Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

Treatment with Exosomes Derived from Mesenchymal Stem Cells: A New Window of Healing Science in Regenerative Medicine

Author(s): Arezoo Hormozi, Sajedeh Hasanzadeh, Faezeh Ebrahimi, Narges Daei, Zahra Hajimortezayi, Amir Mehdizadeh and Majid Zamani*

Volume 19, Issue 6, 2024

Published on: 06 October, 2023

Page: [879 - 893] Pages: 15

DOI: 10.2174/1574888X18666230824165014

Price: $65

Abstract

Many studies have been conducted on the potential applications of mesenchymal stem cells (MSCs) over recent years due to their growing importance in regenerative medicine. Exosomes are considered cargos capable of transporting proteins, peptides, lipids, mRNAs, and growth factors. MSCsderived exosomes are also involved in the prevention or treatment of a variety of diseases, including cardiovascular diseases, neurological diseases, skin disorders, lung diseases, osteoarthritis, damaged tissue repair, and other diseases. This review attempted to summarize the importance of employing MSCs in regenerative medicine by gathering and evaluating information from current literature. The role of MSCs and the potential applications of MSCs-derived exosomes have also been discussed.

Graphical Abstract

[1]
Rani S, Ryan AE, Griffin MD, Ritter T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol Ther 2015; 23(5): 812-23.
[http://dx.doi.org/10.1038/mt.2015.44] [PMID: 25868399]
[2]
Harrell CR, Jovicic N, Djonov V, Volarevic V. Therapeutic use of mesenchymal stem cell-derived exosomes: From basic science to clinics. Pharmaceutics 2020; 12(5): 474.
[http://dx.doi.org/10.3390/pharmaceutics12050474] [PMID: 32456070]
[3]
Keshtkar S, Azarpira N, Ghahremani MH. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Res Ther 2018; 9(1): 63.
[http://dx.doi.org/10.1186/s13287-018-0791-7] [PMID: 29523213]
[4]
Zhang Y, Bi J, Huang J, Tang Y, Du S, Li P. Exosome: A review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int J Nanomedicine 2020; 15: 6917-34.
[http://dx.doi.org/10.2147/IJN.S264498] [PMID: 33061359]
[5]
Hong P, Yang H, Wu Y, Li K, Tang Z. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: A comprehensive review. Stem Cell Res Ther 2019; 10(1): 242.
[http://dx.doi.org/10.1186/s13287-019-1358-y] [PMID: 31391108]
[6]
Hassanzadeh A, Rahman HS, Markov A, et al. Mesenchymal stem/stromal cell-derived exosomes in regenerative medicine and cancer; overview of development, challenges, and opportunities. Stem Cell Res Ther 2021; 12(1): 297.
[http://dx.doi.org/10.1186/s13287-021-02378-7] [PMID: 34020704]
[7]
He C, Zheng S, Luo Y, Wang B. Exosome theranostics: Biology and translational medicine. Theranostics 2018; 8(1): 237-55.
[http://dx.doi.org/10.7150/thno.21945] [PMID: 29290805]
[8]
An Y, Lin S, Tan X, et al. Exosomes from adipose‐derived stem cells and application to skin wound healing. Cell Prolif 2021; 54(3): e12993.
[http://dx.doi.org/10.1111/cpr.12993] [PMID: 33458899]
[9]
Kalluri R. The biology and function of exosomes in cancer. J Clin Invest 2016; 126(4): 1208-15.
[http://dx.doi.org/10.1172/JCI81135] [PMID: 27035812]
[10]
Hamzah RN, Alghazali KM, Biris AS, Griffin RJ. Exosome traceability and cell source dependence on composition and cell-cell cross talk. Int J Mol Sci 2021; 22(10): 5346.
[http://dx.doi.org/10.3390/ijms22105346] [PMID: 34069542]
[11]
Mendt M, Rezvani K, Shpall E. Mesenchymal stem cell-derived exosomes for clinical use. Bone Marrow Transplant 2019; 54(S2): 789-92.
[http://dx.doi.org/10.1038/s41409-019-0616-z] [PMID: 31431712]
[12]
Yaghoubi Y, Movassaghpour A, Zamani M, Talebi M, Mehdizadeh A, Yousefi M. Human umbilical cord mesenchymal stem cells derived-exosomes in diseases treatment. Life Sci 2019; 233: 116733.
[http://dx.doi.org/10.1016/j.lfs.2019.116733] [PMID: 31394127]
[13]
Mianehsaz E, Mirzaei HR, Mahjoubin-Tehran M, et al. Mesenchymal stem cell-derived exosomes: A new therapeutic approach to osteoarthritis? Stem Cell Res Ther 2019; 10(1): 340.
[http://dx.doi.org/10.1186/s13287-019-1445-0] [PMID: 31753036]
[14]
Doyle L, Wang M. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 2019; 8(7): 727.
[http://dx.doi.org/10.3390/cells8070727] [PMID: 31311206]
[15]
Lin J, Li J, Huang B, et al. Exosomes: Novel biomarkers for clinical diagnosis. ScientificWorldJournal 2015; 2015: 1-8.
[http://dx.doi.org/10.1155/2015/657086] [PMID: 25695100]
[16]
Joo HS, Suh JH, Lee HJ, Bang ES, Lee JM. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int J Mol Sci 2020; 21(3): 727.
[http://dx.doi.org/10.3390/ijms21030727] [PMID: 31979113]
[17]
Gorabi AM, Kiaie N, Barreto GE, Read MI, Tafti HA, Sahebkar A. The therapeutic potential of mesenchymal stem cell-derived exosomes in treatment of neurodegenerative diseases. Mol Neurobiol 2019; 56(12): 8157-67.
[http://dx.doi.org/10.1007/s12035-019-01663-0] [PMID: 31197655]
[18]
Jia Y, Chen Y, Wang Q, et al. Exosome: Emerging biomarker in breast cancer. Oncotarget 2017; 8(25): 41717-33.
[http://dx.doi.org/10.18632/oncotarget.16684] [PMID: 28402944]
[19]
Zamani M, Yaghoubi Y, Naimi A, et al. Humanized culture medium for clinical-grade generation of erythroid cells from umbilical cord blood CD34+ cells. Adv Pharm Bull 2021; 11(2): 335-42.
[PMID: 33880356]
[20]
Beeraka NM, Doreswamy SH, Sadhu SP, et al. The role of exosomes in stemness and neurodegenerative diseases-chemoresistant-cancer therapeutics and phytochemicals. Int J Mol Sci 2020; 21(18): 6818.
[http://dx.doi.org/10.3390/ijms21186818] [PMID: 32957534]
[21]
Nikfarjam S, Rezaie J, Zolbanin NM, Jafari R. Mesenchymal stem cell derived-exosomes: A modern approach in translational medicine. J Transl Med 2020; 18(1): 449.
[http://dx.doi.org/10.1186/s12967-020-02622-3] [PMID: 33246476]
[22]
Forsberg MH, Kink JA, Hematti P, Capitini CM. Mesenchymal stromal cells and exosomes: Progress and challenges. Front Cell Dev Biol 2020; 8: 665.
[http://dx.doi.org/10.3389/fcell.2020.00665] [PMID: 32766255]
[23]
Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular vesicles derived from Mesenchymal Stem Cells (MSC) in regenerative medicine: Applications in skin wound healing. Front Bioeng Biotechnol 2020; 8: 146.
[http://dx.doi.org/10.3389/fbioe.2020.00146] [PMID: 32195233]
[24]
Yaghoubi Y, Zamani M, Naimi A, et al. Human CD34+ hematopoietic stem cells culture in humanized culture medium for cell therapy. Gene Rep 2020; 20: 100718.
[http://dx.doi.org/10.1016/j.genrep.2020.100718]
[25]
Yaghoubi Y, Hassanzadeh A, Naimi A, et al. The effect of platelet lysate on expansion and differentiation megakaryocyte progenitor cells from cord blood CD34+ enriched cells. Iran J Ped Hematol Oncol 2021; 11(3): 172-82.
[http://dx.doi.org/10.18502/ijpho.v11i3.6563]
[26]
Tsiapalis D, O’Driscoll L. Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications. Cells 2020; 9(4): 991.
[http://dx.doi.org/10.3390/cells9040991] [PMID: 32316248]
[27]
Harrell CR, Jovicic N, Djonov V, Arsenijevic N, Volarevic V. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases. Cells 2019; 8(12): 1605.
[http://dx.doi.org/10.3390/cells8121605] [PMID: 31835680]
[28]
Golchin A. Cell-based therapy for severe COVID-19 patients: Clinical trials and cost-utility. Stem Cell Rev Rep 2021; 17(1): 56-62.
[http://dx.doi.org/10.1007/s12015-020-10046-1] [PMID: 33009982]
[29]
Cheng L, Zhang K, Wu S, Cui M, Xu T. Focus on mesenchymal stem cell-derived exosomes: Opportunities and challenges in cell-free therapy. Stem Cells Int 2017; 2017: 1-10.
[http://dx.doi.org/10.1155/2017/6305295] [PMID: 29410682]
[30]
Sidhom K, Obi PO, Saleem A. A review of exosomal isolation methods: Is size exclusion chromatography the best option? Int J Mol Sci 2020; 21(18): 6466.
[http://dx.doi.org/10.3390/ijms21186466] [PMID: 32899828]
[31]
Kurian TK, Banik S, Gopal D, Chakrabarti S, Mazumder N. Elucidating methods for isolation and quantification of exosomes: A review. Mol Biotechnol 2021; 63(4): 249-66.
[http://dx.doi.org/10.1007/s12033-021-00300-3] [PMID: 33492613]
[32]
Bahr MM, Amer MS, Abo-El-Sooud K, Abdallah AN, El-Tookhy OS. Preservation techniques of stem cells extracellular vesicles: A gate for manufacturing of clinical grade therapeutic extracellular vesicles and long-term clinical trials. Int J Vet Sci Med 2020; 8(1): 1-8.
[http://dx.doi.org/10.1080/23144599.2019.1704992] [PMID: 32083116]
[33]
Wu Y, Deng W, Klinke DJ II. Exosomes: Improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 2015; 140(19): 6631-42.
[http://dx.doi.org/10.1039/C5AN00688K] [PMID: 26332016]
[34]
Kusuma GD, Barabadi M, Tan JL, Morton DAV, Frith JE, Lim R. To protect and to preserve: Novel preservation strategies for extracellular vesicles. Front Pharmacol 2018; 9: 1199.
[http://dx.doi.org/10.3389/fphar.2018.01199] [PMID: 30420804]
[35]
Charoenviriyakul C, Takahashi Y, Nishikawa M, Takakura Y. Preservation of exosomes at room temperature using lyophilization. Int J Pharm 2018; 553(1-2): 1-7.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.032] [PMID: 30316791]
[36]
Yuan F, Li YM, Wang Z. Preserving extracellular vesicles for biomedical applications: Consideration of storage stability before and after isolation. Drug Deliv 2021; 28(1): 1501-9.
[http://dx.doi.org/10.1080/10717544.2021.1951896] [PMID: 34259095]
[37]
Zhang B, Tian X, Hao J, Xu G, Zhang W. Mesenchymal stem cell-derived extracellular vesicles in tissue regeneration. Cell Transplant 2020; 29: 963689720908500.
[http://dx.doi.org/10.1177/0963689720908500] [PMID: 32207341]
[38]
Aghabozorgi AS, Ahangari N, Eftekhaari TE, et al. Circulating exosomal miRNAs in cardiovascular disease pathogenesis: New emerging hopes. J Cell Physiol 2019; 234(12): 21796-809.
[http://dx.doi.org/10.1002/jcp.28942] [PMID: 31273798]
[39]
Zheng D, Huo M, Li B, et al. The role of exosomes and exosomal MicroRNA in cardiovascular disease. Front Cell Dev Biol 2021; 8: 616161.
[http://dx.doi.org/10.3389/fcell.2020.616161] [PMID: 33511124]
[40]
Huang L, Ma W, Ma Y, Feng D, Chen H, Cai B. Exosomes in mesenchymal stem cells, a new therapeutic strategy for cardiovascular diseases? Int J Biol Sci 2015; 11(2): 238-45.
[http://dx.doi.org/10.7150/ijbs.10725] [PMID: 25632267]
[41]
Zhang S, Teo KYW, Chuah SJ, Lai RC, Lim SK, Toh WS. MSC exosomes alleviate temporomandibular joint osteoarthritis by attenuating inflammation and restoring matrix homeostasis. Biomaterials 2019; 200: 35-47.
[http://dx.doi.org/10.1016/j.biomaterials.2019.02.006] [PMID: 30771585]
[42]
Wang Y, Yu D, Liu Z, et al. Exosomes from embryonic mesenchymal stem cells alleviate osteoarthritis through balancing synthesis and degradation of cartilage extracellular matrix. Stem Cell Res Ther 2017; 8(1): 189.
[http://dx.doi.org/10.1186/s13287-017-0632-0] [PMID: 28807034]
[43]
Wu P, Zhang B, Ocansey DKW, Xu W, Qian H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials 2021; 269: 120467.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120467] [PMID: 33189359]
[44]
Maumus M, Jorgensen C, Noël D. Mesenchymal stem cells in regenerative medicine applied to rheumatic diseases: Role of secretome and exosomes. Biochimie 2013; 95(12): 2229-34.
[http://dx.doi.org/10.1016/j.biochi.2013.04.017] [PMID: 23685070]
[45]
Ni Z, Zhou S, Li S, et al. Exosomes: Roles and therapeutic potential in osteoarthritis. Bone Res 2020; 8(1): 25.
[http://dx.doi.org/10.1038/s41413-020-0100-9] [PMID: 32596023]
[46]
Mihanfar A, Shakouri SK, Khadem-Ansari MH, et al. Exosomal miRNAs in osteoarthritis. Mol Biol Rep 2020; 47(6): 4737-48.
[http://dx.doi.org/10.1007/s11033-020-05443-1] [PMID: 32277444]
[47]
Bao C, He C. The role and therapeutic potential of MSC-derived exosomes in osteoarthritis. Arch Biochem Biophys 2021; 710: 109002.
[http://dx.doi.org/10.1016/j.abb.2021.109002] [PMID: 34352243]
[48]
Li Y, Huang P, Nasser MI, Wu W, Yao J, Sun Y. Role of exosomes in bone and joint disease metabolism, diagnosis, and therapy. Eur J Pharm Sci 2022; 176: 106262.
[http://dx.doi.org/10.1016/j.ejps.2022.106262] [PMID: 35850174]
[49]
Pan Y, Li Y, Dong W, Jiang B, Yu Y, Chen Y. Role of nano-hydrogels coated exosomes in bone tissue repair. Front Bioeng Biotechnol 2023; 11: 1167012.
[http://dx.doi.org/10.3389/fbioe.2023.1167012] [PMID: 37229488]
[50]
Zou J, Yang W, Cui W, et al. Therapeutic potential and mechanisms of mesenchymal stem cell-derived exosomes as bioactive materials in tendon-bone healing. J Nanobiotechnol 2023; 21(1): 14.
[http://dx.doi.org/10.1186/s12951-023-01778-6] [PMID: 36642728]
[51]
Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8(9): 726-36.
[http://dx.doi.org/10.1038/nri2395] [PMID: 19172693]
[52]
Vakhshiteh F, Atyabi F, Ostad SN. Mesenchymal stem cell exosomes: A two-edged sword in cancer therapy. Int J Nanomedicine 2019; 14: 2847-59.
[http://dx.doi.org/10.2147/IJN.S200036] [PMID: 31114198]
[53]
Yang J, Zhang X, Chen X, Wang L, Yang G. Exosome mediated delivery of miR-124 promotes neurogenesis after ischemia. Mol Ther Nucleic Acids 2017; 7: 278-87.
[http://dx.doi.org/10.1016/j.omtn.2017.04.010] [PMID: 28624203]
[54]
Ma ZJ, Yang JJ, Lu YB, Liu ZY, Wang XX. Mesenchymal stem cell-derived exosomes: Toward cell-free therapeutic strategies in regenerative medicine. World J Stem Cells 2020; 12(8): 814-40.
[http://dx.doi.org/10.4252/wjsc.v12.i8.814] [PMID: 32952861]
[55]
Tajiri K, Shimizu Y. Liver physiology and liver diseases in the elderly. World J Gastroenterol 2013; 19(46): 8459-67.
[http://dx.doi.org/10.3748/wjg.v19.i46.8459] [PMID: 24379563]
[56]
Zhang S, Hou Y, Yang J, et al. Application of mesenchymal stem cell exosomes and their drug‐loading systems in acute liver failure. J Cell Mol Med 2020; 24(13): 7082-93.
[http://dx.doi.org/10.1111/jcmm.15290] [PMID: 32492261]
[57]
Ding J, Wang J, Chen J. Exosomes as therapeutic vehicles in liver diseases. Ann Transl Med 2021; 9(8): 735.
[http://dx.doi.org/10.21037/atm-20-5422] [PMID: 33987433]
[58]
Kučuk N, Primožič M, Knez Ž, Leitgeb M. Exosomes engineering and their roles as therapy delivery tools, therapeutic targets, and biomarkers. Int J Mol Sci 2021; 22(17): 9543.
[http://dx.doi.org/10.3390/ijms22179543] [PMID: 34502452]
[59]
Massa M, Croce S, Campanelli R, et al. Clinical applications of mesenchymal stem/stromal cell derived extracellular vesicles: Therapeutic potential of an acellular product. Diagnostics 2020; 10(12): 999.
[http://dx.doi.org/10.3390/diagnostics10120999] [PMID: 33255416]
[60]
Phinney DG, Pittenger MF. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017; 35(4): 851-8.
[http://dx.doi.org/10.1002/stem.2575] [PMID: 28294454]
[61]
Chen LY, Kao TW, Chen CC, et al. Frontier review of the molecular mechanisms and current approaches of stem cell-derived exosomes. Cells 2023; 12(7): 1018.
[http://dx.doi.org/10.3390/cells12071018] [PMID: 37048091]
[62]
Bojanic C, To K, Hatoum A, et al. Mesenchymal stem cell therapy in hypertrophic and keloid scars. Cell Tissue Res 2021; 383(3): 915-30.
[http://dx.doi.org/10.1007/s00441-020-03361-z] [PMID: 33386995]
[63]
Cai Y, Li J, Jia C, He Y, Deng C. Therapeutic applications of adipose cell-free derivatives: A review. Stem Cell Res Ther 2020; 11(1): 312.
[http://dx.doi.org/10.1186/s13287-020-01831-3] [PMID: 32698868]
[64]
Fang F, Huang RL, Zheng Y, Liu M, Huo R. Bone marrow derived mesenchymal stem cells inhibit the proliferative and profibrotic phenotype of hypertrophic scar fibroblasts and keloid fibroblasts through paracrine signaling. J Dermatol Sci 2016; 83(2): 95-105.
[http://dx.doi.org/10.1016/j.jdermsci.2016.03.003] [PMID: 27211019]
[65]
Xiong M, Zhang Q, Hu W, et al. The novel mechanisms and applications of exosomes in dermatology and cutaneous medical aesthetics. Pharmacol Res 2021; 166: 105490.
[http://dx.doi.org/10.1016/j.phrs.2021.105490] [PMID: 33582246]
[66]
Zhang J, Guan J, Niu X, et al. Exosomes released from human induced pluripotent stem cells-derived MSCs facilitate cutaneous wound healing by promoting collagen synthesis and angiogenesis. J Transl Med 2015; 13(1): 49.
[http://dx.doi.org/10.1186/s12967-015-0417-0] [PMID: 25638205]
[67]
Li C, Wei S, Xu Q, Sun Y, Ning X, Wang Z. Application of ADSCs and their exosomes in scar prevention. Stem Cell Rev Rep 2022; 18(3): 952-67.
[http://dx.doi.org/10.1007/s12015-021-10252-5] [PMID: 34510359]
[68]
Shi H, Wang M, Sun Y, Yang D, Xu W, Qian H. Exosomes: Emerging cell-free based therapeutics in dermatologic diseases. Front Cell Dev Biol 2021; 9: 736022.
[http://dx.doi.org/10.3389/fcell.2021.736022] [PMID: 34722517]
[69]
Ku YC, Omer Sulaiman H, Anderson SR, Abtahi AR. The potential role of exosomes in aesthetic plastic surgery: A review of current literature. Plast Reconstr Surg Glob Open 2023; 11(6): e5051.
[http://dx.doi.org/10.1097/GOX.0000000000005051] [PMID: 37313480]
[70]
Zhu Z, Hou Q, Li M, Fu X. Molecular mechanism of myofibroblast formation and strategies for clinical drugs treatments in hypertrophic scars. J Cell Physiol 2020; 235(5): 4109-19.
[http://dx.doi.org/10.1002/jcp.29302] [PMID: 31612497]
[71]
Ferreira AF, Gomes DA. Stem cell extracellular vesicles in skin repair. Bioengineering 2018; 6(1): 4.
[http://dx.doi.org/10.3390/bioengineering6010004] [PMID: 30598033]
[72]
Shen X, Song S, Chen N, Liao J, Zeng L. Stem cell‐derived exosomes: A supernova in cosmetic dermatology. J Cosmet Dermatol 2021; 20(12): 3812-7.
[http://dx.doi.org/10.1111/jocd.14438] [PMID: 34536054]
[73]
Gao W, Yuan L, Zhang Y, et al. miR-1246-overexpressing exosomes suppress UVB-induced photoaging via regulation of TGF-β/Smad and attenuation of MAPK/AP-1 pathway. Photochem Photobiol Sci 2022; 22(1): 135-46.
[http://dx.doi.org/10.1007/s43630-022-00304-1] [PMID: 36114328]
[74]
Wu JY, Wu SN, Zhang LP, et al. Stem cell-derived exosomes: A new method for reversing skin aging. Tissue Eng Regen Med 2022; 19(5): 961-8.
[http://dx.doi.org/10.1007/s13770-022-00461-5] [PMID: 35809187]
[75]
Jiang L, Zhang S, Hu H, et al. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate acute liver failure by reducing the activity of the NLRP3 inflammasome in macrophages. Biochem Biophys Res Commun 2019; 508(3): 735-41.
[http://dx.doi.org/10.1016/j.bbrc.2018.11.189] [PMID: 30528233]
[76]
Ibsen SD, Wright J, Lewis JM, et al. Rapid isolation and detection of exosomes and associated biomarkers from plasma. ACS Nano 2017; 11(7): 6641-51.
[http://dx.doi.org/10.1021/acsnano.7b00549] [PMID: 28671449]
[77]
van der Pol E, Coumans F, Varga Z, Krumrey M, Nieuwland R. Innovation in detection of microparticles and exosomes. J Thromb Haemost 2013; 11 (Suppl. 1): 36-45.
[http://dx.doi.org/10.1111/jth.12254] [PMID: 23809109]
[78]
Raj DAA, Fiume I, Capasso G, Pocsfalvi G. A multiplex quantitative proteomics strategy for protein biomarker studies in urinary exosomes. Kidney Int 2012; 81(12): 1263-72.
[http://dx.doi.org/10.1038/ki.2012.25] [PMID: 22418980]
[79]
Zhang X, Liu J, Yu B, Ma F, Ren X, Li X. Effects of mesenchymal stem cells and their exosomes on the healing of large and refractory macular holes. Graefes Arch Clin Exp Ophthalmol 2018; 256(11): 2041-52.
[http://dx.doi.org/10.1007/s00417-018-4097-3] [PMID: 30167916]
[80]
Greening DW, Xu R, Ji H, Tauro BJ, Simpson RJ. A protocol for exosome isolation and characterization: Evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. Methods Mol Biol 2015; 1295: 179-209.
[http://dx.doi.org/10.1007/978-1-4939-2550-6_15] [PMID: 25820723]
[81]
Kırbaş OK, Bozkurt BT, Asutay AB, et al. Optimized isolation of extracellular vesicles from various organic sources using aqueous two-phase system. Sci Rep 2019; 9(1): 19159.
[http://dx.doi.org/10.1038/s41598-019-55477-0] [PMID: 31844310]
[82]
Ding M, Shen Y, Wang P, et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in alzheimer’s disease. Neurochem Res 2018; 43(11): 2165-77.
[http://dx.doi.org/10.1007/s11064-018-2641-5] [PMID: 30259257]
[83]
Yu B, Shao H, Su C, et al. Exosomes derived from MSCs ameliorate retinal laser injury partially by inhibition of MCP-1. Sci Rep 2016; 6(1): 34562.
[http://dx.doi.org/10.1038/srep34562] [PMID: 27686625]
[84]
Shin H, Han C, Labuz JM, et al. High-yield isolation of extracellular vesicles using aqueous two-phase system. Sci Rep 2015; 5(1): 13103.
[http://dx.doi.org/10.1038/srep13103] [PMID: 26271727]
[85]
Han BH, Kim S, Seo G, Heo Y, Chung S, Kang JY. Isolation of extracellular vesicles from small volumes of plasma using a microfluidic aqueous two-phase system. Lab Chip 2020; 20(19): 3552-9.
[http://dx.doi.org/10.1039/D0LC00345J] [PMID: 32808641]
[86]
Wang B, Jia H, Zhang B, et al. Pre-incubation with hucMSC-exosomes prevents cisplatin-induced nephrotoxicity by activating autophagy. Stem Cell Res Ther 2017; 8(1): 75.
[http://dx.doi.org/10.1186/s13287-016-0463-4] [PMID: 28388958]
[87]
Oksvold MP, Neurauter A, Pedersen KW. Magnetic bead-based isolation of exosomes. Methods Mol Biol 2015; 1218: 465-81.
[http://dx.doi.org/10.1007/978-1-4939-1538-5_27] [PMID: 25319668]
[88]
Shiue SJ, Rau RH, Shiue HS, et al. Mesenchymal stem cell exosomes as a cell-free therapy for nerve injury-induced pain in rats. Pain 2019; 160(1): 210-23.
[http://dx.doi.org/10.1097/j.pain.0000000000001395] [PMID: 30188455]
[89]
Barwari T, Joshi A, Mayr M. MicroRNAs in cardiovascular disease. J Am Coll Cardiol 2016; 68(23): 2577-84.
[http://dx.doi.org/10.1016/j.jacc.2016.09.945] [PMID: 27931616]
[90]
Cheng C, Chen X, Wang Y, et al. MSCs derived exosomes attenuate ischemia-reperfusion brain injury and inhibit microglia apoptosis might via exosomal miR-26a-5p mediated suppression of CDK6. Mol Med 2021; 27(1): 67.
[http://dx.doi.org/10.1186/s10020-021-00324-0] [PMID: 34215174]
[91]
Ye Z, Hu J, Xu H, et al. Serum exosomal microRNA-27-3p aggravates cerebral injury and inflammation in patients with acute cerebral infarction by targeting PPARγ. Inflammation 2021; 44(3): 1035-48.
[http://dx.doi.org/10.1007/s10753-020-01399-3] [PMID: 33394189]
[92]
Endisha H, Datta P, Sharma A, et al. MicroRNA‐34a‐5p promotes joint destruction during osteoarthritis. Arthritis Rheumatol 2021; 73(3): 426-39.
[http://dx.doi.org/10.1002/art.41552] [PMID: 33034147]
[93]
Rego-Pérez I, Durán-Sotuela A, Ramos-Louro P, Blanco FJ. Genetic biomarkers in osteoarthritis: A quick overview. Fac Rev 2021; 10: 78.
[http://dx.doi.org/10.12703/r/10-78] [PMID: 35028644]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy