Generic placeholder image

Current Stem Cell Research & Therapy

Editor-in-Chief

ISSN (Print): 1574-888X
ISSN (Online): 2212-3946

Review Article

The Role of Mesenchymal Stem/Stromal Cells Secretome in Macrophage Polarization: Perspectives on Treating Inflammatory Diseases

Author(s): Dongdong Ti, Jun Yi, Huihua Chen, Haojie Hao* and Chunmeng Shi*

Volume 19, Issue 6, 2024

Published on: 04 September, 2023

Page: [894 - 905] Pages: 12

DOI: 10.2174/1574888X18666230811093101

Price: $65

Abstract

Mesenchymal stem/stromal cells (MSCs) have exhibited potential for treating multiple inflammation- related diseases (IRDs) due to their easy acquisition, unique immunomodulatory and tissue repair properties, and immune-privileged characteristics. It is worth mentioning that MSCs release a wide array of soluble bioactive components in the secretome that modulate host innate and adaptive immune responses and promote the resolution of inflammation. As the first line of defense, macrophages exist throughout the entire inflammation process. They continuously switch their molecular phenotypes accompanied by complementary functional regulation ranging from classically activated pro-inflammatory M1-type (M1) to alternatively activated anti-inflammatory M2-type macrophages (M2). Recent studies have shown that the active intercommunication between MSCs and macrophages is indispensable for the immunomodulatory and regenerative behavior of MSCs in pharmacological cell therapy products. In this review, we systematically summarized the emerging capacities and detailed the molecular mechanisms of the MSC-derived secretome (MSC-SE) in immunomodulating macrophage polarization and preventing excessive inflammation, providing novel insights into the clinical applications of MSC-based therapy in IRD management.

Graphical Abstract

[1]
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases. Signal Transduct Target Ther 2022; 7(1): 272.
[http://dx.doi.org/10.1038/s41392-022-01134-4] [PMID: 35933430]
[2]
Li H, Dai H, Li J. Immunomodulatory properties of mesenchymal stromal/stem cells: The link with metabolism. J Adv Res 2022; 45: 15-29.
[PMID: 35659923]
[3]
Ciccocioppo R, Bernardo ME, Sgarella A, et al. Autologous bone marrow-derived mesenchymal stromal cells in the treatment of fistulising Crohn’s disease. Gut 2011; 60(6): 788-98.
[http://dx.doi.org/10.1136/gut.2010.214841] [PMID: 21257987]
[4]
Krampera M, Le Blanc K. Mesenchymal stromal cells: Putative microenvironmental modulators become cell therapy. Cell Stem Cell 2021; 28(10): 1708-25.
[http://dx.doi.org/10.1016/j.stem.2021.09.006] [PMID: 34624232]
[5]
Friedenstein AJ. Precursor cells of mechanocytes. Int Rev Cytol 1976; 47: 327-59.
[http://dx.doi.org/10.1016/S0074-7696(08)60092-3] [PMID: 11195]
[6]
Ono-Uruga Y, Ikeda Y, Matsubara Y. Platelet production using adipose derived mesenchymal stem cells: Mechanistic studies and clinical application. J Thromb Haemost 2021; 19(2): 342-50.
[http://dx.doi.org/10.1111/jth.15181] [PMID: 33217130]
[7]
Shi Y, Hu G, Su J, et al. Mesenchymal stem cells: A new strategy for immunosuppression and tissue repair. Cell Res 2010; 20(5): 510-8.
[http://dx.doi.org/10.1038/cr.2010.44] [PMID: 20368733]
[8]
Rossello-Gelabert M, Gonzalez-Pujana A, Igartua M, Santos-Vizcaino E, Hernandez RM. Clinical progress in MSC-based therapies for the management of severe COVID-19. Cytokine Growth Factor Rev 2022; 68: 25-36.
[9]
Shi L, Wang L, Xu R, et al. Mesenchymal stem cell therapy for severe COVID-19. Signal Transduct Target Ther 2021; 6(1): 339.
[http://dx.doi.org/10.1038/s41392-021-00754-6] [PMID: 34497264]
[10]
Meng F, Xu R, Wang S, et al. Human umbilical cord-derived mesenchymal stem cell therapy in patients with COVID-19: A phase 1 clinical trial. Signal Transduct Target Ther 2020; 5(1): 172.
[http://dx.doi.org/10.1038/s41392-020-00286-5] [PMID: 32855385]
[11]
Sengupta V, Sengupta S, Lazo A, Woods P, Nolan A, Bremer N. Exosomes derived from bone marrow mesenchymal stem cells as treatment for severe COVID-19. Stem Cells Dev 2020; 29(12): 747-54.
[http://dx.doi.org/10.1089/scd.2020.0080] [PMID: 32380908]
[12]
Izadi M, Sadr Hashemi Nejad A, Moazenchi M, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: A phase I/II randomized placebo-controlled clinical trial. Stem Cell Res Ther 2022; 13(1): 264.
[http://dx.doi.org/10.1186/s13287-022-02941-w] [PMID: 35725652]
[13]
Barnhoorn MC, Wasser MNJM, Roelofs H, et al. Long-term evaluation of allogeneic bone marrow-derived mesenchymal stromal cell therapy for crohn’s disease perianal fistulas. J Crohn’s Colitis 2020; 14(1): 64-70.
[http://dx.doi.org/10.1093/ecco-jcc/jjz116] [PMID: 31197361]
[14]
Vieujean S, Loly JP, Boutaffala L, et al. Mesenchymal stem cell injection in crohn’s disease strictures: A phase I–II clinical study. J Crohn’s Colitis 2022; 16(3): 506-10.
[http://dx.doi.org/10.1093/ecco-jcc/jjab154] [PMID: 34473270]
[15]
Azizi Z, Abbaszadeh R, Sahebnasagh R, Norouzy A, Motevaseli E, Maedler K. Bone marrow mesenchymal stromal cells for diabetes therapy: Touch, fuse, and fix? Stem Cell Res Ther 2022; 13(1): 348.
[http://dx.doi.org/10.1186/s13287-022-03028-2] [PMID: 35883121]
[16]
Pang SHM, D’Rozario J, Mendonca S, et al. Mesenchymal stromal cell apoptosis is required for their therapeutic function. Nat Commun 2021; 12(1): 6495.
[http://dx.doi.org/10.1038/s41467-021-26834-3] [PMID: 34764248]
[17]
de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation by therapeutic mesenchymal stromal cells (MSC) is triggered through phagocytosis of MSC by monocytic cells. Stem Cells 2018; 36(4): 602-15.
[http://dx.doi.org/10.1002/stem.2779] [PMID: 29341339]
[18]
Zhuang X, Hu X, Zhang S, Li X, Yuan X, Wu Y. Mesenchymal stem cell–based therapy as a new approach for the treatment of systemic sclerosis. Clin Rev Allergy Immunol 2022; 64(3): 284-320.
[http://dx.doi.org/10.1007/s12016-021-08892-z] [PMID: 35031958]
[19]
Hu Q, Zhang S, Yang Y, et al. Extracellular vesicles in the pathogenesis and treatment of acute lung injury. Mil Med Res 2022; 9(1): 61.
[http://dx.doi.org/10.1186/s40779-022-00417-9] [PMID: 36316787]
[20]
Rao VV, Wechsler ME, Cravens E, et al. Granular PEG hydrogels mediate osteoporotic MSC clustering via N-cadherin influencing the pro-resorptive bias of their secretory profile. Acta Biomater 2022; 145: 77-87.
[http://dx.doi.org/10.1016/j.actbio.2022.04.023] [PMID: 35460910]
[21]
Thomas MA, Fahey MJ, Pugliese BR, Irwin RM, Antonyak MA, Delco ML. Human mesenchymal stromal cells release functional mitochondria in extracellular vesicles. Front Bioeng Biotechnol 2022; 10: 870193.
[http://dx.doi.org/10.3389/fbioe.2022.870193] [PMID: 36082164]
[22]
Zhang L, Liu Q, Hu H, Zhao L, Zhu K. Progress in mesenchymal stem cell mitochondria transfer for the repair of tissue injury and treatment of disease. Biomed Pharmacother 2022; 153: 113482.
[http://dx.doi.org/10.1016/j.biopha.2022.113482] [PMID: 36076582]
[23]
Giri J, Das R, Nylen E, Chinnadurai R, Galipeau J. CCL2 and CXCL12 derived from mesenchymal stromal cells cooperatively polarize IL-10+ tissue macrophages to mitigate gut injury. Cell Rep 2020; 30(6): 1923-1934.e4.
[24]
Galipeau J. Macrophages at the nexus of mesenchymal stromal cell potency: The emerging role of chemokine cooperativity. Stem Cells 2021; 39(9): 1145-54.
[http://dx.doi.org/10.1002/stem.3380] [PMID: 33786935]
[25]
Liu C, Xiao K, Xie L. Advances in the regulation of macrophage polarization by mesenchymal stem cells and implications for ALI/ARDS treatment. Front Immunol 2022; 13: 928134.
[http://dx.doi.org/10.3389/fimmu.2022.928134] [PMID: 35880175]
[26]
Lin W, Li Q, Zhang D, et al. Mapping the immune microenvironment for mandibular alveolar bone homeostasis at single-cell resolution. Bone Res 2021; 9(1): 17.
[http://dx.doi.org/10.1038/s41413-021-00141-5] [PMID: 33723232]
[27]
Zhang P, Amarasinghe HE, Whalley JP, et al. Epigenomic analysis reveals a dynamic and context-specific macrophage enhancer landscape associated with innate immune activation and tolerance. Genome Biol 2022; 23(1): 136.
[http://dx.doi.org/10.1186/s13059-022-02702-1] [PMID: 35751107]
[28]
Espagnolle N, Balguerie A, Arnaud E, Sensebé L, Varin A. CD54-mediated interaction with pro-inflammatory macrophages increases the immunosuppressive function of human mesenchymal stromal cells. Stem Cell Reports 2017; 8(4): 961-76.
[http://dx.doi.org/10.1016/j.stemcr.2017.02.008] [PMID: 28330617]
[29]
Cho DI, Kim MR, Jeong H, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrow-derived macrophages. Exp Mol Med 2014; 46(1): e70.
[http://dx.doi.org/10.1038/emm.2013.135] [PMID: 24406319]
[30]
Martin KE, García AJ. Macrophage phenotypes in tissue repair and the foreign body response: Implications for biomaterial-based regenerative medicine strategies. Acta Biomater 2021; 133: 4-16.
[http://dx.doi.org/10.1016/j.actbio.2021.03.038] [PMID: 33775905]
[31]
Mosser DM, Hamidzadeh K, Goncalves R. Macrophages and the maintenance of homeostasis. Cell Mol Immunol 2021; 18(3): 579-87.
[http://dx.doi.org/10.1038/s41423-020-00541-3] [PMID: 32934339]
[32]
Dwyer GK, Turnquist HR. Untangling local pro-inflammatory, reparative, and regulatory damage-associated molecular-patterns (DAMPs) pathways to improve transplant outcomes. Front Immunol 2021; 12: 611910.
[http://dx.doi.org/10.3389/fimmu.2021.611910] [PMID: 33708206]
[33]
Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity 2022; 55(9): 1530-48.
[http://dx.doi.org/10.1016/j.immuni.2022.08.005] [PMID: 36103851]
[34]
Zhan Y, Xu D, Tian Y, et al. Novel role of macrophage TXNIP-mediated CYLD–NRF2–OASL1 axis in stress-induced liver inflammation and cell death. JHEP Reports 2022; 4(9): 100532.
[http://dx.doi.org/10.1016/j.jhepr.2022.100532] [PMID: 36035360]
[35]
Zaman R, Epelman S. Resident cardiac macrophages: Heterogeneity and function in health and disease. Immunity 2022; 55(9): 1549-63.
[http://dx.doi.org/10.1016/j.immuni.2022.08.009] [PMID: 36103852]
[36]
Narasimhan PB, Marcovecchio P, Hamers AAJ, Hedrick CC. Nonclassical monocytes in health and disease. Annu Rev Immunol 2019; 37(1): 439-56.
[http://dx.doi.org/10.1146/annurev-immunol-042617-053119] [PMID: 31026415]
[37]
Lin CW, Hung CM, Chen WJ, et al. New horizons of macrophage immunomodulation in the healing of diabetic foot ulcers. Pharmaceutics 2022; 14(10): 2065.
[http://dx.doi.org/10.3390/pharmaceutics14102065] [PMID: 36297499]
[38]
Ligeon LA, Pena-Francesch M, Vanoaica LD, et al. Oxidation inhibits autophagy protein deconjugation from phagosomes to sustain MHC class II restricted antigen presentation. Nat Commun 2021; 12(1): 1508.
[http://dx.doi.org/10.1038/s41467-021-21829-6] [PMID: 33686057]
[39]
Chang CF, Goods BA, Askenase MH, et al. Divergent functions of tissue-resident and blood-derived macrophages in the hemorrhagic brain. Stroke 2021; 52(5): 1798-808.
[http://dx.doi.org/10.1161/STROKEAHA.120.032196] [PMID: 33840225]
[40]
Blevins HM, Xu Y, Biby S, Zhang S. The NLRP3 inflammasome pathway: A review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci 2022; 14: 879021.
[http://dx.doi.org/10.3389/fnagi.2022.879021] [PMID: 35754962]
[41]
Xian H, Watari K, Sanchez-Lopez E, et al. Oxidized DNA fragments exit mitochondria via mPTP- and VDAC-dependent channels to activate NLRP3 inflammasome and interferon signaling. Immunity 2022; 55(8): 1370-1385.e8.
[http://dx.doi.org/10.1016/j.immuni.2022.06.007] [PMID: 35835107]
[42]
Grebe A, Hoss F, Latz E. NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res 2018; 122(12): 1722-40.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.311362] [PMID: 29880500]
[43]
Kaneko N, Kurata M, Yamamoto T, Morikawa S, Masumoto J. The role of interleukin-1 in general pathology. Inflamm Regen 2019; 39(1): 12.
[http://dx.doi.org/10.1186/s41232-019-0101-5] [PMID: 31182982]
[44]
Neighbors M, Xu X, Barrat FJ, et al. A critical role for interleukin 18 in primary and memory effector responses to Listeria monocytogenes that extends beyond its effects on Interferon gamma production. J Exp Med 2001; 194(3): 343-54.
[http://dx.doi.org/10.1084/jem.194.3.343] [PMID: 11489953]
[45]
Deng J, Zhang B, Chu H, et al. Adenosine synthase A contributes to recurrent Staphylococcus aureus infection by dampening protective immunity. EBioMedicine 2021; 70: 103505.
[http://dx.doi.org/10.1016/j.ebiom.2021.103505] [PMID: 34332295]
[46]
Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol 2008; 8(12): 958-69.
[http://dx.doi.org/10.1038/nri2448] [PMID: 19029990]
[47]
Denans N, Tran NTT, Swall ME, Diaz DC, Blanck J, Piotrowski T. An anti-inflammatory activation sequence governs macrophage transcriptional dynamics during tissue injury in zebrafish. Nat Commun 2022; 13(1): 5356.
[http://dx.doi.org/10.1038/s41467-022-33015-3] [PMID: 36127326]
[48]
Klaver D, Gander H, Dobler G, Rahm A, Thurnher M. The P2Y11 receptor of human M2 macrophages activates canonical and IL-1 receptor signaling to translate the extracellular danger signal ATP into anti-inflammatory and pro-angiogenic responses. Cell Mol Life Sci 2022; 79(10): 519.
[http://dx.doi.org/10.1007/s00018-022-04548-z] [PMID: 36107259]
[49]
Gharavi AT, Hanjani NA, Movahed E, Doroudian M. The role of macrophage subtypes and exosomes in immunomodulation. Cell Mol Biol Lett 2022; 27(1): 83.
[http://dx.doi.org/10.1186/s11658-022-00384-y] [PMID: 36192691]
[50]
Yang Z, Lin S, Feng W, et al. A potential therapeutic target in traditional Chinese medicine for ulcerative colitis: Macrophage polarization. Front Pharmacol 2022; 13: 999179.
[http://dx.doi.org/10.3389/fphar.2022.999179] [PMID: 36147340]
[51]
Tajbakhsh A, Gheibihayat SM, Askari H, et al. Statin-regulated phagocytosis and efferocytosis in physiological and pathological conditions. Pharmacol Ther 2022; 238: 108282.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108282] [PMID: 36130624]
[52]
Vago JP, Galvão I, Negreiros-Lima GL, et al. Glucocorticoid-induced leucine zipper modulates macrophage polarization and apoptotic cell clearance. Pharmacol Res 2020; 158: 104842.
[http://dx.doi.org/10.1016/j.phrs.2020.104842] [PMID: 32413484]
[53]
Yang X, Zhou F, Yuan P, et al. T cell-depleting nanoparticles ameliorate bone loss by reducing activated T cells and regulating the Treg/Th17 balance. Bioact Mater 2021; 6(10): 3150-63.
[http://dx.doi.org/10.1016/j.bioactmat.2021.02.034] [PMID: 33778195]
[54]
Haribhai D, Ziegelbauer J, Jia S, et al. Alternatively activated macrophages boost induced regulatory T and Th17 cell responses during immunotherapy for colitis. J Immunol 2016; 196(8): 3305-17.
[http://dx.doi.org/10.4049/jimmunol.1501956] [PMID: 26927797]
[55]
Zhang H, Xue R, Zhu S, et al. M2-specific reduction of CD1d switches NKT cell-mediated immune responses and triggers metaflammation in adipose tissue. Cell Mol Immunol 2018; 15(5): 506-17.
[http://dx.doi.org/10.1038/cmi.2017.11] [PMID: 28392574]
[56]
Xie Z, Hao H, Tong C, et al. Human umbilical cord-derived mesenchymal stem cells elicit macrophages into an anti-inflammatory phenotype to alleviate insulin resistance in type 2 diabetic rats. Stem Cells 2016; 34(3): 627-39.
[http://dx.doi.org/10.1002/stem.2238] [PMID: 26523620]
[57]
Yin Y, Hao H, Cheng Y, et al. Human umbilical cord-derived mesenchymal stem cells direct macrophage polarization to alleviate pancreatic islets dysfunction in type 2 diabetic mice. Cell Death Dis 2018; 9(7): 760.
[http://dx.doi.org/10.1038/s41419-018-0801-9] [PMID: 29988034]
[58]
Ratnayake D, Nguyen PD, Rossello FJ, et al. Macrophages provide a transient muscle stem cell niche via NAMPT secretion. Nature 2021; 591(7849): 281-7.
[http://dx.doi.org/10.1038/s41586-021-03199-7] [PMID: 33568815]
[59]
Zhang M, Johnson-Stephenson TK, Wang W, et al. Mesenchymal stem cell-derived exosome-educated macrophages alleviate systemic lupus erythematosus by promoting efferocytosis and recruitment of IL-17+ regulatory T cell. Stem Cell Res Ther 2022; 13(1): 484.
[http://dx.doi.org/10.1186/s13287-022-03174-7] [PMID: 36153633]
[60]
Wiese DM, Wood CA, Ford BN, Braid LR. Cytokine activation reveals tissue-imprinted gene profiles of mesenchymal stromal cells. Front Immunol 2022; 13: 917790.
[http://dx.doi.org/10.3389/fimmu.2022.917790] [PMID: 35924240]
[61]
Takeuchi S, Tsuchiya A, Iwasawa T, et al. Small extracellular vesicles derived from interferon-γ pre-conditioned mesenchymal stromal cells effectively treat liver fibrosis. NPJ Regen Med 2021; 6(1): 19.
[http://dx.doi.org/10.1038/s41536-021-00132-4] [PMID: 33785758]
[62]
Demarquay C, Moussa L, Réthoré G, Milliat F, Weiss P, Mathieu N. Embedding MSCs in Si-HPMC hydrogel decreased MSC-directed host immune response and increased the regenerative potential of macrophages. Regen Biomater 2022; 9: rbac022.
[http://dx.doi.org/10.1093/rb/rbac022] [PMID: 35784096]
[63]
Patrick MD, Annamalai RT. Licensing microgels prolong the immunomodulatory phenotype of mesenchymal stromal cells. Front Immunol 2022; 13: 987032.
[http://dx.doi.org/10.3389/fimmu.2022.987032] [PMID: 36059508]
[64]
Papait A, Ragni E, Cargnoni A, et al. Comparison of EV-free fraction, EVs, and total secretome of amniotic mesenchymal stromal cells for their immunomodulatory potential: A translational perspective. Front Immunol 2022; 13: 960909.
[http://dx.doi.org/10.3389/fimmu.2022.960909] [PMID: 36052081]
[65]
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: A dynamic microenvironment for stem cell niche. Biochim Biophys Acta, Gen Subj 2014; 1840(8): 2506-19.
[http://dx.doi.org/10.1016/j.bbagen.2014.01.010] [PMID: 24418517]
[66]
Zhuang Z, Zhang Y, Yang X, et al. Matrix stiffness regulates the immunomodulatory effects of mesenchymal stem cells on macrophages via AP1/TSG-6 signaling pathways. Acta Biomater 2022; 149: 69-81.
[http://dx.doi.org/10.1016/j.actbio.2022.07.010] [PMID: 35820593]
[67]
Wong SW, Lenzini S, Cooper MH, Mooney DJ, Shin JW. Soft extracellular matrix enhances inflammatory activation of mesenchymal stromal cells to induce monocyte production and trafficking. Sci Adv 2020; 6(15): eaaw0158.
[http://dx.doi.org/10.1126/sciadv.aaw0158] [PMID: 32284989]
[68]
Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6. Cell Stem Cell 2009; 5(1): 54-63.
[http://dx.doi.org/10.1016/j.stem.2009.05.003] [PMID: 19570514]
[69]
Wang M, Zhang M, Fu L, et al. Liver-targeted delivery of TSG-6 by calcium phosphate nanoparticles for the management of liver fibrosis. Theranostics 2020; 10(1): 36-49.
[http://dx.doi.org/10.7150/thno.37301] [PMID: 31903104]
[70]
Li Q, Song WJ, Ryu MO, et al. TSG-6 secreted by human adipose tissue-derived mesenchymal stem cells ameliorates severe acute pancreatitis via ER stress downregulation in mice. Stem Cell Res Ther 2018; 9(1): 255.
[http://dx.doi.org/10.1186/s13287-018-1009-8] [PMID: 30257717]
[71]
Cassano JM, Schnabel LV, Goodale MB, Fortier LA. Inflammatory licensed equine MSCs are chondroprotective and exhibit enhanced immunomodulation in an inflammatory environment. Stem Cell Res Ther 2018; 9(1): 82.
[http://dx.doi.org/10.1186/s13287-018-0840-2] [PMID: 29615127]
[72]
Ceccariglia S, Cargnoni A, Silini AR, Parolini O. Autophagy: A potential key contributor to the therapeutic action of mesenchymal stem cells. Autophagy 2020; 16(1): 28-37.
[http://dx.doi.org/10.1080/15548627.2019.1630223] [PMID: 31185790]
[73]
Souza-Moreira L, Soares VC, Dias SSG, Bozza PT. Adipose-derived mesenchymal stromal cells modulate lipid metabolism and lipid droplet biogenesis via AKT/mTOR –PPARγ signalling in macrophages. Sci Rep 2019; 9(1): 20304.
[http://dx.doi.org/10.1038/s41598-019-56835-8] [PMID: 31889120]
[74]
Liu Y, Yuan X, Muñoz N, Logan TM, Ma T. Commitment to aerobic glycolysis sustains immunosuppression of human mesenchymal stem cells. Stem Cells Transl Med 2019; 8(1): 93-106.
[http://dx.doi.org/10.1002/sctm.18-0070] [PMID: 30272389]
[75]
Wang J, Liu Y, Ding H, Shi X, Ren H. Mesenchymal stem cell-secreted prostaglandin E2 ameliorates acute liver failure via attenuation of cell death and regulation of macrophage polarization. Stem Cell Res Ther 2021; 12(1): 15.
[http://dx.doi.org/10.1186/s13287-020-02070-2] [PMID: 33413632]
[76]
Su Y, Sun X, Liu X, et al. hUC-EVs-ATO reduce the severity of acute GVHD by resetting inflammatory macrophages toward the M2 phenotype. J Hematol Oncol 2022; 15(1): 99.
[http://dx.doi.org/10.1186/s13045-022-01315-2] [PMID: 35864538]
[77]
Galleu A, Riffo-Vasquez Y, Trento C, et al. Apoptosis in mesenchymal stromal cells induces in vivo recipient-mediated immunomodulation. Sci Transl Med 2017; 9(416): eaam7828.
[http://dx.doi.org/10.1126/scitranslmed.aam7828] [PMID: 29141887]
[78]
Tynecka M, Janucik A, Niemira M, et al. The short-term and long-term effects of intranasal mesenchymal stem cell administration to noninflamed mice lung. Front Immunol 2022; 13: 967487.
[http://dx.doi.org/10.3389/fimmu.2022.967487] [PMID: 36189248]
[79]
Morioka S, Maueröder C, Ravichandran KS. Living on the edge: Efferocytosis at the interface of homeostasis and pathology. Immunity 2019; 50(5): 1149-62.
[http://dx.doi.org/10.1016/j.immuni.2019.04.018] [PMID: 31117011]
[80]
Xin L, Wei C, Tong X, et al. In situ delivery of apoptotic bodies derived from mesenchymal stem cells via a hyaluronic acid hydrogel: A therapy for intrauterine adhesions. Bioact Mater 2022; 12: 107-19.
[http://dx.doi.org/10.1016/j.bioactmat.2021.10.025] [PMID: 35087967]
[81]
Zheng C, Sui B, Zhang X, et al. Apoptotic vesicles restore liver macrophage homeostasis to counteract type 2 diabetes. J Extracell Vesicles 2021; 10(7): e12109.
[http://dx.doi.org/10.1002/jev2.12109] [PMID: 34084287]
[82]
Li Z, Wu M, Liu S, et al. Apoptotic vesicles activate autophagy in recipient cells to induce angiogenesis and dental pulp regeneration. Mol Ther 2022; 30(10): 3193-208.
[http://dx.doi.org/10.1016/j.ymthe.2022.05.006] [PMID: 35538661]
[83]
Patil M, Saheera S, Dubey PK, et al. Novel mechanisms of exosome-mediated phagocytosis of dead cells in injured heart. Circ Res 2021; 129(11): 1006-20.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317900] [PMID: 34623174]
[84]
Humbert P, Brennan MÁ, De Lima J, et al. Apoptotic mesenchymal stromal cells support osteoclastogenesis while inhibiting multinucleated giant cells formation in vitro. Sci Rep 2021; 11(1): 12144.
[http://dx.doi.org/10.1038/s41598-021-91258-4] [PMID: 34108508]
[85]
Tan YL, Eng SP, Hafez P, Abdul Karim N, Law JX, Ng MH. Mesenchymal stromal cell mitochondrial transfer as a cell rescue strategy in regenerative medicine: A review of evidence in preclinical models. Stem Cells Transl Med 2022; 11(8): 814-27.
[http://dx.doi.org/10.1093/stcltm/szac044] [PMID: 35851922]
[86]
Jackson MV, Morrison TJ, Doherty DF, et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 2016; 34(8): 2210-23.
[http://dx.doi.org/10.1002/stem.2372] [PMID: 27059413]
[87]
Sanz-Ros J, Romero-García N, Mas-Bargues C, et al. Small extracellular vesicles from young adipose-derived stem cells prevent frailty, improve health span, and decrease epigenetic age in old mice. Sci Adv 2022; 8(42): eabq2226.
[http://dx.doi.org/10.1126/sciadv.abq2226] [PMID: 36260670]
[88]
García-Bernal D, Blanquer M, Martínez CM, et al. Enforced mesenchymal stem cell tissue colonization counteracts immunopathology. NPJ Regen Med 2022; 7(1): 61.
[http://dx.doi.org/10.1038/s41536-022-00258-z] [PMID: 36261464]
[89]
Murphy KC, Whitehead J, Zhou D, Ho SS, Leach JK. Engineering fibrin hydrogels to promote the wound healing potential of mesenchymal stem cell spheroids. Acta Biomater 2017; 64: 176-86.
[http://dx.doi.org/10.1016/j.actbio.2017.10.007] [PMID: 28987783]
[90]
Vallés G, Bensiamar F, Crespo L, Arruebo M, Vilaboa N, Saldaña L. Topographical cues regulate the crosstalk between MSCs and macrophages. Biomaterials 2015; 37: 124-33.
[http://dx.doi.org/10.1016/j.biomaterials.2014.10.028] [PMID: 25453943]
[91]
Pulido-Escribano V, Torrecillas-Baena B, Camacho-Cardenosa M, Dorado G, Gálvez-Moreno MÁ, Casado-Díaz A. Role of hypoxia preconditioning in therapeutic potential of mesenchymal stem-cell-derived extracellular vesicles. World J Stem Cells 2022; 14(7): 453-72.
[http://dx.doi.org/10.4252/wjsc.v14.i7.453] [PMID: 36157530]
[92]
Regmi S, Raut PK, Pathak S, Shrestha P, Park PH, Jeong JH. Enhanced viability and function of mesenchymal stromal cell spheroids is mediated via autophagy induction. Autophagy 2021; 17(10): 2991-3010.
[http://dx.doi.org/10.1080/15548627.2020.1850608] [PMID: 33206581]
[93]
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J Neuroinflammation 2020; 17(1): 47.
[http://dx.doi.org/10.1186/s12974-020-1726-7] [PMID: 32019561]
[94]
Collino F, Lopes JA, Corrêa S, et al. Adipose-derived mesenchymal stromal cells under hypoxia: Changes in extracellular vesicles secretion and improvement of renal recovery after ischemic injury. Cell Physiol Biochem 2019; 52(6): 1463-83.
[PMID: 31099507]
[95]
Su W, Yu S, Yin Y, et al. Diabetic microenvironment preconditioning of adipose tissue-derived mesenchymal stem cells enhances their anti-diabetic, anti-long-term complications, and anti-inflammatory effects in type 2 diabetic rats. Stem Cell Res Ther 2022; 13(1): 422.
[http://dx.doi.org/10.1186/s13287-022-03114-5] [PMID: 35986406]
[96]
Ti D, Hao H, Tong C, et al. LPS-preconditioned mesenchymal stromal cells modify macrophage polarization for resolution of chronic inflammation via exosome-shuttled let-7b. J Transl Med 2015; 13(1): 308.
[http://dx.doi.org/10.1186/s12967-015-0642-6] [PMID: 26386558]
[97]
Park HY, Kim CE, Lee SM, et al. Priming mesenchymal stem/stromal cells with a combination of a low dose of IFN-gamma and bortezomib results in potent suppression of pathogenic Th17 immunity through the IDO1-AHR axis. Stem Cells 2022; 41(1): 64-76.
[98]
Skibber MA, Olson SD, Prabhakara KS, Gill BS, Cox CS Jr. Enhancing mesenchymal stromal cell potency: inflammatory licensing via mechanotransduction. Front Immunol 2022; 13: 874698.
[http://dx.doi.org/10.3389/fimmu.2022.874698] [PMID: 35874742]
[99]
Grumet M, Sherman J, Dorf BS. Efficacy of MSC in Patients with severe COVID-19: Analysis of the literature and a case study. Stem Cells Transl Med 2022; 11(11): 1103-12.
[http://dx.doi.org/10.1093/stcltm/szac067] [PMID: 36181766]
[100]
Shi L, Yuan X, Yao W, et al. Human mesenchymal stem cells treatment for severe COVID-19: 1-year follow-up results of a randomized, double-blind, placebo-controlled trial. EBioMedicine 2022; 75: 103789.
[http://dx.doi.org/10.1016/j.ebiom.2021.103789] [PMID: 34963099]
[101]
Upadhyay TK, Trivedi R, Khan F, et al. Potential therapeutic role of mesenchymal-derived stem cells as an alternative therapy to combat COVID-19 through cytokines storm. Cells 2022; 11(17): 2686.
[http://dx.doi.org/10.3390/cells11172686] [PMID: 36078094]
[102]
Dauletova M, Hafsan H, Mahhengam N, Zekiy AO, Ahmadi M, Siahmansouri H. Mesenchymal stem cell alongside exosomes as a novel cell-based therapy for COVID-19: A review study. Clin Immunol 2021; 226: 108712.
[http://dx.doi.org/10.1016/j.clim.2021.108712] [PMID: 33684527]
[103]
Zang L, Li Y, Hao H, et al. Efficacy and safety of umbilical cord-derived mesenchymal stem cells in Chinese adults with type 2 diabetes: A single-center, double-blinded, randomized, placebo-controlled phase II trial. Stem Cell Res Ther 2022; 13(1): 180.
[http://dx.doi.org/10.1186/s13287-022-02848-6] [PMID: 35505375]
[104]
Kerstan A, Dieter K, Niebergall-Roth E, et al. Translational development of ABCB5+ dermal mesenchymal stem cells for therapeutic induction of angiogenesis in non-healing diabetic foot ulcers. Stem Cell Res Ther 2022; 13(1): 455.
[http://dx.doi.org/10.1186/s13287-022-03156-9] [PMID: 36064604]
[105]
Duijvestein M, Vos ACW, Roelofs H, et al. Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: Results of a phase I study. Gut 2010; 59(12): 1662-9.
[http://dx.doi.org/10.1136/gut.2010.215152] [PMID: 20921206]
[106]
Johnson S, Hoch JS, Halabi WJ, Ko J, Nolta J, Dave M. Mesenchymal stem/stromal cell therapy is more cost-effective than fecal diversion for treatment of perianal crohn’s disease fistulas. Front Immunol 2022; 13: 859954.
[http://dx.doi.org/10.3389/fimmu.2022.859954] [PMID: 35784367]
[107]
Lightner AL, Dadgar N, Matyas C, et al. A phase IB/IIA study of remestemcel L, an allogeneic bone marrow derived mesenchymal stem cell product, for the treatment of medically refractory ulcerative colitis: An interim analysis. Colorectal Dis 2022; 24(11): 1358-70.
[http://dx.doi.org/10.1111/codi.16239] [PMID: 35767384]
[108]
Altemus J, Dadgar N, Li Y, Lightner AL. Adipose tissue derived mesenchymal stem cells’ acellular product extracellular vesicles as a potential therapy for Crohn’s disease. J Cell Physiol 2022; 237(7): 3001-11.
[http://dx.doi.org/10.1002/jcp.30756] [PMID: 35522572]
[109]
Albu S, Kumru H, Coll R, et al. Clinical effects of intrathecal administration of expanded Wharton jelly mesenchymal stromal cells in patients with chronic complete spinal cord injury: A randomized controlled study. Cytotherapy 2021; 23(2): 146-56.
[http://dx.doi.org/10.1016/j.jcyt.2020.08.008] [PMID: 32981857]
[110]
Vaquero J, Zurita M, Rico MA, et al. Repeated subarachnoid administrations of autologous mesenchymal stromal cells supported in autologous plasma improve quality of life in patients suffering incomplete spinal cord injury. Cytotherapy 2017; 19(3): 349-59.
[http://dx.doi.org/10.1016/j.jcyt.2016.12.002] [PMID: 28089079]
[111]
Vaquero J, Zurita M, Rico MA, et al. Intrathecal administration of autologous mesenchymal stromal cells for spinal cord injury: Safety and efficacy of the 100/3 guideline. Cytotherapy 2018; 20(6): 806-19.
[http://dx.doi.org/10.1016/j.jcyt.2018.03.032] [PMID: 29853256]
[112]
Siniscalco D, Giordano C, Galderisi U, et al. Long-lasting effects of human mesenchymal stem cell systemic administration on pain-like behaviors, cellular, and biomolecular modifications in neuropathic mice. Front Integr Nuerosci 2011; 5: 79.
[http://dx.doi.org/10.3389/fnint.2011.00079] [PMID: 22164136]
[113]
Anton K, Banerjee D, Glod J. Macrophage-associated mesenchymal stem cells assume an activated, migratory, pro-inflammatory phenotype with increased IL-6 and CXCL10 secretion. PLoS One 2012; 7(4): e35036.
[http://dx.doi.org/10.1371/journal.pone.0035036] [PMID: 22496888]
[114]
Li Y, Zhang D, Xu L, et al. Cell–cell contact with proinflammatory macrophages enhances the immunotherapeutic effect of mesenchymal stem cells in two abortion models. Cell Mol Immunol 2019; 16(12): 908-20.
[http://dx.doi.org/10.1038/s41423-019-0204-6] [PMID: 30778166]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy