Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Mini-Review Article

Two-dimensional MXene Nanosheets and their Composites for Antibacterial Textiles: Current Trends and Future Prospects

Author(s): Yingchun Chen*, Mengjie Liang and Chi Zhang

Volume 18, Issue 7, 2024

Published on: 25 September, 2023

Article ID: e230823220249 Pages: 20

DOI: 10.2174/1872212118666230823113826

Price: $65

Abstract

As a novel two-dimensional (2D) nanosheet (NS), MXene has attracted attention in antibacterial applications due to its excellent high surface area, remarkable hydrophilicity, strong flexibility, and excellent antibacterial properties. This review intends to provide valuable insight into the further development of antibacterial MXenes and their composite materials. In this paper, extensive information related to the applications of MXenes for antibacterial textiles and their associated patents were collected. We review the antibacterial mechanisms of MXenes and their composite materials and summarize the research progress of antibacterial finishing fabrics, fibers and dressings based on MXene NSs. Due to the rich oxygen-containing groups, 2D MXene NSs and its composites exhibited significant antibacterial activity against Escherichia coli, Staphylococcus aureus, and Bacillus subtilis so they have been widely used in antibacterial textiles including finishing fabrics, fibers, and dressings. 2D MXene NSs have showed some antibacterial properties based on cell experiments or blood tests. The antibacterial mechanisms mainly include physical sterilization and chemical oxidative stress sterilization. The future direction of antibacterial textiles based on MXenes was proposed.

Graphical Abstract

[1]
G. Han, and R. Ceilley, "Chronic wound healing: A review of current management and treatments", Adv. Ther., vol. 34, no. 3, pp. 599-610, 2017.
[http://dx.doi.org/10.1007/s12325-017-0478-y] [PMID: 28108895]
[2]
Yuan Gao, and R. Cranston, "Recent advances in antimicrobial treatments of textiles", Text. Res. J., vol. 78, no. 1, pp. 60-72, 2008.
[http://dx.doi.org/10.1177/0040517507082332]
[3]
O. Bshena, T.D.J. Heunis, L.M.T. Dicks, and B. Klumperman, "Antimicrobial fibers: Therapeutic possibilities and recent advances", Future Med. Chem., vol. 3, no. 14, pp. 1821-1847, 2011.
[http://dx.doi.org/10.4155/fmc.11.131] [PMID: 22004087]
[4]
L. Windler, M. Height, and B. Nowack, "Comparative evaluation of antimicrobials for textile applications", Environ. Int., vol. 53, pp. 62-73, 2013.
[http://dx.doi.org/10.1016/j.envint.2012.12.010] [PMID: 23347947]
[5]
Z. Cai, and G. Sun, "Antimicrobial finishing of acrilan fabrics with cetylpyridinium chloride: Affected properties and structures", J. Appl. Polym. Sci., vol. 97, no. 3, pp. 1227-1236, 2005.
[http://dx.doi.org/10.1002/app.21261]
[6]
S.P. Yazdankhah, A.A. Scheie, E.A. Høiby, B.T. Lunestad, E. Heir, T.Ø. Fotland, K. Naterstad, and H. Kruse, "Triclosan and antimicrobial resistance in bacteria: An overview", Microb. Drug Resist., vol. 12, no. 2, pp. 83-90, 2006.
[http://dx.doi.org/10.1089/mdr.2006.12.83] [PMID: 16922622]
[7]
B. Lalonde, C. Garron, A. Dove, J. Struger, K. Farmer, M. Sekela, M. Gledhill, and S. Backus, "Investigation of spatial distributions and temporal trends of triclosan in canadian surface waters", Arch. Environ. Contam. Toxicol., vol. 76, no. 2, pp. 231-245, 2019.
[http://dx.doi.org/10.1007/s00244-018-0576-0] [PMID: 30361942]
[8]
H. Palza, "Antimicrobial polymers with metal nanoparticles", Int. J. Mol. Sci., vol. 16, no. 1, pp. 2099-2116, 2015.
[http://dx.doi.org/10.3390/ijms16012099] [PMID: 25607734]
[9]
W. Ntow-Boahene, I. Papandronicou, J. Miculob, and L. Good, "Fungal cell barriers and organelles are disrupted by polyhexamethylene biguanide (PHMB)", Sci. Rep., vol. 13, no. 1, p. 2790, 2023.
[http://dx.doi.org/10.1038/s41598-023-29756-w]
[10]
H.W. Chien, and T.H. Chiu, "Stable N-halamine on polydopamine coating for high antimicrobial efficiency", Eur. Polym. J., vol. 130, p. 109654, 2020.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109654]
[11]
M.E.I. Badawy, and E.I. Rabea, "A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection", Int. J. Carbohydr. Chem., vol. 2011, pp. 1-29, 2011.
[http://dx.doi.org/10.1155/2011/460381]
[12]
S-I. Shahid-ul-Islam, B.S. Butola, and F. Mohammad, "Silver nanomaterials as future colorants and potential antimicrobial agents for natural and synthetic textile materials", RSC Advances, vol. 6, no. 50, pp. 44232-44247, 2016.
[http://dx.doi.org/10.1039/C6RA05799C]
[13]
R. Gulati, S. Sharma, and R.K. Sharma, "Antimicrobial textile: Recent developments and functional perspective", Polym. Bull., vol. 79, no. 8, pp. 5747-5771, 2022.
[http://dx.doi.org/10.1007/s00289-021-03826-3] [PMID: 34276116]
[14]
D. Savoia, "Plant-derived antimicrobial compounds: Alternatives to antibiotics", Future Microbiol., vol. 7, no. 8, pp. 979-990, 2012.
[http://dx.doi.org/10.2217/fmb.12.68] [PMID: 22913356]
[15]
A. Upadhyay, I. Upadhyaya, A. Kollanoor-Johny, and K. Venkitanarayanan, "Combating pathogenic microorganisms using plant-derived antimicrobials: A minireview of the mechanistic basis", BioMed Res. Int., vol. 2014, pp. 1-18, 2014.
[http://dx.doi.org/10.1155/2014/761741] [PMID: 25298964]
[16]
B. Simoncic, and B. Tomsic, "Structures of novel antimicrobial agents for textiles - A review", Text. Res. J., vol. 80, no. 16, pp. 1721-1737, 2010.
[http://dx.doi.org/10.1177/0040517510363193]
[17]
E.D. Brown, and G.D. Wright, "Antibacterial drug discovery in the resistance era", Nature, vol. 529, no. 7586, pp. 336-343, 2016.
[http://dx.doi.org/10.1038/nature17042] [PMID: 26791724]
[18]
M.O.A. Sommer, C. Munck, R.V. Toft-Kehler, and D.I. Andersson, "Prediction of antibiotic resistance: Time for a new preclinical paradigm?", Nat. Rev. Microbiol., vol. 15, no. 11, pp. 689-696, 2017.
[http://dx.doi.org/10.1038/nrmicro.2017.75] [PMID: 28757648]
[19]
A. Mazinani, H. Rastin, M.J. Nine, J. Lee, A. Tikhomirova, T.T. Tung, R. Ghomashchi, S. Kidd, S. Vreugde, and D. Losic, "Comparative antibacterial activity of 2D materials coated on poroustitania", J. Mater. Chem. B Mater. Biol. Med., vol. 9, no. 32, pp. 6412-6424, 2021.
[http://dx.doi.org/10.1039/D1TB01122G] [PMID: 34323241]
[20]
K. Huang, Z. J. Li, J. Lin, G. Han, and P. Huang, "Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications", Chem. Soc. Rev., vol. 47, no. 14, pp. 5109-5124, 2018.
[http://dx.doi.org/10.1039/C7CS00838D]
[21]
M. Naguib, M. Kurtoglu, V. Presser, J. Lu, J. Niu, M. Heon, L. Hultman, Y. Gogotsi, and M.W. Barsoum, "Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2", Adv. Mater., vol. 23, no. 37, pp. 4248-4253, 2011.
[http://dx.doi.org/10.1002/adma.201102306] [PMID: 21861270]
[22]
R.M. Ronchi, J.T. Arantes, and S.F. Santos, "Synthesis, structure, properties and applications of MXenes: Current status and perspectives", Ceram. Int., vol. 45, no. 15, pp. 18167-18188, 2019.
[http://dx.doi.org/10.1016/j.ceramint.2019.06.114]
[23]
M. Naguib, V.N. Mochalin, M.W. Barsoum, and Y. Gogotsi, "25th anniversary article: MXenes: A new family of two-dimensional materials", Adv. Mater., vol. 26, no. 7, pp. 992-1005, 2014.
[http://dx.doi.org/10.1002/adma.201304138] [PMID: 24357390]
[24]
M. Soleymaniha, M.A. Shahbazi, A.R. Rafieerad, A. Maleki, and A. Amiri, "Promoting role of mxene nanosheets in biomedical sciences: Therapeutic and biosensing innovations", Adv. Healthc. Mater., vol. 8, no. 1, p. 1801137, 2019.
[http://dx.doi.org/10.1002/adhm.201801137] [PMID: 30362268]
[25]
B. Lu, Z. Zhu, B. Ma, W. Wang, R. Zhu, and J. Zhang, "2D MXene nanomaterials for versatile biomedical applications: Current trends and future prospects", Small, vol. 17, no. 46, p. 2100946, 2021.
[http://dx.doi.org/10.1002/smll.202100946] [PMID: 34323354]
[26]
S.M. George, and B. Kandasubramanian, "Advancements in MXene-Polymer composites for various biomedical applications", Ceram. Int., vol. 46, no. 7, pp. 8522-8535, 2020.
[http://dx.doi.org/10.1016/j.ceramint.2019.12.257]
[27]
X. Ren, M. Huo, M. Wang, H. Lin, X. Zhang, J. Yin, Y. Chen, and H. Chen, "Highly catalytic niobium carbide (MXene) promotes hematopoietic recovery after radiation by free radical scavenging", ACS Nano, vol. 13, no. 6, pp. 6438-6454, 2019.
[http://dx.doi.org/10.1021/acsnano.8b09327] [PMID: 31180624]
[28]
M. Naguib, O. Mashtalir, J. Carle, V. Presser, J. Lu, L. Hultman, Y. Gogotsi, and M.W. Barsoum, "Two-dimensional transition metal carbides", ACS Nano, vol. 6, no. 2, pp. 1322-1331, 2012.
[http://dx.doi.org/10.1021/nn204153h] [PMID: 22279971]
[29]
Z.L. Tan, J.X. Wei, Y. Liu, F. Zaman, W. Rehman, L.R. Hou, and C.Z. Yuan, "V2CTx MXene and its derivatives: Synthesis and recent progress in electrochemical energy storage applications", Rare Met., vol. 41, no. 3, pp. 775-797, 2022.
[http://dx.doi.org/10.1007/s12598-021-01821-1]
[30]
B. Zhang, Q. Gu, C. Wang, Q. Gao, J. Guo, P.W. Wong, C.T. Liu, and A.K. An, "Self-assembled hydrophobic/hydrophilic porphyrin-Ti3C2Tx MXene janus membrane for dual-functional enabled photothermal desalination", ACS Appl. Mater. Interfaces, vol. 13, no. 3, pp. 3762-3770, 2021.
[http://dx.doi.org/10.1021/acsami.0c16054] [PMID: 33463155]
[31]
N.H. Solangi, N.M. Mubarak, R.R. Karri, S.A. Mazari, S.K. Kailasa, and A. Alfantazi, "Applications of advanced MXene-based composite membranes for sustainable water desalination", Chemosphere, vol. 314, p. 137643, 2023.
[http://dx.doi.org/10.1016/j.chemosphere.2022.137643] [PMID: 36581116]
[32]
S. Li, L. Shao, Z. Yang, S. Cheng, C. Yang, Y. Liu, and X. Xia, "Constructing Ti3C2 MXene/ZnIn2S4 heterostructure as a Schottky catalyst for photocatalytic environmental remediation", Green Energy Enviro., vol. 7, no. 2, pp. 246-256, 2022.
[http://dx.doi.org/10.1016/j.gee.2020.09.005]
[33]
M. Han, D. Zhang, C.E. Shuck, B. McBride, T. Zhang, R. Wang, K. Shevchuk, and Y. Gogotsi, "Electrochemically modulated interaction of MXenes with microwaves", Nat. Nanotechnol., vol. 18, no. 4, pp. 373-379, 2023.
[http://dx.doi.org/10.1038/s41565-022-01308-9] [PMID: 36646826]
[34]
Z.H. Zeng, N. Wu, J.J. Wei, Y.F. Yang, T.T. Wu, B. Li, S.B. Hauser, W.D. Yang, J.R. Liu, and S.Y. Zhao, "Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding", Nano-Micro Lett., vol. 14, no. 1, p. 59, 2022.
[http://dx.doi.org/10.1007/s40820-022-00800-0] [PMID: 35138506]
[35]
D.Y. Li, L.X. Liu, Q.W. Wang, H.B. Zhang, W. Chen, G. Yin, and Z.Z. Yu, "Functional polyaniline/MXene/cotton fabrics with acid/alkali-responsive and tunable electromagnetic interference shielding performances", ACS Appl. Mater. Interfaces, vol. 14, no. 10, pp. 12703-12712, 2022.
[http://dx.doi.org/10.1021/acsami.2c00797] [PMID: 35232019]
[36]
L. Yu, L. Hu, B. Anasori, Y.T. Liu, Q. Zhu, P. Zhang, Y. Gogotsi, and B. Xu, "MXene-bonded activated carbon as a flexible electrode for high-performance supercapacitors", ACS Energy Lett., vol. 3, no. 7, pp. 1597-1603, 2018.
[http://dx.doi.org/10.1021/acsenergylett.8b00718]
[37]
Y. Y. Zhu, J. X. Ma, P. Das, S. Wang, and Z. S. Wu, "High-Voltage MXene-based supercapacitors: Present status and future perspectives", Small Methods, p. e2201609, 2023.
[http://dx.doi.org/10.1002/smtd.202201609]
[38]
L. Tan, C. Wei, Y. Zhang, S. Xiong, H. Li, and J. Feng, "Self-assembled, highly-lithiophilic and well-aligned biomass engineered MXene paper enables dendrite-free lithium metal anode in carbonate-based electrolyte", J. Energy Chem., vol. 69, no. 6, pp. 221-230, 2022.
[http://dx.doi.org/10.1016/j.jechem.2022.01.024]
[39]
B. Cao, H. Liu, P. Zhang, N. Sun, B. Zheng, Y. Li, H. Du, and B. Xu, "Flexible MXene framework as a fast electron/potassium‐ion dual‐function conductor boosting stable potassium storage in graphite electrodes", Adv. Funct. Mater., vol. 31, no. 32, p. 2102126, 2021.
[http://dx.doi.org/10.1002/adfm.202102126]
[40]
Y. Wang, J. Song, and W.Y. Wong, "Constructing 2D sandwich‐like MOF/MXene heterostructures for durable and fast aqueous zinc‐ion batteries", Angew. Chem. Int. Ed., vol. 62, no. 8, p. e202218343, 2023.
[http://dx.doi.org/10.1002/anie.202218343] [PMID: 36562768]
[41]
H. Ding, Z. Zeng, Z. Wang, X. Li, T. Yildirim, Q. Xie, H. Zhang, S. Wageh, A.A. Al-Ghamdi, X. Zhang, and B. Wen, "Deep learning‐enabled MXene/PEDOT:PSS acoustic sensor for speech recognition and skin‐vibration detection", Adv. Intell. Syst., vol. 4, no. 10, p. 2200140, 2022.
[http://dx.doi.org/10.1002/aisy.202200140]
[42]
L. Zhou, H. Zheng, Z. Liu, S. Wang, Z. Liu, F. Chen, H. Zhang, J. Kong, F. Zhou, and Q. Zhang, "Conductive antibacterial hemostatic multifunctional scaffolds based on Ti3C2Tx MXene nanosheets for promoting multidrug-resistant bacteria-infected wound healing", ACS Nano, vol. 15, no. 2, pp. 2468-2480, 2021.
[http://dx.doi.org/10.1021/acsnano.0c06287] [PMID: 33565857]
[43]
F. Wu, H. Zheng, W. Wang, Q. Wu, Q. Zhang, J. Guo, B. Pu, X. Shi, J. Li, X. Chen, and W. Hong, "Rapid eradication of antibiotic-resistant bacteria and biofilms by MXene and near-infrared light through photothermal ablation", Sci. China Mater., vol. 64, no. 3, pp. 748-758, 2021.
[http://dx.doi.org/10.1007/s40843-020-1451-7]
[44]
A. Sinha, H.M. Dhanjai, H. Zhao, Y. Huang, X. Lu, J. Chen, and R. Jain, "MXene: An emerging material for sensing and biosensing", Trends Analyt. Chem., vol. 105, pp. 424-435, 2018.
[http://dx.doi.org/10.1016/j.trac.2018.05.021]
[45]
H. Lin, S. S. Gao, C. Dai, Y. Chen, and J. L. Shi, "A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows", J. Am. Chem. Soc., vol. 139, no. 45, pp. 16235-16247, 2020.
[http://dx.doi.org/10.1021/jacs.0c04999]
[46]
C. Weiss, M. Carriere, L. Fusco, I. Capua, J.A. Regla-Nava, M. Pasquali, J.A. Scott, F. Vitale, M.A. Unal, C. Mattevi, D. Bedognetti, A. Merkoçi, E. Tasciotti, A. Yilmazer, Y. Gogotsi, F. Stellacci, and L.G. Delogu, "Toward Nanotechnology-Enabled Approaches against the COVID-19 Pandemic", ACS Nano, vol. 14, no. 6, pp. 6383-6406, 2020.
[http://dx.doi.org/10.1021/acsnano.0c03697] [PMID: 32519842]
[47]
Q. Guan, J. Ma, W. Yang, R. Zhang, X. Zhang, X. Dong, Y. Fan, L. Cai, Y. Cao, Y. Zhang, N. Li, and Q. Xu, "Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing", Nanoscale, vol. 11, no. 30, pp. 14123-14133, 2019.
[http://dx.doi.org/10.1039/C9NR04421C] [PMID: 31322633]
[48]
F. Abbasi, N. Hajilary, and M. Rezakazemi, "Antibacterial properties of MXene-based nanomaterials: A review", Mater. Express, vol. 12, no. 1, pp. 34-48, 2022.
[http://dx.doi.org/10.1166/mex.2022.2138]
[49]
R. Huang, X. Chen, Y. Dong, X. Zhang, Y. Wei, Z. Yang, W. Li, Y. Guo, J. Liu, Z. Yang, H. Wang, and L. Jin, "MXene composite nanofibers for cell culture and tissue engineering", ACS Appl. Bio Mater., vol. 3, no. 4, pp. 2125-2131, 2020.
[http://dx.doi.org/10.1021/acsabm.0c00007] [PMID: 35025264]
[50]
X. Lin, Z. Li, J. Qiu, Q. Wang, J. Wang, H. Zhang, and T. Chen, "Fascinating MXene nanomaterials: Emerging opportunities in the biomedical field", Biomater. Sci., vol. 9, no. 16, pp. 5437-5471, 2021.
[http://dx.doi.org/10.1039/D1BM00526J] [PMID: 34296233]
[51]
F. Seidi, A.A. Shamsabadi, M.D. Firouzjaei, M. Elliott, M.R. Saeb, Y. Huang, C.C. Li, H.N. Xiao, and B. Anasori, "MXenes antibacterial properties and applications: A review and perspective", Small, vol. 19, no. 14, p. e2206716, 2023.
[http://dx.doi.org/10.1002/smll.202206716]
[52]
C. Dai, H. Lin, G. Xu, Z. Liu, R. Wu, and Y. Chen, "Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia", Chem. Mater., vol. 29, no. 20, pp. 8637-8652, 2017.
[http://dx.doi.org/10.1021/acs.chemmater.7b02441]
[53]
C. Dai, Y. Chen, X. Jing, L. Xiang, D. Yang, H. Lin, Z. Liu, X. Han, and R. Wu, "Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation", ACS Nano, vol. 11, no. 12, pp. 12696-12712, 2017.
[http://dx.doi.org/10.1021/acsnano.7b07241] [PMID: 29156126]
[54]
G. Liu, J. Zou, Q. Tang, X. Yang, Y. Zhang, Q. Zhang, W. Huang, P. Chen, J. Shao, and X. Dong, "Surface Modified Ti 3 C 2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy", ACS Appl. Mater. Interfaces, vol. 9, no. 46, pp. 40077-40086, 2017.
[http://dx.doi.org/10.1021/acsami.7b13421] [PMID: 29099168]
[55]
S. Liu, T.H. Zeng, M. Hofmann, E. Burcombe, J. Wei, R. Jiang, J. Kong, and Y. Chen, "Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress", ACS Nano, vol. 5, no. 9, pp. 6971-6980, 2011.
[http://dx.doi.org/10.1021/nn202451x] [PMID: 21851105]
[56]
L. Hui, J. Huang, G. Chen, Y. Zhu, and L. Yang, "Antibacterial property of graphene quantum dots (both source material and bacterial shape matter)", ACS Appl. Mater. Interfaces, vol. 8, no. 1, pp. 20-25, 2016.
[http://dx.doi.org/10.1021/acsami.5b10132] [PMID: 26696468]
[57]
S. Liu, L. Wei, L. Hao, N. Fang, M.W. Chang, R. Xu, Y. Yang, and Y. Chen, "Sharper and faster “nano darts” kill more bacteria: A study of antibacterial activity of individually dispersed pristine single-walled carbon nanotube", ACS Nano, vol. 3, no. 12, pp. 3891-3902, 2009.
[http://dx.doi.org/10.1021/nn901252r] [PMID: 19894705]
[58]
K. Yang, and Y.Q. Ma, "Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer", Nat. Nanotechnol., vol. 5, no. 8, pp. 579-583, 2010.
[http://dx.doi.org/10.1038/nnano.2010.141] [PMID: 20657599]
[59]
X. Zou, L. Zhang, Z. Wang, and Y. Luo, "Mechanisms of the antimicrobial activities of graphene materials", J. Am. Chem. Soc., vol. 138, no. 7, pp. 2064-2077, 2016.
[http://dx.doi.org/10.1021/jacs.5b11411] [PMID: 26824139]
[60]
K. Rajavel, S. Y. Shen, T. Ke, and D. H. Lin, "Achieving high bactericidal and antibiofouling activities of 2D titanium carbide (Ti3C2Tx) by delamination and intercalation", 2D Mater., vol. 6, no. 3, p. 035040, 2019.
[http://dx.doi.org/10.1088/2053-1583/ab23ce]
[61]
A. Jastrzębska, E. Karwowska, D. Basiak, A. Zawada, W. Ziemkowska, T. Wojciechowski, D. Jakubowska, and A. Olszyna, "Biological activity and bio-sorption properties of the Ti2C studied by means of zeta potential and SEM", Int. J. Electrochem. Sci., vol. 12, no. 3, pp. 2159-2172, 2017.
[http://dx.doi.org/10.20964/2017.03.06]
[62]
A.M. Jastrzębska, E. Karwowska, T. Wojciechowski, W. Ziemkowska, A. Rozmysłowska, L. Chlubny, and A. Olszyna, "The atomic structure of Ti2C and Ti3C2 MXenes is responsible for their antibacterial activity toward E. coli Bacteria", J. Mater. Eng. Perform., vol. 28, no. 3, pp. 1272-1277, 2019.
[http://dx.doi.org/10.1007/s11665-018-3223-z]
[63]
K. Rasool, M. Helal, A. Ali, C.E. Ren, Y. Gogotsi, and K.A. Mahmoud, "Antibacterial activity of Ti3C2Tx MXene", ACS Nano, vol. 10, no. 3, pp. 3674-3684, 2016.
[http://dx.doi.org/10.1021/acsnano.6b00181] [PMID: 26909865]
[64]
T. Tian, X. Shi, L. Cheng, Y. Luo, Z. Dong, H. Gong, L. Xu, Z. Zhong, R. Peng, and Z. Liu, "Graphene-based nanocomposite as an effective, multifunctional, and recyclable antibacterial agent", ACS Appl. Mater. Interfaces, vol. 6, no. 11, pp. 8542-8548, 2014.
[http://dx.doi.org/10.1021/am5022914] [PMID: 24806506]
[65]
A. Arabi Shamsabadi, M. Sharifian Gh, B. Anasori, and M. Soroush, "Antimicrobial mode-of-action of colloidal Ti3C2Tx MXene nanosheets", ACS Sustain. Chem. Eng., vol. 6, no. 12, pp. 16586-16596, 2018.
[http://dx.doi.org/10.1021/acssuschemeng.8b03823]
[66]
I.Y. Kim, S. Park, H. Kim, S. Park, R.S. Ruoff, and S.J. Hwang, "Strongly-coupled freestanding hybrid films of graphene and layered titanate nanosheets: An effective way to tailor the physicochemical and antibacterial properties of graphene film", Adv. Funct. Mater., vol. 24, no. 16, pp. 2288-2294, 2014.
[http://dx.doi.org/10.1002/adfm.201303040]
[67]
O. Akhavan, and E. Ghaderi, "Toxicity of graphene and graphene oxide nanowalls against bacteria", ACS Nano, vol. 4, no. 10, pp. 5731-5736, 2010.
[http://dx.doi.org/10.1021/nn101390x] [PMID: 20925398]
[68]
R.P. Pandey, P.A. Rasheed, T. Gomez, K. Rasool, J. Ponraj, K. Prenger, M. Naguib, and K.A. Mahmoud, "Effect of sheet size and atomic structure on the antibacterial activity of Nb-MXene nanosheets", ACS Appl. Nano Mater., vol. 3, no. 11, pp. 11372-11382, 2020.
[http://dx.doi.org/10.1021/acsanm.0c02463]
[69]
O.S. Lee, M.E. Madjet, and K.A. Mahmoud, "Antibacterial mechanism of multifunctional MXene nanosheets: Domain formation and phase transition in lipid bilayer", Nano Lett., vol. 21, no. 19, pp. 8510-8517, 2021.
[http://dx.doi.org/10.1021/acs.nanolett.1c01986] [PMID: 34402623]
[70]
L.Y. Tan, L.T. Sin, S.T. Bee, T.T. Tee, C.T. Ratnam, K.K. Woo, and A.R. Rahmat, "Functionalization and mechanical properties of cotton fabric with ZnO nanoparticles for antibacterial textile application", Diffus. Defect Data Solid State Data Pt. B Solid State Phenom., vol. 290, pp. 292-297, 2019.
[http://dx.doi.org/10.4028/www.scientific.net/SSP.290.292]
[71]
A. Naskar, S. Lee, Y. Lee, S. Kim, and K. Kim, "A new nano-platform of erythromycin combined with Ag nano-particle ZnO nanostructure against methicillin-resistant Staphylococcus aureus", Pharmaceutics, vol. 12, no. 9, p. 841, 2020.
[http://dx.doi.org/10.3390/pharmaceutics12090841] [PMID: 32887402]
[72]
I.H. Alsohaimi, A.M. Nassar, T.A. Seaf Elnasr, and B. Cheba, "A novel composite silver nanoparticles loaded calcium oxide stemming from egg shell recycling: A potent photocatalytic and antibacterial activities", J. Clean. Prod., vol. 248, p. 119274, 2020.
[http://dx.doi.org/10.1016/j.jclepro.2019.119274]
[73]
S. Liu, B. Wen, X. Jiang, G.I.N. Waterhouse, Z.M. Zhang, and L. Yu, "Enhanced photocathodic antifouling/antibacterial properties of polyaniline–Ag–N-doped TiO2 coatings", J. Mater. Sci., vol. 55, no. 34, pp. 16255-16272, 2020.
[http://dx.doi.org/10.1007/s10853-020-05170-9]
[74]
Y.M. Cao, Y.F. Li, X.X. Dong, J. Chen, K.Q. Zhang, Y.D. Zhao, W.Y. Zhai, M. Zheng, M. Zheng, Z.S. Wang, L.S. Liao, and M.P. Zhuo, "Knitted structural design of MXene/Cu2O based strain sensor for smart wear", Cellulose, vol. 29, no. 17, pp. 9453-9467, 2022.
[http://dx.doi.org/10.1007/s10570-022-04837-7]
[75]
W. Wang, H. Feng, J. Liu, M. Zhang, S. Liu, C. Feng, and S. Chen, "A photo catalyst of cuprous oxide anchored MXene nanosheet for dramatic enhancement of synergistic antibacterial ability", Chem. Eng. J., vol. 386, p. 124116, 2020.
[http://dx.doi.org/10.1016/j.cej.2020.124116]
[76]
X. Zhu, Y. Zhu, K. Jia, B.S. Abraha, Y. Li, W. Peng, F. Zhang, X. Fan, and L. Zhang, "A near-infrared light-mediated antimicrobial based on Ag/Ti3C2Tx for effective synergetic antibacterial applications", Nanoscale, vol. 12, no. 37, pp. 19129-19141, 2020.
[http://dx.doi.org/10.1039/D0NR04925E] [PMID: 32935724]
[77]
R.P. Pandey, K. Rasool, V.E. Madhavan, B. Aïssa, Y. Gogotsi, and K.A. Mahmoud, "Ultrahigh-flux and fouling-resistant membranes based on layered silver/MXene (Ti3C2Tx) nanosheets", J. Mater. Chem. A Mater. Energy Sustain., vol. 6, no. 8, pp. 3522-3533, 2018.
[http://dx.doi.org/10.1039/C7TA10888E]
[78]
S. Lv, B. Song, F. Han, Z. Li, B. Fan, R. Zhang, J. Zhang, and J. Li, "MXene-based hybrid system exhibits excellent synergistic antibiosis", Nanotechnology, vol. 33, no. 8, p. 085101, 2022.
[http://dx.doi.org/10.1088/1361-6528/ac385d] [PMID: 34757944]
[79]
G. P. Ma, H. F. Dong, Y. Chen, X. P. Yang, L. Y. Wang, and J. Nie, "Near-infrared photothermal antibacterial hemostatic dressing comprises chitosan and MXene", CN Patent 112546286A, 2021.
[80]
K. Hegstad, S. Langsrud, B.T. Lunestad, A.A. Scheie, M. Sunde, and S.P. Yazdankhah, "Does the wide use of quaternary ammonium compounds enhance the selection and spread of antimicrobial resistance and thus threaten our health?", Microb. Drug Resist., vol. 16, no. 2, pp. 91-104, 2010.
[http://dx.doi.org/10.1089/mdr.2009.0120] [PMID: 20370507]
[81]
K. Rasool, K.A. Mahmoud, D.J. Johnson, M. Helal, G.R. Berdiyorov, and Y. Gogotsi, "Efficient antibacterial membrane based on two-dimensional Ti3C2Tx (MXene) nanosheets", Sci. Rep., vol. 7, no. 1, p. 1598, 2017.
[http://dx.doi.org/10.1038/s41598-017-01714-3] [PMID: 28487521]
[82]
K. Rasool, R.P. Pandey, P.A. Rasheed, S. Buczek, Y. Gogotsi, and K.A. Mahmoud, "Water treatment and environmental remediation applications of two-dimensional metal carbides (MXenes)", Mater. Today, vol. 30, pp. 80-102, 2019.
[http://dx.doi.org/10.1016/j.mattod.2019.05.017]
[83]
A. Rozmysłowska-Wojciechowska, J. Mitrzak, A. Szuplewska, M. Chudy, J. Woźniak, M. Petrus, T. Wojciechowski, A.S. Vasilchenko, and A.M. Jastrzębska, "Engineering of 2D Ti3C2 MXene surface charge and its influence on biological properties", Materials, vol. 13, no. 10, p. 2347, 2020.
[http://dx.doi.org/10.3390/ma13102347] [PMID: 32443733]
[84]
Y. Nie, S. Ma, M. Tian, Q. Zhang, J. Huang, M. Cao, Y. Li, L. Sun, J. Pan, Y. Wang, P. Bi, H. Xu, J. Zeng, S. Wang, and Y. Xia, "Superhydrophobic silane-based surface coatings on metal surface with nanoparticles hybridization to enhance anticorrosion efficiency, wearing resistance and antimicrobial ability", Surf. Coat. Tech., vol. 410, p. 126966, 2021.
[http://dx.doi.org/10.1016/j.surfcoat.2021.126966]
[85]
J. Zhu, L. Li, X. Yu, and Y. Liu, "MXene/polyaniline nano composite anticorrosive and antibacterial coating comprises epoxy resin, MXene/polyaniline composite material, defoamer, leveling agent and curing agent", CN Patent 113122106-A, 2021.
[86]
J. Xuan, Z. Wang, Y. Chen, D. Liang, L. Cheng, X. Yang, Z. Liu, R. Ma, T. Sasaki, and F. Geng, "Organic‐base‐driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance", Angew. Chem. Int. Ed., vol. 55, no. 47, pp. 14569-14574, 2016.
[http://dx.doi.org/10.1002/anie.201606643] [PMID: 27774723]
[87]
H. Lin, X. Wang, L. Yu, Y. Chen, and J. Shi, "Two-dimensional ultrathin mxene ceramic nanosheets for photothermal conversion", Nano Lett., vol. 17, no. 1, pp. 384-391, 2017.
[http://dx.doi.org/10.1021/acs.nanolett.6b04339] [PMID: 28026960]
[88]
W. Feng, R. Wang, Y. Zhou, L. Ding, X. Gao, B. Zhou, P. Hu, and Y. Chen, "Ultrathin molybdenum carbide mxene with fast biodegradability for highly efficient theory‐oriented photonic tumor hyperthermia", Adv. Funct. Mater., vol. 29, no. 22, p. 1901942, 2019.
[http://dx.doi.org/10.1002/adfm.201901942]
[89]
Z. Wu, J. Shi, P. Song, J. Li, and S. Cao, "Chitosan/hyaluronic acid based hollow microcapsules equipped with MXene/gold nanorods for synergistically enhanced near infrared responsive drug delivery", Int. J. Biol. Macromol., vol. 183, pp. 870-879, 2021.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.164] [PMID: 33940062]
[90]
X.Q. Cheng, J.H. Liao, G.Y. Zeng, Q.Q. Lin, Y. Xue, Z.Y. Zhao, and W. Li, "Bismuth-based photo-catalytic MXene film material with antibiotic and anti-bacterial property comprises MXene nanosheet, bismuth-based photocatalytic nanoparticles and support layer, prepared by ultrasonically processing bismuth-based photo-catalytic nano particles and MXene, and vacuum pumping", CN Patent 114433226-A, 2022.
[91]
Y. Gao, Y. Dong, S. Yang, A. Mo, X. Zeng, Q. Chen, and Q. Peng, "Size-dependent photothermal antibacterial activity of Ti3C2Tx MXene nanosheets against methicillin-resistant Staphylococcus aureus", J. Colloid Interface Sci., vol. 617, pp. 533-541, 2022.
[http://dx.doi.org/10.1016/j.jcis.2022.03.032] [PMID: 35299127]
[92]
Y. Zheng, Y. Yan, L. Lin, Q. He, H. Hu, R. Luo, D. Xian, J. Wu, Y. Shi, F. Zeng, C. Wu, G. Quan, and C. Lu, "Titanium carbide MXene-based hybrid hydrogel for chemo-photothermal combinational treatment of localized bacterial infection", Acta Biomater., vol. 142, pp. 113-123, 2022.
[http://dx.doi.org/10.1016/j.actbio.2022.02.019] [PMID: 35189382]
[93]
W. Yu, X. Li, J. He, Y. Chen, L. Qi, P. Yuan, K. Ou, F. Liu, Y. Zhou, and X. Qin, "Graphene oxide-silver nanocomposites embedded nanofiber core-spun yarns for durable antibacterial textiles", J. Colloid Interface Sci., vol. 584, pp. 164-173, 2021.
[http://dx.doi.org/10.1016/j.jcis.2020.09.092] [PMID: 33069016]
[94]
X. S. Zhang, M. W. Shi, L. L. Wang, L. J. Qu, and H. Xiao, "Method and product for preparing electromagnetic shielding fabric based on two-dimensional layered MXene nanosheets", CN Patent109868646-A, 2019.
[95]
Y. N. Ma, S. J. Luo, C. K. Zhang, W. Z. Liu, and X. Y. Yao, "A preparation method of MXene-based flexible fabric electrode and its application", CN Patent109003836-B, 2020.
[96]
B. J. Xin, Y. Li, Z. Lu, Y. Liu, Z. M. Chen, and S. H. Liu, "A method for fabricating flexible supercapacitors based on MXene and cotton fabric composites", CN Patent112331488-A, 2021.
[97]
B. Yan, X. Bao, X. Liao, P. Wang, M. Zhou, Y. Yu, J. Yuan, L. Cui, and Q. Wang, "Sensitive micro-breathing sensing and highly-effective photothermal antibacterial cinnamomum camphora bark micro-structural cotton fabric via electrostatic self-assembly of MXene/HACC", ACS Appl. Mater. Interfaces, vol. 14, no. 1, pp. 2132-2145, 2022.
[http://dx.doi.org/10.1021/acsami.1c22740] [PMID: 34939796]
[98]
S. Uzun, S. Seyedin, A.L. Stoltzfus, A.S. Levitt, M. Alhabeb, M. Anayee, C.J. Strobel, J.M. Razal, G. Dion, and Y. Gogotsi, "Knittable and washable multifunctional mxene‐coated cellulose yarns", Adv. Funct. Mater., vol. 29, no. 45, p. 1905015, 2019.
[http://dx.doi.org/10.1002/adfm.201905015]
[99]
B. Yan, M. Zhou, X. Liao, P. Wang, Y. Yu, J. Yuan, and Q. Wang, "Developing a multifunctional silk fabric with dual-driven heating and rapid photothermal antibacterial abilities using high-yield mxene dispersions", ACS Appl. Mater. Interfaces, vol. 13, no. 36, pp. 43414-43425, 2021.
[http://dx.doi.org/10.1021/acsami.1c12915] [PMID: 34472827]
[100]
X. Zhao, L.Y. Wang, C.Y. Tang, X.J. Zha, Y. Liu, B.H. Su, K. Ke, R.Y. Bao, M.B. Yang, and W. Yang, "Smart Ti3C2Tx MXene fabric with fast humidity response and joule heating for healthcare and medical therapy applications", ACS Nano, vol. 14, no. 7, pp. 8793-8805, 2020.
[http://dx.doi.org/10.1021/acsnano.0c03391] [PMID: 32644797]
[101]
B. Zhao, L. Zhang, Z.J. Huang, Q. Li, W.B. Zhai, X.X. Jiang, and Z.F. Wang, "MXene-silver nanoparticle synergistic antibacterial cotton fabric comprises MXene and silver nanoparticles which are uniformly loaded on surface of MXene two-dimensional nanosheet by covalent bonding", CN Patent 112941899-B, 2021.
[102]
B. Zhao, L. Zhang, J.T. Niu, L.L. Wang, J.Y. Xia, Z. Zhu, and D.H. Duan, "A kind of multifunctional silk fabric based on MXene two-dimensional nanosheet and its preparation method", CN Patent 112941907-A, 2021.
[103]
X. Liu, X. Jin, L. Li, J. Wang, Y. Yang, Y. Cao, and W. Wang, "Air-permeable, multifunctional, dual-energy-driven MXene-decorated polymeric textile-based wearable heaters with exceptional electrothermal and photothermal conversion performance", J. Mater. Chem. A Mater. Energy Sustain., vol. 8, no. 25, pp. 12526-12537, 2020.
[http://dx.doi.org/10.1039/D0TA03048A]
[104]
M.A.K. Purbayanto, M. Jakubczak, D. Bury, V.G. Nair, M. Birowska, D. Moszczyńska, and A. Jastrzębska, "Tunable antibacterial activity of a polypropylene fabric coated with bristling Ti3C2Tx MXene flakes coupling the nanoblade effect with ROS generation", ACS Appl. Nano Mater., vol. 5, no. 4, pp. 5373-5386, 2022.
[http://dx.doi.org/10.1021/acsanm.2c00365]
[105]
X.Y. Wang, Z.G. Wu, and S.W. Tang, "Chitosan/Mxene antibacterial composite sponge for hemostasis and preparation method thereof", CN Patent 112516374-A, 2021.
[106]
E.A. Mayerberger, R.M. Street, R.M. McDaniel, M.W. Barsoum, and C.L. Schauer, "Antibacterial properties of electrospun Ti3C2Tz (MXene)/chitosan nanofibers", RSC Advances, vol. 8, no. 62, pp. 35386-35394, 2018.
[http://dx.doi.org/10.1039/C8RA06274A] [PMID: 35547922]
[107]
F. Cheng, H.B. Li, L. Xu, X.T. Yi, J.W. Di, J.M. He, and Y.D. Huang, "Preparing electroactive anti-bacterial dressing useful for treating bleeding wounds, involves placing chitosan fiber dressing in base material vacuum drying box to dry, adding lithium fluoride into hydrochloric acid solution, adding poly-dopamine to modify MXene, vacuum freezing and drying", CN Patent 114225089-B, 2021.
[108]
C.J. Cao, Y. Li, and Y. Zeng, "Artificial muscle fiber-like high-toughness antibacterial hydrogel useful for medical dressing for promoting healing of wound, comprises MXene embedded in polyvinyl alcohol hydrogel", CN Patent 114539695-A, 2021.
[109]
K.N. Liang, Y.M. Yang, S.Y. Tao, Y. Deng, and J.Y. Li, "Preparing light activated anti-bacterial dressing used for treating wound infection involves etching MAX ceramic (polycrystalline nanolaminates of ternary carbides and nitrides), dissolving polycaprolactone particles and poly-dopamine modified MXene/Ag3PO4 heterojunction and mixing", CN Patent 114344544-A, 2022.
[110]
W. Zhai, Y. Cao, Y. Li, M. Zheng, and Z. Wang, "MoO3–x QDs/MXene (Ti3C2Tx) self-assembled heterostructure for multifunctional application with antistatic, smoke suppression, and antibacterial on polyester fabric", J. Mater. Sci., vol. 57, no. 4, pp. 2597-2609, 2022.
[http://dx.doi.org/10.1007/s10853-021-06690-8]
[111]
M. Gong, L. Yue, J. Kong, X. Lin, L. Zhang, J. Wang, and D. Wang, "Knittable and sewable spandex yarn with nacre-mimetic composite coating for wearable health monitoring and thermo- and antibacterial therapies", ACS Appl. Mater. Interfaces, vol. 13, no. 7, pp. 9053-9063, 2021.
[http://dx.doi.org/10.1021/acsami.1c00864] [PMID: 33583174]
[112]
L. Mao, S. Hu, Y. Gao, L. Wang, W. Zhao, L. Fu, H. Cheng, L. Xia, S. Xie, W. Ye, Z. Shi, and G. Yang, "Biodegradable and electroactive regenerated bacterial cellulose/MXene (Ti3C2Tx) composite hydrogel as wound dressing for accelerating skin wound healing under electrical stimulation", Adv. Healthc. Mater., vol. 9, no. 19, p. 2000872, 2020.
[http://dx.doi.org/10.1002/adhm.202000872] [PMID: 32864898]
[113]
T. Zhang, J. Gu, X. Liu, D. Wei, H. Zhou, H. Xiao, Z. Zhang, H. Yu, and S. Chen, "Bactericidal and antifouling electrospun PVA nanofibers modified with a quaternary ammonium salt and zwitterionic sulfopropylbetaine", Mater. Sci. Eng. C, vol. 111, p. 110855, 2020.
[http://dx.doi.org/10.1016/j.msec.2020.110855] [PMID: 32279770]
[114]
S. Zhang, J. Ye, Y. Sun, J. Kang, J. Liu, Y. Wang, Y. Li, L. Zhang, and G. Ning, "Electrospun fibrous mat based on silver (I) metal-organic frameworks-polylactic acid for bacterial killing and antibiotic-free wound dressing", Chem. Eng. J., vol. 390, p. 124523, 2020.
[http://dx.doi.org/10.1016/j.cej.2020.124523]
[115]
K.R. Aadil, S.I. Mussatto, and H. Jha, "Synthesis and characterization of silver nanoparticles loaded poly(vinyl alcohol)-lignin electrospun nanofibers and their antimicrobial activity", Int. J. Biol. Macromol., vol. 120, no. Pt A, pp. 763-767, 2018.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.109] [PMID: 30144548]
[116]
X. Xu, S. Wang, H. Wu, Y. Liu, F. Xu, and J. Zhao, "A multimodal antimicrobial platform based on MXene for treatment of wound infection", Colloids Surf. B Biointerfaces, vol. 207, p. 111979, 2021.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111979] [PMID: 34303995]
[117]
A.K. Chatterjee, R.K. Sarkar, A.P. Chattopadhyay, P. Aich, R. Chakraborty, and T. Basu, "A simple robust method for synthesis of metallic copper nanoparticles of high antibacterial potency against E. coli", Nanotechnology, vol. 23, no. 8, p. 085103, 2012.
[http://dx.doi.org/10.1088/0957-4484/23/8/085103] [PMID: 22293320]
[118]
S. Chen, Y. Guo, H. Zhong, S. Chen, J. Li, Z. Ge, and J. Tang, "Synergistic antibacterial mechanism and coating application of copper/titanium dioxide nanoparticles", Chem. Eng. J., vol. 256, pp. 238-246, 2014.
[http://dx.doi.org/10.1016/j.cej.2014.07.006]
[119]
M. W. Cao, Z. Ding, Y. X. Zhang, Z. J. Zhang, Z. Liu, L. J. Zhao, L. Sun, S. J. Wang, and Y. Q. Xia, "A kind of preparation method of sodium alginate antibacterial dressing", CN Patent111440349-A, 2020.
[120]
Y. Zou, X. Jin, X. Zhang, X. Kong, Q. Zhang, X. Xie, C. Liu, L. Ke, W. Liu, and W. Wang, "A multifunctional biomedical patch based on hyperbranched epoxy polymer and MXene", Sci. China Technol. Sci., vol. 64, no. 12, pp. 2744-2754, 2021.
[http://dx.doi.org/10.1007/s11431-021-1843-3]
[121]
S. Li, B. Gu, X. Li, S. Tang, L. Zheng, E. Ruiz-Hitzky, Z. Sun, C. Xu, and X. Wang, "MXene‐enhanced chitin composite sponges with antibacterial and hemostatic activity for wound healing", Adv. Healthc. Mater., vol. 11, no. 12, p. 2102367, 2022.
[http://dx.doi.org/10.1002/adhm.202102367] [PMID: 35285165]
[122]
H. Li, J. Dai, X. Yi, and F. Cheng, "Generation of cost-effective MXene@polydopamine-decorated chitosan nanofibrous wound dressing for promoting wound healing", Biomater. Advances, vol. 140, p. 213055, 2022.
[http://dx.doi.org/10.1016/j.bioadv.2022.213055] [PMID: 35941053]
[123]
C. Wei, P. Tang, Y. Tang, L. Liu, X. Lu, K. Yang, Q. Wang, W. Feng, Q.T.H. Shubhra, Z. Wang, and H. Zhang, "Sponge‐like macroporous hydrogel with antibacterial and ROS scavenging capabilities for diabetic wound regeneration", Adv. Healthc. Mater., vol. 11, no. 20, p. 2200717, 2022.
[http://dx.doi.org/10.1002/adhm.202200717] [PMID: 35948007]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy