Generic placeholder image

Current Diabetes Reviews

Editor-in-Chief

ISSN (Print): 1573-3998
ISSN (Online): 1875-6417

Review Article

An Insight of Naturally Occurring Phytoconstituents and Novel Approaches Towards the Treatment of Diabetes

Author(s): Zulfa Nooreen*, Awani Kumar Rai, Fariha Summayya and Sudeep Tandon

Volume 20, Issue 3, 2024

Published on: 11 September, 2023

Article ID: e290823220456 Pages: 13

DOI: 10.2174/1573399820666230829094724

Price: $65

Abstract

Background: The rising in diabetes incidents has clearly become one main worldwide health problem. Individuals suffering from diabetes are still more susceptible to many long-term and short-term side effects, which most often cause fatalities. Even though chemically synthesized anti-diabetic entities are capable of helping manage and treat, there has been significant risks related with their prolong and repetitive use. Hence, there is a requirement for safer and novel approaches that might be formed and utilized.

Objective: Aim of the present review is to explain the naturally occurring phytochemicals and novel approach as anti-diabetic agents in the treatment of diabetes and its related issues.

Method: A survey of Google scholar, Research Gate, Pubmed, Science Direct, NCBI database was carried out conducted to determine a most hopeful phytochemicals and novel drug delivery systems in the management of diabetes.

Result: The study stressed the significance of phytomolecules and some novel approaches researched or reported in the literature for the management and cure of diabetes. It is suggested that changes in lifestyle can help patients and like nutritional support, assessment and lifestyle guidance must be individualized based on physical and functional capacity. Further evaluations and improved preventative medicine were the result of improving patient outcomes.

Conclusion: Conventional or synthetic drugs provide relief for short time but nanoformulations of phytomolecules offer an improved therapeutic with fewer negative side effects. Herbal medicines are rich in phytoconstituents and possess variety of health benefits. This review is compilation of phytoconstituents and novel drug delivery system of phytomolecules i.e. nanoparticles, niosomes, microsphere, microparticle and others.

[1]
Patel DK, Prasad SK, Kumar R, Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac J Trop Biomed 2012; 2(4): 320-30.
[http://dx.doi.org/10.1016/S2221-1691(12)60032-X] [PMID: 23569923]
[2]
Chaudhary N, Tyagi N. Daibetes mellitus: An overview. Int J Res Dev Pharm Life Sci 2018; 7(4): 3030-3.
[3]
Cefalu WT. Insulin resistance: Cellular and clinical concepts. Exp Biol Med 2001; 226(1): 13-26.
[http://dx.doi.org/10.1177/153537020122600103] [PMID: 11368233]
[4]
Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-based antidiabetic nanoformulations: The emerging paradigm for effective therapy. Int J Mol Sci 2020; 21(6): 2217.
[http://dx.doi.org/10.3390/ijms21062217] [PMID: 32210082]
[5]
Wong CY, Al-Salami H, Dass CR. Recent advancements in oral administration of insulin-loaded liposomal drug delivery systems for diabetes mellitus. Int J Pharm 2018; 549(1-2): 201-17.
[http://dx.doi.org/10.1016/j.ijpharm.2018.07.041] [PMID: 30071309]
[6]
Patterson CC, Karuranga S, Salpea P, et al. Worldwide estimates of incidence, prevalence and mortality of type 1 diabetes in children and adolescents: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res Clin Pract 2019; 157: 107842.
[http://dx.doi.org/10.1016/j.diabres.2019.107842] [PMID: 31518658]
[7]
Treister-Goltzman Y, Peleg R. Literature review of type 2 diabetes mellitus among minority Muslim populations in Israel. World J Diabetes 2015; 6(1): 192-9.
[http://dx.doi.org/10.4239/wjd.v6.i1.192] [PMID: 25685290]
[8]
Banday MZ, Sameer AS, Nissar S. Pathophysiology of diabetes: An overview. Avicenna J Med 2020; 10(4): 174-88.
[http://dx.doi.org/10.4103/ajm.ajm_53_20] [PMID: 33437689]
[9]
Knip M, Siljander H. Autoimmune mechanisms in type 1 diabetes. Autoimmun Rev 2008; 7(7): 550-7.
[http://dx.doi.org/10.1016/j.autrev.2008.04.008]
[10]
Muoio DM, Newgard CB. Molecular and metabolic mechanisms of insulin resistance and β-cell failure in type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9(3): 193-205.
[http://dx.doi.org/10.1038/nrm2327] [PMID: 18200017]
[11]
Huntley AL. The health benefits of berry flavonoids for menopausal women: Cardiovascular disease, cancer and cognition. Maturitas 2009; 63(4): 297-301.
[http://dx.doi.org/10.1016/j.maturitas.2009.05.005] [PMID: 19520526]
[12]
Rizvi SI, Mishra N. Traditional Indian medicines used for the management of diabetes mellitus. J Diabetes Res 2013; 2013: 1-11.
[http://dx.doi.org/10.1155/2013/712092] [PMID: 23841105]
[13]
Sharma R, Arya V. A review on fruits having anti-diabetic potential. J Chem Pharm Res 2011; 3(2): 204-12.
[14]
Rao MU, Sreenivasulu M, Chengaiah B, Reddy KJ, Chetty CM. Herbal medicines for diabetes mellitus: A review. Int J Pharm Tech Res 2010; 2(3): 1883-92.
[http://dx.doi.org/0.5138/09750185.2181]
[15]
Soumyanath A. Traditional medicines for modern times: Antidiabetic plants. (1st ed.), CRC press 2005.
[http://dx.doi.org/10.1201/9781420019001]
[16]
Sabahat R, Azhar S, Sajjad R, et al. Effect of citrus flavanones on diabetes: A Systematic review. Curr Diabetes Rev 2023; 19(5): e070722206679.
[http://dx.doi.org/10.2174/1573399819666220707102237] [PMID: 35796456]
[17]
Jha P, Kumari S, Jobby R, Desai N, Ali A. Dietary phytonutrients in the prevention of diabetes-related complications. Curr Diabetes Rev 2020; 16(7): 657-73.
[http://dx.doi.org/10.2174/1573399815666190906151319] [PMID: 31490762]
[18]
Dehnavi Z, Ayatollahi H, Hemmat M, Abbasi R. Health information technology and diabetes management: A review of motivational and inhibitory factors. Curr Diabetes Rev 2021; 17(3): 268-79.
[http://dx.doi.org/10.2174/1573399816666200719012849] [PMID: 32682380]
[19]
Jung M, Park M, Lee H, Kang YH, Kang E, Kim S. Antidiabetic agents from medicinal plants. Curr Med Chem 2006; 13(10): 1203-18.
[http://dx.doi.org/10.2174/092986706776360860] [PMID: 16719780]
[20]
Frankish N, de Sousa Menezes F, Mills C, Sheridan H. Enhancement of insulin release from the β-cell line INS-1 by an ethanolic extract of Bauhinia variegata and its major constituent roseoside. Planta Med 2010; 76(10): 995-7.
[http://dx.doi.org/10.1055/s-0029-1240868] [PMID: 20143296]
[21]
Ayodhya S, Kusum S, Anjali S. Hypoglycaemic activity of different extracts of various herbal plants. Int J Res Ayurveda Pharm 2010; 1(1): 212-24.
[22]
Chauhan A, Sharma PK, Srivastava P, Kumar N, Dudhe R. Plants having potential antidiabetic activity: A review. Pharm Lett 2010; 2(3): 369-87.
[23]
Qa’dan F, Verspohl EJ, Nahrstedt A, Petereit F, Matalka KZ. Cinchonain Ib isolated from Eriobotrya japonica induces insulin secretion in vitro and in vivo. J Ethnopharmacol 2009; 124(2): 224-7.
[http://dx.doi.org/10.1016/j.jep.2009.04.023] [PMID: 19397981]
[24]
Singh LW. Traditional medicinal plants of Manipur as anti-diabetics. J Med Plants Res 2011; 5(5): 677-87.
[25]
Ko BS, Jang JS, Hong SM, et al. Changes in components, glycyrrhizin and glycyrrhetinic acid, in raw Glycyrrhiza uralensis Fisch, modify insulin sensitizing and insulinotropic actions. Biosci Biotechnol Biochem 2007; 71(6): 1452-61.
[http://dx.doi.org/10.1271/bbb.60533] [PMID: 17587675]
[26]
Saxena A, Vikram NK. Role of selected Indian plants in management of type 2 diabetes: A review. J Altern Complement Med 2004; 10(2): 369-78.
[http://dx.doi.org/10.1089/107555304323062365] [PMID: 15165418]
[27]
Jeppesen PB, Gregersen S, Alstrup KK, Hermansen K. Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: Studies in the diabetic Goto-Kakizaki (GK) rats. Phytomedicine 2002; 9(1): 9-14.
[http://dx.doi.org/10.1078/0944-7113-00081] [PMID: 11924770]
[28]
Mirghazanfari SM, Keshavarz M, Nabavizadeh F, Soltani N, Kamalinejad M. The effect of “Teucrium polium L.” extracts on insulin release from in situ isolated perfused rat pancreas in a newly modified isolation method: The role of Ca2+ and K+ channels. Iran Biomed J 2010; 14(4): 178-85.
[PMID: 21283261]
[29]
Abdel-Zaher AO, Salim SY, Assaf MH, Abdel-Hady RH. Antidiabetic activity and toxicity of Zizyphus spina-christi leaves. J Ethnopharmacol 2005; 101(1-3): 129-38.
[http://dx.doi.org/10.1016/j.jep.2005.04.007] [PMID: 16009520]
[30]
Sultana N, Saeed Saify Z. Naturally occurring and synthetic agents as potential anti-inflammatory and immunomodulants. Antinflam Anti-Alle Agents Med Chem 2012; 11(1): 3-19.
[http://dx.doi.org/10.2174/187152312803476264]
[31]
Flores-Bocanegra L, González-Andrade M, Bye R, Linares E, Mata R. α-Glucosidase inhibitors from Salvia circinata. J Nat Prod 2017; 80(5): 1584-93.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00155] [PMID: 28422509]
[32]
Murthy PS, Moorthy R, Prabhu KM, Puri D. Pharmaceuticals Inc. Anti-diabetic and cholesterol lowering preparation from fenugreek seeds. Patent US 7,815,946, 2010.
[33]
Ke Yuan, Li Jingwan, Yang Luo. Natural hypoglycemic agent for improving bioavailability and avoiding hyperchloremia. Patent CN108498590, 2018.
[34]
Wang S, Lu A, Zhang L, et al. Extraction and purification of pumpkin polysaccharides and their hypoglycemic effect. Int J Biol Macromol 2017; 98: 182-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.01.114] [PMID: 28153462]
[35]
Saha DI, Ghosh SK, Das TR, Mishra SB. Hypoglycemic and antihyperlipidemic effects of Adiantum caudatum in alloxan induced diabetes in rats. Asian J Pharm Clin Res 2016; 9(1): 361-3.
[36]
Zhang Y, Wu M, Dai W, et al. Gold nanoclusters for controlled insulin release and glucose regulation in diabetes. Nanoscale 2019; 11(13): 6471-9.
[http://dx.doi.org/10.1039/C9NR00668K] [PMID: 30892368]
[37]
Mostafa DM, Abd El-Alim SH, Asfour MH, Al-Okbi SY, Mohamed DA, Awad G. Transdermal nanoemulsions of Foeniculum vulgare Mill. essential oil: Preparation, characterization and evaluation of antidiabetic potential. J Drug Deliv Sci Technol 2015; 29: 99-106.
[http://dx.doi.org/10.1016/j.jddst.2015.06.021]
[38]
Chitkara D, Nikalaje SK, Mittal A, Chand M, Kumar N. Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model. Drug Deliv Transl Res 2012; 2(2): 112-23.
[http://dx.doi.org/10.1007/s13346-012-0063-5] [PMID: 25786720]
[39]
El-Far YM, Zakaria MM, Gabr MM, El Gayar AM, El-Sherbiny IM, Eissa LA. A newly developed silymarin nanoformulation as a potential antidiabetic agent in experimental diabetes. Nanomedicine 2016; 11(19): 2581-602.
[http://dx.doi.org/10.2217/nnm-2016-0204] [PMID: 27623396]
[40]
Negahdari R, Bohlouli S, Sharifi S, et al. Therapeutic benefits of rutin and its nanoformulations. Phytother Res 2021; 35(4): 1719-38.
[http://dx.doi.org/10.1002/ptr.6904] [PMID: 33058407]
[41]
El-Ridy MS, Yehia SA, Elsayed I, Younis MM, Abdel-Rahman RF, El-Gamil MA. Metformin hydrochloride and wound healing: From nanoformulation to pharmacological evaluation. J Liposome Res 2019; 29(4): 343-56.
[http://dx.doi.org/10.1080/08982104.2018.1556291] [PMID: 30526146]
[42]
Panwar R, Raghuwanshi N, Srivastava AK, Sharma AK, Pruthi V. In vivo sustained release of nanoencapsulated ferulic acid and its impact in induced diabetes. Mater Sci Eng C 2018; 92: 381-92.
[http://dx.doi.org/10.1016/j.msec.2018.06.055] [PMID: 30184764]
[43]
Akolade JO, Oloyede HOB, Onyenekwe PC. Encapsulation in chitosan-based polyelectrolyte complexes enhances antidiabetic activity of curcumin. J Funct Foods 2017; 35: 584-94.
[http://dx.doi.org/10.1016/j.jff.2017.06.023]
[44]
Rani R, Dahiya S, Dhingra D, Dilbaghi N, Kim KH, Kumar S. Improvement of antihyperglycemic activity of nano-thymoquinone in rat model of type-2 diabetes. Chem Biol Interact 2018; 295: 119-32.
[http://dx.doi.org/10.1016/j.cbi.2018.02.006] [PMID: 29421519]
[45]
Harakeh S, Almuhayawi M, Jaouni SA, et al. Antidiabetic effects of novel ellagic acid nanoformulation: Insulin-secreting and anti-apoptosis effects. Saudi J Biol Sci 2020; 27(12): 3474-80.
[http://dx.doi.org/10.1016/j.sjbs.2020.09.060] [PMID: 33304158]
[46]
Ahmed F, Husain Q, Ansari MO, Shadab GGHA. Antidiabetic and oxidative stress assessment of bio-enzymatically synthesized zinc oxide nanoformulation on streptozotocin-induced hyperglycemic mice. Appl Nanosci 2020; 10(3): 879-93.
[http://dx.doi.org/10.1007/s13204-019-01169-0]
[47]
Salvioni L, Fiandra L, Del Curto MD, et al. Oral delivery of insulin via polyethylene imine-based nanoparticles for colonic release allows glycemic control in diabetic rats. Pharmacol Res 2016; 110: 122-30.
[http://dx.doi.org/10.1016/j.phrs.2016.05.016] [PMID: 27181095]
[48]
Santos SHS, Giani JF, Burghi V, et al. Oral administration of angiotensin-(1–7) ameliorates type 2 diabetes in rats. J Mol Med 2014; 92(3): 255-65.
[http://dx.doi.org/10.1007/s00109-013-1087-0] [PMID: 24162089]
[49]
Patel P, Pailla SR, Rangaraj N, Cheruvu HS, Dodoala S, Sampathi S. Quality by design approach for developing lipid-based nanoformulations of gliclazide to improve oral bioavailability and anti-diabetic activity. AAPS PharmSciTech 2019; 20(2): 45.
[http://dx.doi.org/10.1208/s12249-018-1214-x] [PMID: 30617566]
[50]
Ucisik MH, Küpcü S, Schuster B, Sleytr UB. Characterization of curcuEmulsomes: Nanoformulation for enhanced solubility and delivery of curcumin. J Nanobiotechnology 2013; 11(1): 37.
[http://dx.doi.org/10.1186/1477-3155-11-37] [PMID: 24314310]
[51]
Tiwari A, Kesharwani P, Gajbhiye V, Jain NK. Synthesis and characterization of dendro-PLGA nanoconjugate for protein stabilization. Colloids Surf B Biointerfaces 2015; 134: 279-86.
[http://dx.doi.org/10.1016/j.colsurfb.2015.06.064] [PMID: 26209778]
[52]
Singh V, Sagar P, Kaul S, Sandhir R, Singhal NK. Liver phosphoenolpyruvate carboxykinase-1 downregulation via siRNA-functionalized graphene oxide nanosheets restores glucose homeostasis in a type 2 diabetes mellitus in vivo model. Bioconjug Chem 2021; 32(2): 259-78.
[http://dx.doi.org/10.1021/acs.bioconjchem.0c00645] [PMID: 33347265]
[53]
Mishra A, Rathore S, Marothia D, Chauhan CS. Formulation and evaluation of floating microspheres of an anti-diabetic agent. Int J Drug Dev Res 2018; 10(2): 7-11.
[54]
Phillips B, Nylander K, Harnaha J, et al. A microsphere-based vaccine prevents and reverses new-onset autoimmune diabetes. Diabetes 2008; 57(6): 1544-55.
[http://dx.doi.org/10.2337/db07-0507] [PMID: 18316361]
[55]
Yu J, Wang Q, Liu H, et al. Glucose-responsive microspheres as a smart drug delivery system for controlled release of insulin. Eur J Drug Metab Pharmacokinet 2020; 45(1): 113-21.
[http://dx.doi.org/10.1007/s13318-019-00588-2] [PMID: 31676984]
[56]
Kumar K, Pant NC, Ahmad S, et al. Development and evaluation of floating microspheres of curcumin in alloxan-induced diabetic rats. Trop J Pharm Res 2016; 15(9): 1819-25.
[http://dx.doi.org/10.4314/tjpr.v15i9.1]
[57]
Vadaliya SK, Vadaliya KR, Desai HT, Patel JK. Formulation and in vitro evaluation of floating microspheres of anti-diabetic drug prepared by solvent evaporation method. Int J Pharma Chemi Sci 2013; 2(1): 397-403.
[58]
Neerja G, Ruby N. CAN promoted synthesis of amid derivatives green technology for pharmaceuticals. Int J Pharma Bio Sci 2010; (3): 1-7.
[59]
Chakra BK, Karan S, Das B, Debnath S, Chatterjee TK. A controlled release microsphere formulation of an Anti-Diabetic drug and characterization of the microsphere. Int J Pharm Pharm Sci 2018; 10(10): 30-8.
[http://dx.doi.org/10.22159/ijpps.2018v10i10.27541]
[60]
Waghulde MR, Naik JB. Poly-e-caprolactone-loaded miglitol microspheres for the treatment of type-2 diabetes mellitus using the response surface methodology. J Taibah Univ Med Sci 2016; 11(4): 364-73.
[http://dx.doi.org/10.1016/j.jtumed.2016.03.006] [PMID: 31435265]
[61]
Zhang H, Wang W, Li H, Peng Y, Zhang Z. Microspheres for the oral delivery of insulin: Preparation, evaluation and hypoglycaemic effect in streptozotocin-induced diabetic rats. Drug Dev Ind Pharm 2018; 44(1): 109-15.
[http://dx.doi.org/10.1080/03639045.2017.1386197] [PMID: 28956663]
[62]
Soni SD, Song W, West JL, Khera M. Nitric oxide-releasing polymeric microspheres improve diabetes-related erectile dysfunction. J Sex Med 2013; 10(8): 1915-25.
[http://dx.doi.org/10.1111/jsm.12216] [PMID: 23751157]
[63]
Shi M, Gao Y, Lee L, et al. Adaptive gelatin microspheres enhanced stem cell delivery and integration with diabetic wounds to activate skin tissue regeneration. Front Bioeng Biotechnol 2022; 10: 813805.
[http://dx.doi.org/10.3389/fbioe.2022.813805] [PMID: 35433645]
[64]
Baxter SA. Microsphere basd composition for preventing and/or reversing new onset autoimmune diabetes. Patent US 105168146A, 2015.
[65]
Tiwari Y, Vinode R, Biltherey A, et al. Development and characterization of carbopol PVP microspheres of metformin HCl. Int J Pharma Res Applied 2023; 8(1): 1469-77.
[http://dx.doi.org/10.35629/7781-080114691477]
[66]
Kumar M, Mishra MK, Srivastava R, Patel AK. Formulation and characterization of a floating microsphere of glimepiride by using solvent evaporation technique. Int J for Pharm Res Scholars 2021; 10(1): 12-27.
[67]
Allamneni Y, Reddy BV, Chary PD, Rao NV, Kumar SC, Kalekar AK. Performance evaluation of mucoadhesive potential of sodium alginate on microspheres containing an anti-diabetic drug: Glipizide. Int J Pharm Sci Drug Res 2012; 4(2): 115-22.
[68]
Gaba P, Singh S, Gaba M, Gupta GD. Galactomannan gum coated mucoadhesive microspheres of glipizide for treatment of type 2 diabetes mellitus: In vitro and in vivo evaluation. Saudi Pharm J 2011; 19(3): 143-52.
[http://dx.doi.org/10.1016/j.jsps.2011.02.001] [PMID: 23960752]
[69]
Kumari B, Khansili A, Kumar M. Development and optimization of Vildagliptin loaded floating microspheres using central composite design: In vitro and in vivo evaluation. Ann Rom Soc Cell Biol 2021; 20: 12742-55.
[70]
Dewan I, Khandaker SI, Rana MS. Formulation, assessment and compatibility analysis of different polymers loaded microspheres by non aqueous solvent evaporation technique: In vitro-in vivo study of glibenclamide as a model drug. Int J Pharm Sci Res 2015; 6(11): 4668.
[71]
Ge Y, Hu Z, Chen J, Qin Y, Wu F, Jin T. Exenatide microspheres for monthly controlled-release aided by magnesium hydroxide. Pharmaceutics 2021; 13(6): 816.
[http://dx.doi.org/10.3390/pharmaceutics13060816] [PMID: 34070856]
[72]
Singh S, Shaikh A. Development of mucoadhesive microspheres for nasal drug delivery of nateglinide for effective management of diabetes mellitus. Lat Am J Pharm 2015; 34(7): 1350-7.
[http://dx.doi.org/10.3109/10717544.2011.557787]
[73]
Semalty A, Semwal A. Gastroretentive floating microspheres of Nateglinide: Formulation, evaluation and effect of drug-polymer ratio. INDIAN DRUGS 2014; 51(6): 37-43.
[http://dx.doi.org/10.53879/id.51.06.10083]
[74]
Ubaidulla U, Khar RK, Ahmed FJ, Panda AK. Development and in vivo evaluation of insulin-loaded chitosan phthalate microspheres for oral delivery. J Pharm Pharmacol 2010; 59(10): 1345-51.
[http://dx.doi.org/10.1211/jpp.59.10.0003] [PMID: 17910808]
[75]
Mumuni AM, Tenderwealth CJ, Adedokun OM, Kenechukwu FC, Youngson CD, Kenneth CO. Microspheres of insulin-Eudragit complex: Formulation, characterization and in vivo studies. Afr J Pharm Pharmacol 2017; 11(29): 327-41.
[http://dx.doi.org/10.5897/AJPP2017.4796]
[76]
Teaima H. Niosomes versus proniosomes as promising drug delivery systems in treatment of diabetes mellitus. Int J Appl Pharm 2022; 14(5): 32-40.
[http://dx.doi.org/10.22159/ijap.2022v14i5.44039]
[77]
Sirovich L. Turbulence and the dynamics of coherent structures. I. Coherent structures. Q Appl Math 1987; 45(3): 561-71.
[http://dx.doi.org/10.1090/qam/910462]
[78]
Sultan AA, El-Gizawy SA, Osman MA, El Maghraby GM. Niosomes for oral delivery of nateglinide: In situ–in vivo correlation. J Liposome Res 2018; 28(3): 209-17.
[http://dx.doi.org/10.1080/08982104.2017.1343835] [PMID: 28618876]
[79]
Sahoo RK, Biswas N, Guha A, Kuotsu K. Maltodextrin based proniosomes of nateglinide: Bioavailability assessment. Int J Biol Macromol 2014; 69: 430-4.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.05.075] [PMID: 24909314]
[80]
Prasad PS, Imam SS, Aqil M, Sultana Y, Ali A. QbD-based carbopol transgel formulation: Characterization, pharmacokinetic assessment and therapeutic efficacy in diabetes. Drug Deliv 2016; 23(3): 1047-56.
[http://dx.doi.org/10.3109/10717544.2014.936536] [PMID: 25005582]
[81]
Haider MF, Kanoujia J, Tripathi CB, Arya M, Kaithwas G, Saraf SA. Pioglitazone loaded vesicular carriers for anti-diabetic activity: Development and optimization as per central composite design. J Pharm Sci Pharmacol 2015; 2(1): 11-20.
[http://dx.doi.org/10.1166/jpsp.2015.1042]
[82]
Samed N, Sharma V, Sundaramurthy A. Hydrogen bonded niosomes for encapsulation and release of hydrophilic and hydrophobic anti-diabetic drugs: An efficient system for oral anti-diabetic formulation. Appl Surf Sci 2018; 449: 567-73.
[http://dx.doi.org/10.1016/j.apsusc.2017.11.055]
[83]
Kumar B, Jeyabalan G. Development of anti-diabetic niosomes formulation containing metformin and gliclazide. Indian J Pharmaceut Biol Res 2017; 5(2): 24-8.
[http://dx.doi.org/10.30750/ijpbr.5.2.5]
[84]
Alam MS, Ahad A, Abidin L, Aqil M, Mir SR, Mujeeb M. Embelin-loaded oral niosomes ameliorate streptozotocin-induced diabetes in Wistar rats. Biomed Pharmacother 2018; 97: 1514-20.
[http://dx.doi.org/10.1016/j.biopha.2017.11.073] [PMID: 29793314]
[85]
Chung HS, Hwang SY, Kim JA, et al. Implications of fasting plasma glucose variability on the risk of incident peripheral artery disease in a population without diabetes: A nationwide population-based cohort study. Cardiovasc Diabetol 2022; 21(1): 15.
[http://dx.doi.org/10.1186/s12933-022-01448-1] [PMID: 35101050]
[86]
Tramontano AF, Lyubarova R, Tsiakos J, Palaia T, Deleon JR, Ragolia L. Circulating endothelial microparticles in diabetes mellitus 2010; 1-8.
[http://dx.doi.org/10.1155/2010/250476]
[87]
Koga H, Sugiyama S, Kugiyama K, et al. Elevated levels of VE-cadherin-positive endothelial microparticles in patients with type 2 diabetes mellitus and coronary artery disease. J Am Coll Cardiol 2005; 45(10): 1622-30.
[http://dx.doi.org/10.1016/j.jacc.2005.02.047] [PMID: 15893178]
[88]
Wang G, Ma K, Zhang Y, et al. Platelet microparticles contribute to aortic vascular endothelial injury in diabetes via the mTORC1 pathway. Acta Pharmacol Sin 2019; 40(4): 468-76.
[http://dx.doi.org/10.1038/s41401-018-0186-4] [PMID: 30446735]
[89]
Mumuni A, Calister U, Aminu N, et al. Mucin-grafted polyethylene glycol microparticles enable oral insulin delivery for improving diabetic treatment. Appl Sci 2020; 10(8): 2649.
[http://dx.doi.org/10.3390/app10082649]
[90]
Chahed S, Leroyer AS, Benzerroug M, et al. Increased vitreous shedding of microparticles in proliferative diabetic retinopathy stimulates endothelial proliferation. Diabetes 2010; 59(3): 694-701.
[http://dx.doi.org/10.2337/db08-1524] [PMID: 20009085]
[91]
Zhang X, McGeoch SC, Johnstone AM, et al. Platelet-derived microparticle count and surface molecule expression differ between subjects with and without type 2 diabetes, independently of obesity status. J Thromb Thrombolysis 2014; 37(4): 455-63.
[http://dx.doi.org/10.1007/s11239-013-1000-2] [PMID: 24097206]
[92]
Raza H, Javeria S, Rashid Z. Sustained released Metformin microparticles for better management of type II diabetes mellitus: In vitro studies. Mater Res Express 2020; 7(1): 015343.
[http://dx.doi.org/10.1088/2053-1591/ab6c0f]
[93]
Al-Qaissi A, Papageorgiou M, Deshmukh H, et al. Effects of acute insulin-induced hypoglycaemia on endothelial microparticles in adults with and without type 2 diabetes. Diabetes Obes Metab 2019; 21(3): 533-40.
[http://dx.doi.org/10.1111/dom.13548] [PMID: 30264480]
[94]
Tragl KH, Pohl A, Kinast H. Oral administration of insulin by means of liposomes in animal experiments (author’s transl). Wien Klin Wochenschr 1979; 91(13): 448-51.
[PMID: 463043]
[95]
Wu H, Nan J, Yang L, Park HJ, Li J. Insulin-loaded liposomes packaged in alginate hydrogels promote the oral bioavailability of insulin. J Control Release 2023; 353: 51-62.
[http://dx.doi.org/10.1016/j.jconrel.2022.11.032] [PMID: 36410613]
[96]
Huang YY, Wang CH. Pulmonary delivery of insulin by liposomal carriers. J Control Release 2006; 113(1): 9-14.
[http://dx.doi.org/10.1016/j.jconrel.2006.03.014] [PMID: 16730838]
[97]
Agrawal AK, Harde H, Thanki K, Jain S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules 2014; 15(1): 350-60.
[http://dx.doi.org/10.1021/bm401580k] [PMID: 24283460]
[98]
Hu M, Gou T, Chen Y, et al. A novel drug delivery system: Hyodeoxycholic acid-modified metformin liposomes for type 2 diabetes treatment. Molecules 2023; 28(6): 2471.
[http://dx.doi.org/10.3390/molecules28062471] [PMID: 36985444]
[99]
Chen PP, Xu HL, Zhu Ge DL, et al. CoQ10-loaded liposomes combined with UTMD prevented early nephropathy of diabetic rats. Oncotarget 2018; 9(14): 11782.
[http://dx.doi.org/10.18632/oncotarget.24363]
[100]
Wang A, Yang T, Fan W, et al. Protein corona liposomes achieve efficient oral insulin delivery by overcoming mucus and epithelial barriers. Adv Healthc Mater 2019; 8(12): 1801123.
[http://dx.doi.org/10.1002/adhm.201801123] [PMID: 30485708]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy