Generic placeholder image

Current Alzheimer Research

Editor-in-Chief

ISSN (Print): 1567-2050
ISSN (Online): 1875-5828

Research Article

Acupuncture Improves Synaptic Plasticity of SAMP8 Mice through the RhoA/ROCK Pathway

Author(s): Bohong Kan*, Zhengjia Dong, Zhenyu Tang, Lan Zhao and Zhen Li

Volume 20, Issue 6, 2023

Published on: 11 September, 2023

Page: [420 - 430] Pages: 11

DOI: 10.2174/1567205020666230828095826

Price: $65

Abstract

Background: Studies have found synaptic plasticity damage to be an early marker of Alzheimer's disease (AD). RhoA/ROCK pathway is involved in the regulation of synaptic plasticity. Acupuncture can significantly improve the cognitive state of AD.

Objective: We aimed to use modern biological technology to detect the changes in synaptic plasticity and RhoA/ROCK pathway in SAMP8 mice, as well as the intervention effect of acupuncture.

Methods: Morris water maze and electrophysiological techniques were used in vivo to detect the changes in spatial memory and LTP of mice. Golgi Cox staining and CASEVIEWER2.1 software were used to quantitatively analyze the changes in the morphology and number of dendritic spines in the hippocampus of mice. The activity of RhoA and ROCK2 in the hippocampus of mice was detected, respectively, by pull-down technique and ELISA. WB technique was used to detect the protein expression of ROCK2 and phosphorylation level of MLC2, LIMK2, and CRMP2 in the hippocampus of mice.

Results: The neurobehavior and synaptic plasticity of 8-month-old SAMP8 mice were found to be significantly impaired. Acupuncture could improve the spatial learning and memory ability of SAMP8 mice, and partially prevent the reduction in the number of spines on the secondary branches of the apical dendrites in the hippocampus and the attenuation of LTP. The RhoA/ROCK pathway was significantly activated in the hippocampus of 8-month-old SAMP8 mice, and acupuncture had an inhibitory effect on it.

Conclusion: Acupuncture can improve synaptic plasticity by inhibiting the abnormal activation of the RhoA/ROCK pathway, and improve the spatial learning and memory ability of AD, so as to achieve the purpose of treating AD.

[1]
Alzheimer's Association. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement., 2022, 17(3), 327-406.
[2]
Long, J.M.; Holtzman, D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell, 2019, 179(2), 312-339.
[http://dx.doi.org/10.1016/j.cell.2019.09.001] [PMID: 31564456]
[3]
Ho, T.J.; Chan, T.M.; Ho, L.I.; Lai, C.Y.; Lin, C.H.; Macdonald, I.; Harn, H.J.; Lin, J.G.; Lin, S.Z.; Chen, Y.H. The possible role of stem cells in acupuncture treatment for neurodegenerative diseases: a literature review of basic studies. Cell Transplant., 2014, 23(4-5), 559-566.
[http://dx.doi.org/10.3727/096368914X678463] [PMID: 24636189]
[4]
Zhou, J.; Peng, W.; Xu, M.; Li, W.; Liu, Z. The effectiveness and safety of acupuncture for patients with Alzheimer disease: a systematic review and meta-analysis of randomized controlled trials. Medicine (Baltimore), 2015, 94(22), e933.
[http://dx.doi.org/10.1097/MD.0000000000000933] [PMID: 26039131]
[5]
Shao, S.; Tang, Y.; Guo, Y.; Tian, Z.; Xiang, D.; Wu, J. Effects of acupuncture on patients with Alzheimer’s disease. Medicine (Baltimore), 2019, 98(4), e14242.
[http://dx.doi.org/10.1097/MD.0000000000014242] [PMID: 30681612]
[6]
Kan, B.H.; Yu, J.C.; Zhao, L.; Zhao, J.; Li, Z.; Suo, Y.R.; Han, J.X. Acupuncture improves dendritic structure and spatial learning and memory ability of Alzheimer’s disease mice. Neural Regen. Res., 2018, 13(8), 1390-1395.
[http://dx.doi.org/10.4103/1673-5374.235292] [PMID: 30106051]
[7]
Ke, Ch.; Cao, Y.; Xia, Y.W. Analysis on the research progress of different acupuncture treatments for alzheimer’s disease. J. Hunan Univ. Chinese Med., 2022, 42(2), 337-342.
[8]
Jia, Y.; Zhang, X.; Yu, J.; Han, J.; Yu, T.; Shi, J.; Zhao, L.; Nie, K. Acupuncture for patients with mild to moderate Alzheimer’s disease: a randomized controlled trial. BMC Complement. Altern. Med., 2017, 17(1), 556.
[http://dx.doi.org/10.1186/s12906-017-2064-x] [PMID: 29284465]
[9]
Cheng, X.; Zhou, W.; Zhang, Y. The behavioral, pathological and therapeutic features of the senescence-accelerated mouse prone 8 strain as an Alzheimer’s disease animal model. Ageing Res. Rev., 2014, 13, 13-37.
[http://dx.doi.org/10.1016/j.arr.2013.10.002] [PMID: 24269312]
[10]
Li, R.; He, J.K.; Jiang, Y.H.; Jia, B.H. Progress of experimental researches on acupuncture intervention for Alzheimer’s disease based on SAMP8 mice model. Zhen Ci Yan Jiu, 2022, 47(5), 466-470.
[PMID: 35616423]
[11]
John, A.; Reddy, P.H. Synaptic basis of Alzheimer’s disease: Focus on synaptic amyloid beta, P-tau and mitochondria. Ageing Res. Rev., 2021, 65, 101208.
[http://dx.doi.org/10.1016/j.arr.2020.101208] [PMID: 33157321]
[12]
Bourne, J.; Harris, K.M. Do thin spines learn to be mushroom spines that remember? Curr. Opin. Neurobiol., 2007, 17(3), 381-386.
[http://dx.doi.org/10.1016/j.conb.2007.04.009] [PMID: 17498943]
[13]
Martin-Vilchez, S.; Whitmore, L.; Asmussen, H.; Zareno, J.; Horwitz, R.; Newell-Litwa, K. RhoGTPase regulators orchestrate distinct stages of synaptic development. PLoS One, 2017, 12(1), e0170464.
[http://dx.doi.org/10.1371/journal.pone.0170464] [PMID: 28114311]
[14]
Swanger, S.A.; Mattheyses, A.L.; Gentry, E.G.; Herskowitz, J.H. ROCK1 and ROCK2 inhibition alters dendritic spine morphology in hippocampal neurons. Cell. Logist., 2015, 5(4), e1133266.
[http://dx.doi.org/10.1080/21592799.2015.1133266] [PMID: 27054047]
[15]
Castañeda, P.; Muñoz, M.; García-Rojo, G.; Ulloa, J.L.; Bravo, J.A.; Márquez, R.; García-Pérez, M.A.; Arancibia, D.; Araneda, K.; Rojas, P.S.; Mondaca-Ruff, D.; Díaz-Véliz, G.; Mora, S.; Aliaga, E.; Fiedler, J.L. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons. J. Neurosci. Res., 2015, 93(10), 1476-1491.
[http://dx.doi.org/10.1002/jnr.23602] [PMID: 26010004]
[16]
Benarroch, E.E. Rho GTPases: Role in dendrite and axonal growth, mental retardation, and axonal regeneration. Neurology, 2007, 68(16), 1315-1318.
[http://dx.doi.org/10.1212/01.wnl.0000259588.97409.8f] [PMID: 17438224]
[17]
Petratos, S.; Li, Q.X.; George, A.J.; Hou, X.; Kerr, M.L.; Unabia, S.E.; Hatzinisiriou, I.; Maksel, D.; Aguilar, M.I.; Small, D.H. The β-amyloid protein of Alzheimer’s disease increases neuronal CRMP-2 phosphorylation by a Rho-GTP mechanism. Brain, 2008, 131(1), 90-108.
[http://dx.doi.org/10.1093/brain/awm260] [PMID: 18000012]
[18]
Acevedo, K.; Moussi, N.; Li, R.; Soo, P.; Bernard, O. LIM kinase 2 is widely expressed in all tissues. J. Histochem. Cytochem., 2006, 54(5), 487-501.
[http://dx.doi.org/10.1369/jhc.5C6813.2006] [PMID: 16399995]
[19]
Terry, R.D.; Masliah, E.; Salmon, D.P.; Butters, N.; DeTeresa, R.; Hill, R.; Hansen, L.A.; Katzman, R. Physical basis of cognitive alterations in alzheimer’s disease: Synapse loss is the major correlate of cognitive impairment. Ann. Neurol., 1991, 30(4), 572-580.
[http://dx.doi.org/10.1002/ana.410300410] [PMID: 1789684]
[20]
Cochran, J.N.; Hall, A.M.; Roberson, E.D. The dendritic hypothesis for Alzheimer’s disease pathophysiology. Brain Res. Bull., 2014, 103, 18-28.
[http://dx.doi.org/10.1016/j.brainresbull.2013.12.004] [PMID: 24333192]
[21]
Androuin, A.; Potier, B.; Nägerl, U.V.; Cattaert, D.; Danglot, L.; Thierry, M.; Youssef, I.; Triller, A.; Duyckaerts, C.; El Hachimi, K.H.; Dutar, P.; Delatour, B.; Marty, S. Evidence for altered dendritic spine compartmentalization in Alzheimer’s disease and functional effects in a mouse model. Acta Neuropathol., 2018, 135(6), 839-854.
[http://dx.doi.org/10.1007/s00401-018-1847-6] [PMID: 29696365]
[22]
Spires-Jones, T.L.; Meyer-Luehmann, M.; Osetek, J.D.; Jones, P.B.; Stern, E.A.; Bacskai, B.J.; Hyman, B.T. Impaired spine stability underlies plaque-related spine loss in an Alzheimer’s disease mouse model. Am. J. Pathol., 2007, 171(4), 1304-1311.
[http://dx.doi.org/10.2353/ajpath.2007.070055] [PMID: 17717139]
[23]
Morley, J.E. The SAMP8 mouse: a model of Alzheimer disease? Biogerontology, 2002, 3(1/2), 57-60.
[http://dx.doi.org/10.1023/A:1015207429786] [PMID: 12014843]
[24]
Taniguchi, S.; Mizuno, H.; Kuwahara, M.; Ito, K. Early attenuation of long-term potentiation in senescence-accelerated mouse prone 8. Exp. Brain Res., 2015, 233(11), 3145-3152.
[http://dx.doi.org/10.1007/s00221-015-4383-9] [PMID: 26195169]
[25]
del Valle, J.; Bayod, S.; Camins, A.; Beas-Zárate, C.; Velázquez-Zamora, D.A.; González-Burgos, I.; Pallàs, M. Dendritic spine abnormalities in hippocampal CA1 pyramidal neurons underlying memory deficits in the SAMP8 mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2012, 32(1), 233-240.
[http://dx.doi.org/10.3233/JAD-2012-120718] [PMID: 22776969]
[26]
Huang, Y.; Yang, S.; Zhou, W.X.; Zhang, Y.X. The method of long-term potentiation recording in hippocampus in anaesthetized mice in vivo. Chinese J. Appl. Physiol., 2008, 24(3), 291-295.
[PMID: 21141586]
[27]
Bolognin, S.; Lorenzetto, E.; Diana, G.; Buffelli, M. The potential role of rho GTPases in Alzheimer’s disease pathogenesis. Mol. Neurobiol., 2014, 50(2), 406-422.
[http://dx.doi.org/10.1007/s12035-014-8637-5] [PMID: 24452387]
[28]
Ahnert-Hilger, G.; Höltje, M.; Große, G.; Pickert, G.; Mucke, C.; Nixdorf-Bergweiler, B.; Boquet, P.; Hofmann, F.; Just, I. Differential effects of Rho GTPases on axonal and dendritic development in hippocampal neurones. J. Neurochem., 2004, 90(1), 9-18.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02475.x] [PMID: 15198662]
[29]
Shang, Y.Y.; Ma, Y.J.; Zhang, L.; Wang, L.J.; Wu, X.F.; Liu, X.P. Flavonoids extracted from leaves of Diospyros kaki regulates RhoA activity to rescue synapse loss and reverse memory impairment in APP/PS1 mice. Neuroreport, 2018, 29(7), 564-569.
[http://dx.doi.org/10.1097/WNR.0000000000000989] [PMID: 29481523]
[30]
Chong, C.M.; Ai, N.; Lee, S. ROCK in CNS: Different Roles of Isoforms and Therapeutic Target for Neurodegenerative Disorders. Curr. Drug Targets, 2017, 18(4), 455-462.
[http://dx.doi.org/10.2174/1389450117666160401123825] [PMID: 27033194]
[31]
Hou, Y.; Zhou, L.; Yang, Q.D.; Du, X.P.; Li, M.; Yuan, M.; Zhou, Z.W. Changes in hippocampal synapses and learning-memory abilities in a streptozotocin-treated rat model and intervention by using fasudil hydrochloride. Neuroscience, 2012, 200, 120-129.
[http://dx.doi.org/10.1016/j.neuroscience.2011.10.030] [PMID: 22062134]
[32]
Chen, Y.; Wei, G.; Nie, H.; Lin, Y.; Tian, H.; Liu, Y.; Yu, X.; Cheng, S.; Yan, R.; Wang, Q.; Liu, D.H.; Deng, W.; Lai, Y.; Zhou, J.H.; Zhang, S.X.; Lin, W.W.; Chen, D.F. β-Asarone prevents autophagy and synaptic loss by reducing ROCK expression in asenescence-accelerated prone 8 mice. Brain Res., 2014, 1552, 41-54.
[http://dx.doi.org/10.1016/j.brainres.2014.01.005] [PMID: 24457043]
[33]
Fujiwara, H.; Yoshida, J.; Dibwe, D.F.; Awale, S.; Hoshino, H.; Kohama, H.; Arai, H.; Kudo, Y.; Matsumoto, K. Orengedokuto and san’oshashinto improve memory deficits by inhibiting aging-dependent activation of glycogen synthase kinase-3β. J. Tradit. Complement. Med., 2019, 9(4), 328-335.
[http://dx.doi.org/10.1016/j.jtcme.2018.12.001] [PMID: 31453129]
[34]
Zhu, M.; Lin, J.; Qing, P.; Pu, L.; Chen, S.; Lin, S.; Li, C.; Cao, L.; Zhang, Y. Manual acupuncture relieves microglia-mediated neuroinflammation in a rat model of traumatic brain injury by inhibiting the RhoA/ROCK2 pathway. Acupunct. Med., 2020, 38(6), 426-434.
[http://dx.doi.org/10.1177/0964528420912248] [PMID: 32310010]
[35]
Peng, R.; Li, J.; Li, J.; Li, B.C.; Cai, G.W. Warm acupuncture improves arthritic injury by down-regulating expression of skeleton proteins in rats with knee osteoarthritis. Zhen Ci Yan Jiu, 2020, 45(2), 105-110.
[PMID: 32144919]
[36]
Xu, Y.; Guo, Y.; Song, Y.; Zhang, K.; Zhang, Y.; Li, Q.; Hong, S.; Liu, Y.; Guo, Y. A new theory for acupuncture: Promoting robust regulation. J. Acupunct. Meridian Stud., 2018, 11(1), 39-43.
[http://dx.doi.org/10.1016/j.jams.2017.11.004] [PMID: 29482800]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy