Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Exploring the Prospective of Curcumin-loaded Nanomedicine in Brain Cancer Therapy: An Overview of Recent Updates and Patented Nanoformulations

Author(s): Ravinder Verma*, Lakshita Rao, Diksha Nagpal, Manish Yadav, Manish Kumar, Vineet Mittal and Deepak Kaushik

Volume 18, Issue 3, 2024

Published on: 07 September, 2023

Page: [278 - 294] Pages: 17

DOI: 10.2174/1872210517666230823155328

Price: $65

Abstract

Cancer is a complex, one of the fatal non-communicable diseases, and its treatment has enormous challenges, with variable efficacy of traditional anti-cancer agents. By 2025, it is expected that 420 million additional cases of cancer will be diagnosed yearly. However, among various types of cancer, brain cancer treatment is most difficult due to the presence of blood-brain barriers. Nowadays, phytoconstituents are gaining popularity because of their biosafety and low toxicity to healthy cells. This article reviews various aspects related to curcumin for brain cancer therapeutics, including epidemiology, the role of nanotechnology, and various challenges for development and clinical trials. Furthermore, it elaborates on the prospects of curcumin for brain cancer therapeutics. In this article, our objective is to illuminate the anti-cancer potential of curcumin for brain cancer therapy. Moreover, it also explores how to defeat its constraints of clinical application because of poor bioavailability, stability, and rapid metabolism. This review also emphasizes the possibility of curcumin for the cure of brain cancer using cuttingedge biotechnological methods based on nanomedicine. This review further highlights the recent patents on curcumin-loaded nanoformulations for brain cancer. Overall, this article provides an overview of curcumin's potential in brain cancer therapy by considering challenges to be overwhelmed and future prospective. Moreover, this review summarizes the reported literature on the latest research related to the utility of curcumin in brain cancer therapy and aims to provide a reference for advanced investigation on brain cancer treatment.

Graphical Abstract

[1]
Wadhwa K, Pahwa R, Kumar M, et al. Mechanistic insights into the pharmacological significance of silymarin. Molecules 2022; 27(16): 5327.
[http://dx.doi.org/10.3390/molecules27165327] [PMID: 36014565]
[2]
Kaushik D, Pandey P, Chopra H, et al. Multifunctional patented nanotherapeutics for cancer intervention: 2010- onwards. Recent Patents Anticancer Drug Discov 2023; 18(1): 38-52.
[http://dx.doi.org/10.2174/1574892817666220322085942] [PMID: 35319390]
[3]
Singh AK, Kumar A, Singh H, et al. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals 2022; 15(9): 1071.
[http://dx.doi.org/10.3390/ph15091071] [PMID: 36145292]
[4]
Muhammad P, Hanif S, Li J, et al. Carbon dots supported single Fe atom nanozyme for drug-resistant glioblastoma therapy by activating autophagy-lysosome pathway. Nano Today 2022; 45: 101530.
[http://dx.doi.org/10.1016/j.nantod.2022.101530]
[5]
Yan J, Hanif S, Zhang D, et al. Arsenic prodrug-mediated tumor microenvironment modulation platform for synergetic glioblastoma therapy. ACS Appl Mater Interfaces 2022; 14(32): 36487-502.
[http://dx.doi.org/10.1021/acsami.2c12076] [PMID: 35921662]
[6]
Rehman FU, Rauf MA, Ullah S, et al. Ultrasound-activated nano-TiO2 loaded with temozolomide paves the way for resection of chemoresistant glioblastoma multiforme. Cancer Nanotechnol 2021; 12(1): 17.
[http://dx.doi.org/10.1186/s12645-021-00088-6]
[7]
Hanif S, Muhammad P, Niu Z, et al. Nanotechnology-based strategies for early diagnosis of central nervous system disorders. Adv NanoBiomed Res 2021; 1(10): 2100008.
[http://dx.doi.org/10.1002/anbr.202100008]
[8]
Ismail M, Yang W, Li Y, et al. Biomimetic Dp44mT-nanoparticles selectively induce apoptosis in Cu-loaded glioblastoma resulting in potent growth inhibition. Biomaterials 2022; 289: 121760.
[http://dx.doi.org/10.1016/j.biomaterials.2022.121760] [PMID: 36044788]
[9]
Chen S, Wu J, Tang Q, et al. Nano-micelles based on hydroxyethyl starch-curcumin conjugates improve curcumin’s stability, antioxidant, and anticancer activity. Carbohydr Polym 2020; 228: 115398.
[http://dx.doi.org/10.1016/j.carbpol.2019.115398] [PMID: 31635734]
[10]
Venkatas J, Daniels A, Singh M. The potential of curcumin-capped nanoparticle synthesis in cancer therapy: A green synthesis approach. Nanomaterials 2022; 12(18): 3201.
[http://dx.doi.org/10.3390/nano12183201] [PMID: 36144994]
[11]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[12]
Philip CC, Mathew A, John MJ. Cancer care: Challenges in the developing world. Cancer Res Treat 2018; 1: 58-62.
[13]
Hanif F, Muzaffar K, Perveen K, Malhi SM, Simjee ShU. Glioblastoma multiforme: A review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 2017; 18(1): 3-9.
[PMID: 28239999]
[14]
Zhu Y, Teng Y, Xu S, et al. Eczema as a protective factor for brain cancer: A meta-analysis. BMC Cancer 2022; 22(1): 1360.
[http://dx.doi.org/10.1186/s12885-022-10471-0] [PMID: 36581832]
[15]
Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: Primary brain and central nervous system tumors diagnosed in the United States in 2007-2011. Neuro-oncol 2014; 16 (Suppl. 4): iv1-iv63.
[http://dx.doi.org/10.1093/neuonc/nou223] [PMID: 25304271]
[16]
Fan Y, Zhang X, Gao C, et al. Burden and trends of brain and central nervous system cancer from 1990 to 2019 at the global, regional, and country levels. Arch Public Health 2022; 80(1): 209.
[http://dx.doi.org/10.1186/s13690-022-00965-5] [PMID: 36115969]
[18]
Key statistics for brain and spinal cord tumors. Available From: https://www.cancer.org/cancer/brain-spinal-cord-tumors-adults/about/key-statistics.html
[19]
Zhong L, Li Y, Xiong L, et al. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6(1): 201.
[http://dx.doi.org/10.1038/s41392-021-00572-w] [PMID: 34054126]
[20]
Zugazagoitia J, Guedes C, Ponce S, Ferrer I, Molina-Pinelo S, Paz-Ares L. Current challenges in cancer treatment. Clin Ther 2016; 38(7): 1551-66.
[http://dx.doi.org/10.1016/j.clinthera.2016.03.026] [PMID: 27158009]
[21]
Senapati S, Mahanta AK, Kumar S, Maiti P. Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduct Target Ther 2018; 3(1): 7.
[http://dx.doi.org/10.1038/s41392-017-0004-3] [PMID: 29560283]
[22]
Tagde P, Tagde P, Tagde S, et al. Natural bioactive molecules: An alternative approach to the treatment and control of glioblastoma multiforme. Biomed Pharmacother 2021; 141: 111928.
[http://dx.doi.org/10.1016/j.biopha.2021.111928] [PMID: 34323701]
[23]
Ahmed MB, Islam SU, Alghamdi AAA, Kamran M, Ahsan H, Lee YS. Phytochemicals as chemo-preventive agents and signaling molecule modulators: Current role in cancer therapeutics and inflammation. Int J Mol Sci 2022; 23(24): 15765.
[http://dx.doi.org/10.3390/ijms232415765] [PMID: 36555406]
[24]
Ming T, Tao Q, Tang S, et al. Curcumin: An epigenetic regulator and its application in cancer. Biomed Pharmacother 2022; 156: 113956.
[http://dx.doi.org/10.1016/j.biopha.2022.113956] [PMID: 36411666]
[25]
Khashkhashi-Moghadam S, Ezazi-Toroghi S, Kamkar-Vatanparast M, et al. Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. J Mol Liq 2022; 356: 119042.
[http://dx.doi.org/10.1016/j.molliq.2022.119042]
[26]
El-Seedi HR, Yosri N, Khalifa SAM, et al. Exploring natural products-based cancer therapeutics derived from egyptian flora. J Ethnopharmacol 2021; 269: 113626.
[http://dx.doi.org/10.1016/j.jep.2020.113626] [PMID: 33248183]
[27]
Küpeli Akkol E. Bardakcı H, Yücel Ç, Şeker Karatoprak G, Karpuz B, Khan H. A New perspective on the treatment of alzheimer’s disease and sleep deprivation-related consequences: Can curcumin help? Oxid Med Cell Longev 2022; 2022: 1-23.
[http://dx.doi.org/10.1155/2022/6168199] [PMID: 35069976]
[28]
Walker BC, Adhikari S, Mittal S. Therapeutic potential of curcumin for the treatment of malignant gliomas. Debinski W, Ed Gliomas. Brisbane (AU): Exon Publications 2021.
[http://dx.doi.org/10.36255/exonpublications.gliomas.2021.chapter8] [PMID: 34038052]
[29]
Saranya TS, Rajan VK, Biswas R, Jayakumar R, Sathianarayanan S. Synthesis, characterisation and biomedical applications of curcumin conjugated chitosan microspheres. Int J Biol Macromol 2018; 110: 227-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.12.044] [PMID: 29229242]
[30]
Wong SC, Kamarudin MNA, Naidu R. Anticancer mechanism of curcumin on human glioblastoma. Nutrients 2021; 13(3): 950.
[http://dx.doi.org/10.3390/nu13030950] [PMID: 33809462]
[31]
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the marketing of curcumin as a drug. Int J Mol Sci 2020; 21(18): 6619.
[http://dx.doi.org/10.3390/ijms21186619] [PMID: 32927725]
[32]
Fan Y, Zhang X, Tong Y, Chen S, Liang J. Curcumin against gastrointestinal cancer: A review of the pharmacological mechanisms underlying its antitumor activity. Front Pharmacol 2022; 13: 990475.
[http://dx.doi.org/10.3389/fphar.2022.990475] [PMID: 36120367]
[33]
Shen L, Liu CC, An CY, Ji HF. How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci Rep 2016; 6(1): 20872.
[http://dx.doi.org/10.1038/srep20872] [PMID: 26887346]
[34]
Kabir MT, Rahman MH, Akter R, et al. Potential role of curcumin and its nanoformulations to treat various types of cancers. Biomolecules 2021; 11(3): 392.
[http://dx.doi.org/10.3390/biom11030392] [PMID: 33800000]
[35]
Amalraj A, Pius A, Gopi S, Gopi S. Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives – A review. J Tradit Complement Med 2017; 7(2): 205-33.
[http://dx.doi.org/10.1016/j.jtcme.2016.05.005] [PMID: 28417091]
[36]
Benameur T, Soleti R, Panaro MA, et al. Curcumin as prospective anti-aging natural compound: Focus on brain. Molecules 2021; 26(16): 4794.
[http://dx.doi.org/10.3390/molecules26164794] [PMID: 34443381]
[37]
Singh V, Kumar K, Purohit D, et al. Exploration of therapeutic applicability and different signaling mechanism of various phytopharmacological agents for treatment of breast cancer. Biomed Pharmacother 2021; 139: 111584.
[http://dx.doi.org/10.1016/j.biopha.2021.111584] [PMID: 34243623]
[38]
Karthikeyan A, Senthil N, Min T. Nanocurcumin: A promising candidate for therapeutic applications. Front Pharmacol 2020; 11: 487.
[http://dx.doi.org/10.3389/fphar.2020.00487] [PMID: 32425772]
[39]
Chung SS, Dutta P, Chard N, et al. A novel curcumin analog inhibits canonical and non-canonical functions of telomerase through STAT3 and NF-κB inactivation in colorectal cancer cells. Oncotarget 2019; 10(44): 4516-31.
[http://dx.doi.org/10.18632/oncotarget.27000] [PMID: 31360301]
[40]
Zhang W, Cui N, Ye J, Yang B, Sun Y, Kuang H. Curcumin’s prevention of inflammation-driven early gastric cancer and its molecular mechanism. Chin Herb Med 2022; 14(2): 244-53.
[http://dx.doi.org/10.1016/j.chmed.2021.11.003] [PMID: 36117672]
[41]
Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger AG. Epigenetic mechanisms in anti-cancer actions of bioactive food components - the implications in cancer prevention. Br J Pharmacol 2012; 167(2): 279-97.
[http://dx.doi.org/10.1111/j.1476-5381.2012.02002.x] [PMID: 22536923]
[42]
Sun C, Zhang S, Liu C, Liu X. Curcumin promoted miR-34a expression and suppressed proliferation of gastric cancer cells. Cancer Biother Radiopharm 2019; 34(10): 634-41.
[http://dx.doi.org/10.1089/cbr.2019.2874] [PMID: 31539270]
[43]
Gupta SC, Patchva S, Koh W, Aggarwal BB. Discovery of curcumin, a component of golden spice, and its miraculous biological activities. Clin Exp Pharmacol Physiol 2012; 39(3): 283-99.
[http://dx.doi.org/10.1111/j.1440-1681.2011.05648.x] [PMID: 22118895]
[44]
Ryskalin L, Biagioni F, Busceti CL, Lazzeri G, Frati A, Fornai F. The multi-faceted effect of curcumin in glioblastoma from rescuing cell clearance to autophagy-independent effects. Molecules 2020; 25(20): 4839.
[http://dx.doi.org/10.3390/molecules25204839] [PMID: 33092261]
[45]
Maiti P, Dunbar G. Use of Curcumin, a natural polyphenol for targeting molecular pathways in treating age-related neurodegenerative diseases. Int J Mol Sci 2018; 19(6): 1637.
[http://dx.doi.org/10.3390/ijms19061637] [PMID: 29857538]
[46]
Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA. The essential medicinal chemistry of curcumin. J Med Chem 2017; 60(5): 1620-37.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[47]
Adiwidjaja J, McLachlan AJ, Boddy AV. Curcumin as a clinically-promising anti-cancer agent: Pharmacokinetics and drug interactions. Expert Opin Drug Metab Toxicol 2017; 13(9): 953-72.
[http://dx.doi.org/10.1080/17425255.2017.1360279] [PMID: 28776444]
[48]
Wei T, Zheng Z, Wei X, et al. Rational design, synthesis, and pharmacological characterisation of dicarbonyl curcuminoid analogues with improved stability against lung cancer via ROS and ER stress mediated cell apoptosis and pyroptosis. J Enzyme Inhib Med Chem 2022; 37(1): 2357-69.
[http://dx.doi.org/10.1080/14756366.2022.2116015] [PMID: 36039017]
[49]
Bangphumi K, Kittiviriyakul C, Towiwat P, Rojsitthisak P, Khemawoot P. Pharmacokinetics of curcumin diethyl disuccinate, a prodrug of curcumin, in wistar rats. Eur J Drug Metab Pharmacokinet 2016; 41(6): 777-85.
[http://dx.doi.org/10.1007/s13318-015-0308-z] [PMID: 26563392]
[50]
Feynman RP. There’s plenty of room at the bottom. Eng Sci 1960; 23: 22-36.
[51]
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem 2018; 6: 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[52]
Verma R, Kaushik A, Almeer R, Rahman MH, Abdel-Daim MM, Kaushik D. Improved pharmacodynamic potential of rosuvastatin by self-nanoemulsifying drug delivery system: An in vitro and in vivo evaluation. Int J Nanomedicine 2021; 16: 905-24.
[http://dx.doi.org/10.2147/IJN.S287665] [PMID: 33603359]
[53]
Roacho-Pérez JA, Ruiz-Hernandez FG, Chapa-Gonzalez C, et al. Magnetite nanoparticles coated with PEG 3350-tween 80: In vitro characterization using primary cell cultures. Polymers 2020; 12(2): 300.
[http://dx.doi.org/10.3390/polym12020300] [PMID: 32024291]
[54]
Habib S, Singh M. Recent advances in lipid-based nanosystems for gemcitabine and gemcitabine–combination therapy. Nanomaterials 2021; 11(3): 597.
[http://dx.doi.org/10.3390/nano11030597] [PMID: 33673636]
[55]
Saeedi M, Eslamifar M, Khezri K, Dizaj SM. Applications of nanotechnology in drug delivery to the central nervous system. Biomed Pharmacother 2019; 111: 666-75.
[http://dx.doi.org/10.1016/j.biopha.2018.12.133] [PMID: 30611991]
[56]
Shabbir U, Rubab M, Tyagi A, Oh DH. Curcumin and its derivatives as theranostic agents in alzheimer’s disease: The implication of nanotechnology. Int J Mol Sci 2020; 22(1): 196.
[http://dx.doi.org/10.3390/ijms22010196] [PMID: 33375513]
[57]
Panzarini E, Mariano S, Tacconi S, Carata E, Tata AM, Dini L. Novel therapeutic delivery of nanocurcumin in central nervous system related disorders. Nanomaterials 2020; 11(1): 2.
[http://dx.doi.org/10.3390/nano11010002] [PMID: 33374979]
[58]
Fakhri S, Abdian S, Zarneshan SN, Moradi SZ, Farzaei MH, Abdollahi M. Nanoparticles in combating neuronal dysregulated signaling pathways: Recent approaches to the nanoformulations of phytochemicals and synthetic drugs against neurodegenerative diseases. Int J Nanomedicine 2022; 17: 299-331.
[http://dx.doi.org/10.2147/IJN.S347187] [PMID: 35095273]
[59]
Lombardo SM, Schneider M, Türeli AE, Günday Türeli N. Key for crossing the BBB with nanoparticles: The rational design. Beilstein J Nanotechnol 2020; 11: 866-83.
[http://dx.doi.org/10.3762/bjnano.11.72] [PMID: 32551212]
[60]
Karthika C, Hari B, Mano V, et al. Curcumin as a great contributor for the treatment and mitigation of colorectal cancer. Exp Gerontol 2021; 152: 111438.
[http://dx.doi.org/10.1016/j.exger.2021.111438] [PMID: 34098006]
[61]
Wen MM, El-Salamouni NS, El-Refaie WM, et al. Nanotechnology-based drug delivery systems for Alzheimer’s disease management: Technical, industrial, and clinical challenges. J Control Release 2017; 245: 95-107.
[http://dx.doi.org/10.1016/j.jconrel.2016.11.025] [PMID: 27889394]
[62]
Javed B, Zhao X, Cui D, Curtin J, Tian F. Enhanced anticancer response of curcumin- and piperine-loaded lignin-g-p (NIPAM-co-DMAEMA) gold nanogels against U-251 MG glioblastoma multiforme. Biomedicines 2021; 9(11): 1516.
[http://dx.doi.org/10.3390/biomedicines9111516] [PMID: 34829745]
[63]
Ali MM, Snyder JM, Ali MM. Dendrimer-based nanomedicine (paramagnetic nanoparticle, nanocombretastatin, nanocurcumin) for glioblastoma multiforme imaging and therapy. NACS 2021; 6(3): 609-14.
[http://dx.doi.org/10.31031/NACS.2021.06.000639] [PMID: 35237758]
[64]
Pham PTT, Le XT, Kim H, et al. Indocyanine green and curcumin co-loaded nano-fireball-like albumin nanoparticles based on near-infrared-induced hyperthermia for tumor ablation. Int J Nanomedicine 2020; 15: 6469-84.
[http://dx.doi.org/10.2147/IJN.S262690] [PMID: 32943865]
[65]
Sahab-Negah S, Ariakia F, Jalili-Nik M, et al. Curcumin loaded in niosomal nanoparticles improved the anti-tumor effects of free curcumin on glioblastoma stem-like cells: An in vitro study. Mol Neurobiol 2020; 57(8): 3391-411.
[http://dx.doi.org/10.1007/s12035-020-01922-5] [PMID: 32430842]
[66]
Xu HL, Fan ZL, ZhuGe DL, et al. Ratiometric delivery of two therapeutic candidates with inherently dissimilar physicochemical property through pH-sensitive core–shell nanoparticles targeting the heterogeneous tumor cells of glioma. Drug Deliv 2018; 25(1): 1302-18.
[http://dx.doi.org/10.1080/10717544.2018.1474974] [PMID: 29869524]
[67]
Zhang X, Li X, Hua H, et al. Cyclic hexapeptide-conjugated nanoparticles enhance curcumin delivery to glioma tumor cells and tissue. Int J Nanomedicine 2017; 12: 5717-32.
[http://dx.doi.org/10.2147/IJN.S138501] [PMID: 28848349]
[68]
Hong J, Liu Y, Xiao Y, et al. High drug payload curcumin nanosuspensions stabilized by mPEG-DSPE and SPC: in vitro and in vivo evaluation. Drug Deliv 2017; 24(1): 109-20.
[http://dx.doi.org/10.1080/10717544.2016.1233589] [PMID: 28155567]
[69]
Gelardi ELM, Caprioglio D, Colombo G, et al. Curcumin-based-fluorescent probes targeting ALDH1A3 as a promising tool for glioblastoma precision surgery and early diagnosis. Commun Biol 2022; 5(1): 895.
[http://dx.doi.org/10.1038/s42003-022-03834-7] [PMID: 36050388]
[70]
Maiti P, Plemmons A, Dunbar GL. Combination treatment of berberine and solid lipid curcumin particles increased cell death and inhibited PI3K/Akt/mTOR pathway of human cultured glioblastoma cells more effectively than did individual treatments. PLoS One 2019; 14(12): e0225660.
[http://dx.doi.org/10.1371/journal.pone.0225660] [PMID: 31841506]
[71]
Zhang G, Li X, Liao Q, et al. Water-dispersible PEG-curcumin/amine-functionalized covalent organic framework nanocomposites as smart carriers for in vivo drug delivery. Nat Commun 2018; 9(1): 2785.
[http://dx.doi.org/10.1038/s41467-018-04910-5] [PMID: 30018290]
[72]
Maiti P, Al-Gharaibeh A, Kolli N, Dunbar GL. Solid lipid curcumin particles induce more DNA fragmentation and cell death in cultured human glioblastoma cells than does natural curcumin. Oxid Med Cell Longev 2017; 2017: 1-17.
[http://dx.doi.org/10.1155/2017/9656719] [PMID: 29359011]
[73]
Mukherjee S, Baidoo J, Sampat S, et al. Liposomal TriCurin, A synergistic combination of curcumin, epicatechin gallate and resveratrol, repolarizes tumor-associated microglia/macrophages, and eliminates glioblastoma (GBM) and GBM stem cells. Molecules 2018; 23(1): 201.
[http://dx.doi.org/10.3390/molecules23010201] [PMID: 29346317]
[74]
Xu M, Li G, Zhang H, et al. Sequential delivery of dual drugs with nanostructured lipid carriers for improving synergistic tumor treatment effect. Drug Deliv 2020; 27(1): 983-95.
[http://dx.doi.org/10.1080/10717544.2020.1785581] [PMID: 32611218]
[75]
Zhao M, Zhao M, Fu C, Yu Y, Fu A. Targeted therapy of intracranial glioma model mice with curcumin nanoliposomes. Int J Nanomedicine 2018; 13: 1601-10.
[http://dx.doi.org/10.2147/IJN.S157019] [PMID: 29588587]
[76]
Strojny B, Grodzik M, Sawosz E, et al. Diamond nanoparticles modify curcumin activity: in vitro studies on cancer and normal cells and in vivo studies on chicken embryo model. PLoS One 2016; 11(10): e0164637.
[http://dx.doi.org/10.1371/journal.pone.0164637] [PMID: 27736939]
[77]
Prabhu S, Chenreddy S, Thio A, Khamas W, Wang J, Thakkar A. Preclinical systemic toxicity evaluation of chitosan-solid–lipid nanoparticle-encapsulated aspirin and curcumin in combination with free sulforaphane in BALB/c mice. Int J Nanomedicine 2016; 11: 3265-76.
[http://dx.doi.org/10.2147/IJN.S106736] [PMID: 27499621]
[78]
Xiang DB, Zhang KQ, Zeng YL, et al. Curcumin. Medicine 2020; 99(2): e18467.
[http://dx.doi.org/10.1097/MD.0000000000018467] [PMID: 31914018]
[79]
Mokaberi P, Babayan-Mashhadi F, Amiri Tehrani Zadeh Z, Saberi MR, Chamani J. Analysis of the interaction behavior between Nano-Curcumin and two human serum proteins: Combining spectroscopy and molecular stimulation to understand protein-protein interaction. J Biomol Struct Dyn 2020; 39(9): 1-20.
[http://dx.doi.org/10.1080/07391102.2020.1766570] [PMID: 32397834]
[80]
Hoti G, Matencio A, Rubin Pedrazzo A, et al. Nutraceutical concepts and dextrin-based delivery systems. Int J Mol Sci 2022; 23(8): 4102.
[http://dx.doi.org/10.3390/ijms23084102] [PMID: 35456919]
[81]
Yadav YC, Pattnaik S, Swain K. Curcumin loaded mesoporous silica nanoparticles: Assessment of bioavailability and cardioprotective effect. Drug Dev Ind Pharm 2019; 45(12): 1889-95.
[http://dx.doi.org/10.1080/03639045.2019.1672717] [PMID: 31549866]
[82]
Tsai YM, Chien CF, Lin LC, Tsai TH. Curcumin and its nano-formulation: The kinetics of tissue distribution and blood–brain barrier penetration. Int J Pharm 2011; 416(1): 331-8.
[http://dx.doi.org/10.1016/j.ijpharm.2011.06.030] [PMID: 21729743]
[83]
Neves AR, van der Putten L, Queiroz JF, Pinheiro M, Reis S. Transferrin-functionalized lipid nanoparticles for curcumin brain delivery. J Biotechnol 2021; 331: 108-17.
[http://dx.doi.org/10.1016/j.jbiotec.2021.03.010] [PMID: 33727082]
[84]
Singh A, Mahajan SD, Kutscher HL, Kim S, Prasad PN. Curcumin-pluronic nanoparticles: A theranostic nanoformulation for Alzheimer’s disease. Crit Rev Biomed Eng 2020; 48(3): 153-68.
[http://dx.doi.org/10.1615/CritRevBiomedEng.2020034302] [PMID: 33389893]
[85]
Ubeyitogullari A, Ciftci ON. A novel and green nanoparticle formation approach to forming low-crystallinity curcumin nanoparticles to improve curcumin’s bioaccessibility. Sci Rep 2019; 9(1): 19112.
[http://dx.doi.org/10.1038/s41598-019-55619-4] [PMID: 31836788]
[86]
Tongkai C, Yao L. Brain-targeting cell membrane biomimetic modification drug nanocrystal and preparation method and application thereof. CN114588275A, 2022.
[87]
Jermy BR, Ravinayagam V. Curcumin-based magnetic nanostructured system for dual response of imaging and therapeutics. US20200038525A1, 2022.
[88]
Weiting H, Yuqian J, Dianmo L. Nano-composition, preparation method and use of the same. TWI719182B, 2017.
[89]
Ke L, Xiaoli Z, Hui X, Dafeng C, Yuewu L. Curcumin-particlecontaining sustained-release microsphere with high medicament loading capacity as well as preparation method and application thereof. CN103054809A, 2012.
[90]
Jing Y, Yan X. A kind of feature Nano medication of curcumin and its application for brain diseases diagnosis and treatment. CN107050465A, 2017.
[91]
Yoo BK, BAEK J-H, Kim HM, Chung JW. Curcumin-containing lipid nanoparticle complex comprising ginsenosides. WO2017095138A1, 2016.
[92]
Ranjan AP, Mukerjee A, Vishwanatha JK, Helson L. Curcumin-ER, a liposomal-PLGA sustained release nanocurcumin for minimizing QT prolongation for cancer therapy. US9138411B2, 2013.
[93]
Lee WY, Li HY. Fatty acid conjugated nanoparticles and uses thereof. US20190029970A1, 2018.
[94]
Persano F, Gigli G, Leporatti S. Natural compounds as promising adjuvant agents in the treatment of gliomas. Int J Mol Sci 2022; 23(6): 3360.
[http://dx.doi.org/10.3390/ijms23063360] [PMID: 35328780]
[95]
Song J, Lu C, Leszek J, Zhang J. Design and development of nanomaterial-based drug carriers to overcome the blood-brain barrier by using different transport mechanisms. Int J Mol Sci 2021; 22(18): 10118.
[http://dx.doi.org/10.3390/ijms221810118] [PMID: 34576281]
[96]
Gosselet F, Loiola RA, Roig A, Rosell A, Culot M. Central nervous system delivery of molecules across the blood-brain barrier. Neurochem Int 2021; 144: 104952.
[http://dx.doi.org/10.1016/j.neuint.2020.104952] [PMID: 33400964]
[97]
Persano F, Leporatti S. Current overview of inorganic nanoparticles for the treatment of central nervous system (CNS) diseases. Curr Nanomater 2020; 5(2): 92-110.
[http://dx.doi.org/10.2174/2468187310999200430093239]
[98]
Georgieva J, Hoekstra D, Zuhorn I. Smuggling drugs into the brain: An overview of ligands targeting transcytosis for drug delivery across the blood-brain barrier. Pharmaceutics 2014; 6(4): 557-83.
[http://dx.doi.org/10.3390/pharmaceutics6040557] [PMID: 25407801]
[99]
Bhattacharya T, Maishu SP, Akter R, et al. A review on natural sources derived protein nanoparticles as anticancer agents. Curr Top Med Chem 2021; 21(12): 1014-26.
[http://dx.doi.org/10.2174/18734294MTE10Mjkvy] [PMID: 33845744]
[100]
Wang Y, Ying X, Xu H, Yan H, Li X, Tang H. The functional curcumin liposomes induce apoptosis in C6 glioblastoma cells and C6 glioblastoma stem cells in vitro and in animals. Int J Nanomedicine 2017; 12: 1369-84.
[http://dx.doi.org/10.2147/IJN.S124276] [PMID: 28260885]
[101]
Sadeghzadeh F, Entezari AA, Behzadian K, et al. Characterizing the binding of angiotensin converting enzyme I inhibitory peptide to human hemoglobin: Influence of electromagnetic fields. Protein Pept Lett 2020; 27(10): 1007-21.
[http://dx.doi.org/10.2174/18755305MTA2lMTEgw] [PMID: 32334494]
[102]
Lin CH, Chen CH, Lin ZC, Fang JY. Recent advances in oral delivery of drugs and bioactive natural products using solid lipid nanoparticles as the carriers. J Food Drug Anal 2017; 25(2): 219-34.
[http://dx.doi.org/10.1016/j.jfda.2017.02.001] [PMID: 28911663]
[103]
Mateti T, Aswath S, Vatti AK, Kamath A, Laha A. A review on allopathic and herbal nanofibrous drug delivery vehicles for cancer treatments. Biotechnol Rep 2021; 31: e00663.
[http://dx.doi.org/10.1016/j.btre.2021.e00663] [PMID: 34557390]
[104]
Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: A review of the clinical evidence. Oncotarget 2016; 7(32): 52517-29.
[http://dx.doi.org/10.18632/oncotarget.9593] [PMID: 27232756]
[105]
Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014; 19(12): 20091-112.
[http://dx.doi.org/10.3390/molecules191220091] [PMID: 25470276]
[106]
Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: From ancient medicine to current clinical trials. Cell Mol Life Sci 2008; 65(11): 1631-52.
[http://dx.doi.org/10.1007/s00018-008-7452-4] [PMID: 18324353]
[107]
Bar-Sela G, Epelbaum R, Schaffer M. Curcumin as an anti-cancer agent: Review of the gap between basic and clinical applications. Curr Med Chem 2010; 17(3): 190-7.
[http://dx.doi.org/10.2174/092986710790149738] [PMID: 20214562]
[108]
Cianciulli A, Calvello R, Ruggiero M, Panaro MA. Inflammaging and brain: Curcumin and its beneficial potential as regulator of microglia activation. Molecules 2022; 27(2): 341.
[http://dx.doi.org/10.3390/molecules27020341] [PMID: 35056657]
[109]
Park JH, Lee BM, Kim HS. Potential protective roles of curcumin against cadmium-induced toxicity and oxidative stress. J Toxicol Environ Health B Crit Rev 2021; 24(3): 95-118.
[http://dx.doi.org/10.1080/10937404.2020.1860842] [PMID: 33357071]
[110]
Peng Y, Ao M, Dong B, et al. Anti-inflammatory effects of curcumin in the inflammatory diseases: Status, limitations and countermeasures. Drug Des Devel Ther 2021; 15: 4503-25.
[http://dx.doi.org/10.2147/DDDT.S327378] [PMID: 34754179]
[111]
Zoi V, Galani V, Lianos GD, Voulgaris S, Kyritsis AP, Alexiou GA. The role of curcumin in cancer treatment. Biomedicines 2021; 9(9): 1086.
[http://dx.doi.org/10.3390/biomedicines9091086] [PMID: 34572272]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy