-modified graphene nanoribbon: A first-principle investigation. J. Mol. Model., 2023, 29(1), 15.
[http://dx.doi.org/10.1007/s00894-022-05417-z] [PMID: 36544072]
[89]
Jagannathan, M.; Dhinasekaran, D.; Rajendran, A.R.; Subramaniam, B. Selective room temperature ammonia gas sensor using nanostructured ZnO/CuO@graphene on paper substrate. Sens. Actuators B Chem., 2022, 350, 130833.
[http://dx.doi.org/10.1016/j.snb.2021.130833]
[90]
Thomas, A.; Jeyaprakash, B.G. Selective detection of ammonia by rGO decorated nanostructured ZnO for poultry and farm field applications. Synth. Met., 2022, 290, 117140.
[http://dx.doi.org/10.1016/j.synthmet.2022.117140]

© 2024 Bentham Science Publishers | Privacy Policy