Generic placeholder image

Recent Patents on Nanotechnology

Editor-in-Chief

ISSN (Print): 1872-2105
ISSN (Online): 2212-4020

Review Article

Nano - Based Therapeutic Strategies in Management of Rheumatoid Arthritis

Author(s): Gunjan Nautiyal, Shiv Kant Sharma, Dhirender Kaushik and Parijat Pandey*

Volume 18, Issue 4, 2024

Published on: 20 September, 2023

Page: [433 - 456] Pages: 24

DOI: 10.2174/1872210517666230822100324

Price: $65

Abstract

Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease, progressively distinctive via cartilage destruction, auto-antibody production, severe joint pain, and synovial inflammation. Nanotechnology represents as one of the utmost promising scientific technologies of the 21st century. It exhibits remarkable potential in the field of medicine, including imaging techniques and diagnostic tools, drug delivery systems and providing advances in treatment of several diseases with nanosized structures (less than 100 nm).

Objective: Conventional drugs as a cornerstone of RA management including disease-modifying antirheumatic drugs (DMARDS), Glucocorticosteroids, etc are under clinical practice. Nevertheless, their low solubility profile, poor pharmacokinetics behaviour, and non-targeted distribution not only hamper their effectiveness, but also give rise to severe adverse effects which leads to the need for the emergence of nanoscale drug delivery systems.

Methods: Several types of nano-diagnostic agents and nanocarriers have been identified; including polymeric nanoparticles (NPs), liposomes, nanogels, metallic NPs, nanofibres, carbon nanotubes, nano fullerene etc. Various patents and clinical trial data have been reported in relevance to RA treatment.

Results: Nanocarriers, unlike standard medications, encapsulate molecules with high drug loading efficacy and avoid drug leakage and burst release before reaching the inflamed sites. Because of its enhanced targeting specificity with the ability to solubilise hydrophobic drugs, it acts as an enhanced drug delivery system.

Conclusion: This study explores nanoparticles potential role in RA as a carrier for site-specific delivery and its promising strategies to overcome the drawbacks. Hence, it concludes that nanomedicine is advantageous compared with conventional therapy to enhanced futuristic approach.

Graphical Abstract

[1]
Bandigari P, Dongamanti A. Evaluation of anti-inflammatory and anti-arthritic activities of semecarpus anacardium in experimental animals. J Pharm Negat Results 2023; 1179-87.
[2]
Nocton J, Co D. Arthritis. In: Kliegman RM, Lye PS, Bordini BJ, Toth H, Basel D, Eds. Nelson Pediatric Symptom-Based Diagnosis. Elsevier 2018; pp. 594-613.
[http://dx.doi.org/10.1016/B978-0-323-39956-2.00033-9]
[3]
Brennan-Olsen SL, Cook S, Leech MT, et al. Prevalence of arthritis according to age, sex and socioeconomic status in six low and middle income countries: Analysis of data from the World Health Organization study on global AGEing and adult health (SAGE) Wave 1. BMC Musculoskelet Disord 2017; 18(1): 271.
[http://dx.doi.org/10.1186/s12891-017-1624-z] [PMID: 28633661]
[4]
Ma L, Cranney A, Holroyd-Leduc JM. Acute monoarthritis: What is the cause of my patient’s painful swollen joint? CMAJ 2009; 180(1): 59-65.
[http://dx.doi.org/10.1503/cmaj.080183] [PMID: 19124791]
[5]
Hazes JMW, Luime JJ. The epidemiology of early inflammatory arthritis. Nat Rev Rheumatol 2011; 7(7): 381-90.
[http://dx.doi.org/10.1038/nrrheum.2011.78] [PMID: 21670767]
[6]
Juraschek SP, Miller ER III, Gelber AC. Body mass index, obesity, and prevalent gout in the United States in 1988-1994 and 2007-2010. Arthritis Care Res 2013; 65(1): 127-32.
[http://dx.doi.org/10.1002/acr.21791] [PMID: 22778033]
[7]
Zhu Y, Pandya BJ, Choi HK. Prevalence of gout and hyperuricemia in the US general population: The national health and nutrition examination survey 2007-2008. Arthritis Rheum 2011; 63(10): 3136-41.
[http://dx.doi.org/10.1002/art.30520] [PMID: 21800283]
[8]
Crowson CS, Matteson EL, Myasoedova E, et al. The lifetime risk of adult-onset rheumatoid arthritis and other inflammatory autoimmune rheumatic diseases. Arthritis Rheum 2011; 63(3): 633-9.
[http://dx.doi.org/10.1002/art.30155] [PMID: 21360492]
[9]
Logesh K, Raj B, Bhaskaran M, et al. Nanoparticulate drug delivery systems for the treatment of rheumatoid arthritis: A comprehensive review. J Drug Deliv Sci Technol 2023; 81: 104241.
[http://dx.doi.org/10.1016/j.jddst.2023.104241]
[10]
Nicholson LB. The immune system. Essays Biochem 2016; 60(3): 275-301.
[http://dx.doi.org/10.1042/EBC20160017] [PMID: 27784777]
[11]
Takeuchi Y, Hirota K, Sakaguchi S. Sakaguchi. Synovial tissue inflammation mediated by autoimmune T cells. Front Immunol 2019; 10: 1989.
[http://dx.doi.org/10.3389/fimmu.2019.01989] [PMID: 31497022]
[12]
Hair MJH, Sande MGH, Ramwadhdoebe TH, et al. Features of the synovium of individuals at risk of developing rheumatoid arthritis: Implications for understanding preclinical rheumatoid arthritis. Arthritis Rheumatol 2014; 66(3): 513-22.
[http://dx.doi.org/10.1002/art.38273] [PMID: 24574210]
[13]
Ruiz-Limón P, Mena-Vázquez N, Moreno-Indias I, et al. Collinsella is associated with cumulative inflammatory burden in an established rheumatoid arthritis cohort. Biomed Pharmacother 2022; 153: 113518.
[http://dx.doi.org/10.1016/j.biopha.2022.113518] [PMID: 36076603]
[14]
Firestein GS. Evolving concepts of rheumatoid arthritis. Nature 2003; 423(6937): 356-61.
[http://dx.doi.org/10.1038/nature01661] [PMID: 12748655]
[15]
Chabib L, Ikawati Z, Martien R, et al. Rheumatoid arthritis and the challenge of using nanoparticles for its treatment. In: InMATEC Web of Conferences. EDP Sciences. 2018; 154: p. 04005.
[http://dx.doi.org/10.1051/matecconf/201815404005]
[16]
Janakiraman K, Krishnaswami V, Rajendran V, Natesan S, Kandasamy R. Novel nano therapeutic materials for the effective treatment of rheumatoid arthritis-recent insights. Mater Today Commun 2018; 17: 200-13.
[http://dx.doi.org/10.1016/j.mtcomm.2018.09.011] [PMID: 32289062]
[17]
Firestein GS, McInnes IB. Immunopathogenesis of rheumatoid arthritis. Immunity 2017; 46(2): 183-96.
[http://dx.doi.org/10.1016/j.immuni.2017.02.006] [PMID: 28228278]
[18]
Wu CY, Yang HY, Luo SF, Lai JH. From rheumatoid factor to anti-citrullinated protein antibodies and anti-carbamylated protein antibodies for diagnosis and prognosis prediction in patients with rheumatoid arthritis. Int J Mol Sci 2021; 22(2): 686.
[http://dx.doi.org/10.3390/ijms22020686] [PMID: 33445768]
[19]
Radu AF, Bungau SG. Management of rheumatoid arthritis: An overview. Cells 2021; 10(11): 2857.
[http://dx.doi.org/10.3390/cells10112857] [PMID: 34831081]
[20]
Huang J, Fu X, Chen X, Li Z, Huang Y, Liang C. Promising therapeutic targets for treatment of rheumatoid arthritis. Front Immunol 2021; 12: 686155.
[http://dx.doi.org/10.3389/fimmu.2021.686155] [PMID: 34305919]
[21]
Crofford LJ. Use of NSAIDs in treating patients with arthritis. Arthritis Res Ther 2013; 15 (Suppl. 3): S2-S13.
[http://dx.doi.org/10.1186/ar4174] [PMID: 24267197]
[22]
Mușetescu AE, Criveanu C, Bobircă A, Florescu A, Bumbea AM, Bobircă F. Applications of corticosteroid therapy in inflammatory rheumatic diseases. In: Corticosteroids-A Paradigmatic Drug Class. IntechOpen 2021.
[23]
Bullock J, Rizvi SAA, Saleh AM, et al. Rheumatoid arthritis: A brief overview of the treatment. Med Princ Pract 2018; 27(6): 501-7.
[http://dx.doi.org/10.1159/000493390] [PMID: 30173215]
[24]
Lamers-Karnebeek FBG, Jacobs JWG, Radstake TRDJ, van Riel PLCM, Jansen TL. Adalimumab drug and antidrug antibody levels do not predict flare risk after stopping adalimumab in RA patients with low disease activity. Rheumatology 2019; 58(3): 427-31.
[http://dx.doi.org/10.1093/rheumatology/key292] [PMID: 30383251]
[25]
Leake I. Tocilizumab or TNF inhibitors in RA? Nat Rev Rheumatol 2018; 14(7): 384.
[PMID: 29844382]
[26]
Rice C, Ghandi-Das D, Negi A. P202 Monitoring of immunoglobulin levels in RA patients on anti CD20, rituximab. Rheumatology 2020; 59(2)(Suppl. 2): keaa111.197.
[http://dx.doi.org/10.1093/rheumatology/keaa111.197]
[27]
Ho CTK, Mok CC, Cheung TT, Kwok KY, Yip RML. Management of rheumatoid arthritis: 2019 updated consensus recommendations from the Hong Kong Society of Rheumatology. Clin Rheumatol 2019; 38(12): 3331-50.
[http://dx.doi.org/10.1007/s10067-019-04761-5] [PMID: 31485846]
[28]
Rahman M, Beg S, Verma A, et al. Phytoconstituents as pharmacotherapeutics in rheumatoid arthritis: Challenges and scope of nano/submicromedicine in its effective delivery. J Pharm Pharmacol 2016; 69(1): 1-14.
[http://dx.doi.org/10.1111/jphp.12661] [PMID: 27774648]
[29]
Nadarajah N, Pramudyo R, Kuswinarti K. Treatment of rheumatoid arthritis with methotrexate alone or a combination of methotrexate and hydroxychloroquine. Althea Medical Journal 2016; 3(3): 446-51.
[http://dx.doi.org/10.15850/amj.v3n3.474]
[30]
Smolen JS, Landewé RBM, Bijlsma JWJ, et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann Rheum Dis 2020; 79(6): 685-99.
[http://dx.doi.org/10.1136/annrheumdis-2019-216655] [PMID: 31969328]
[31]
Guo Q, Wang Y, Xu D, Nossent J, Pavlos NJ, Xu J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res 2018; 6(1): 15.
[http://dx.doi.org/10.1038/s41413-018-0016-9] [PMID: 29736302]
[32]
Kesharwani D, Paliwal R, Satapathy T, Paul SD. Rheumatoid Arthritis: An updated overview of latest therapy and drug delivery. J Pharmacopuncture 2019; 22(4): 210-24.
[http://dx.doi.org/10.3831/KPI.2019.22.029] [PMID: 31970018]
[33]
Santos-Moreno PI, de la Hoz-Valle J, Villarreal L, Palomino A, Sánchez G, Castro C. Treatment of rheumatoid arthritis with methotrexate alone and in combination with other conventional DMARDs using the T2T strategy. A cohort study. Clin Rheumatol 2015; 34(2): 215-20.
[http://dx.doi.org/10.1007/s10067-014-2794-9] [PMID: 25318612]
[34]
Bayda S, Adeel M, Tuccinardi T, Cordani M, Rizzolio F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules 2019; 25(1): 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[35]
Purohit D, Manchanda D, Makhija M, et al. An overview of the recent developments and patents in the field of pharmaceutical nanotechnology. Recent Pat Nanotechnol 2021; 15(1): 15-34.
[http://dx.doi.org/10.2174/1872210514666200909154409] [PMID: 32912128]
[36]
Allhoff F. On the autonomy and justification of nanoethics. NanoEthics 2007; 1(3): 185-210.
[http://dx.doi.org/10.1007/s11569-007-0018-3]
[37]
Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem 2018; 6: 360.
[http://dx.doi.org/10.3389/fchem.2018.00360] [PMID: 30177965]
[38]
Pelaz B, Alexiou C, Alvarez-Puebla RA, et al. Diverse applications of nanomedicine. ACS Nano 2017; 11(3): 2313-81.
[http://dx.doi.org/10.1021/acsnano.6b06040] [PMID: 28290206]
[39]
Kedar PM, Dangi JS, Samal PK, Kumar M. Review on nanoparticles technology and recent advances in novel drug delivery systems 2011; 1: 1.: 5.
[40]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[41]
Yadav SK, Kumari A, Kumar V. Nanotechnology: A tool to enhance therapeutic values of natural plant products. Trends in Medical Research 2012; 7(2): 34-42.
[http://dx.doi.org/10.3923/tmr.2012.34.42]
[42]
Lu H, Wang J, Wang T, Zhong J, Bao Y, Hao H. Recent progress on nanostructures for drug delivery applications. J Nanomater 2016; 2016: 1-12.
[http://dx.doi.org/10.1155/2016/5762431]
[43]
Watkins R, Wu L, Zhang C, Davis RM, Xu B. Natural product-based nanomedicine: Recent advances and issues. Int J Nanomedicine 2015; 10: 6055-74.
[PMID: 26451111]
[44]
Glaudemans AWJM, Quintero AM, Signore A. PET/MRI in infectious and inflammatory diseases: Will it be a useful improvement? Eur J Nucl Med Mol Imaging 2012; 39(5): 745-9.
[http://dx.doi.org/10.1007/s00259-012-2060-9] [PMID: 22297458]
[45]
Hosseinikhah SM, Barani M, Rahdar A, et al. Nanomaterials for the diagnosis and treatment of inflammatory arthritis. Int J Mol Sci 2021; 22(6): 3092.
[http://dx.doi.org/10.3390/ijms22063092] [PMID: 33803502]
[46]
Yang W, Veroniaina H, Qi X, Chen P, Li F, Ke PC. Soft and condensed nanoparticles and nanoformulations for cancer drug delivery and repurpose. Adv Ther 2020; 3(1): 1900102.
[http://dx.doi.org/10.1002/adtp.201900102] [PMID: 34291146]
[47]
Zheng M, Jia H, Wang H, et al. Application of nanomaterials in the treatment of rheumatoid arthritis. RSC Advances 2021; 11(13): 7129-37.
[http://dx.doi.org/10.1039/D1RA00328C] [PMID: 35423287]
[48]
Kapoor B, Singh SK, Gulati M, Gupta R, Vaidya Y. Application of liposomes in treatment of rheumatoid arthritis: Quo vadis. ScientificWorldJournal 2014; 2014: 1-17.
[http://dx.doi.org/10.1155/2014/978351] [PMID: 24688450]
[49]
Habibi N, Kamaly N, Memic A, Shafiee H. Self-assembled peptide-based nanostructures: Smart nanomaterials toward targeted drug delivery. Nano Today 2016; 11(1): 41-60.
[http://dx.doi.org/10.1016/j.nantod.2016.02.004] [PMID: 27103939]
[50]
Yang N, Li M, Wu L, et al. Peptide-anchored neutrophil membrane-coated biomimetic nanodrug for targeted treatment of rheumatoid arthritis. J Nanobiotechnology 2023; 21(1): 13.
[http://dx.doi.org/10.1186/s12951-023-01773-x] [PMID: 36639772]
[51]
Pham SH, Choi Y, Choi J. Stimuli-responsive nanomaterials for application in antitumor therapy and drug delivery. Pharmaceutics 2020; 12(7): 630.
[http://dx.doi.org/10.3390/pharmaceutics12070630] [PMID: 32635539]
[52]
Gulati M, Grover M, Singh S, Singh M. Lipophilic drug derivatives in liposomes. Int J Pharm 1998; 165(2): 129-68.
[http://dx.doi.org/10.1016/S0378-5173(98)00006-4]
[53]
Felnerova D, Viret JF, Glück R, Moser C. Liposomes and virosomes as delivery systems for antigens, nucleic acids and drugs. Curr Opin Biotechnol 2004; 15(6): 518-29.
[http://dx.doi.org/10.1016/j.copbio.2004.10.005] [PMID: 15560978]
[54]
Mufamadi MS, Pillay V, Choonara YE, et al. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv 2011; 2011: 1-19.
[http://dx.doi.org/10.1155/2011/939851] [PMID: 21490759]
[55]
Gangwar M, Singh R, Goel RK, Nath G. Recent advances in various emerging vescicular systems: An overview. Asian Pac J Trop Biomed 2012; 2(2): S1176-88.
[http://dx.doi.org/10.1016/S2221-1691(12)60381-5]
[56]
Begum MYM, M Osmani RA, Alqahtani A, et al. Development of stealth liposomal formulation of celecoxib: in vitro and in vivo evaluation. PLoS One 2022; 17(4): e0264518.
[http://dx.doi.org/10.1371/journal.pone.0264518] [PMID: 35472207]
[57]
Jhun J, Moon J, Ryu J, et al. Liposome/gold hybrid nanoparticle encoded with CoQ10 (LGNP-CoQ10) suppressed rheumatoid arthritis via STAT3/Th17 targeting. PLoS One 2020; 15(11): e0241080.
[http://dx.doi.org/10.1371/journal.pone.0241080] [PMID: 33156836]
[58]
Wang Q, He L, Fan D, Liang W, Fang J. Improving the anti-inflammatory efficacy of dexamethasone in the treatment of rheumatoid arthritis with polymerized stealth liposomes as a delivery vehicle. J Mater Chem B Mater Biol Med 2020; 8(9): 1841-51.
[http://dx.doi.org/10.1039/C9TB02538C] [PMID: 32016224]
[59]
Hu L, Luo X, Zhou S, et al. Neutrophil-mediated delivery of dexamethasone palmitate-loaded liposomes decorated with a sialic acid conjugate for rheumatoid arthritis Treatment. Pharm Res 2019; 36(7): 97.
[http://dx.doi.org/10.1007/s11095-019-2609-4] [PMID: 31076925]
[60]
Bose A, Roy Burman D, Sikdar B, Patra P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnol 2021; 15(1): 19-27.
[http://dx.doi.org/10.1049/nbt2.12018] [PMID: 34694727]
[61]
Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: The impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev 2014; 66: 2-25.
[http://dx.doi.org/10.1016/j.addr.2013.11.009] [PMID: 24270007]
[62]
Qindeel M, Khan D, Ahmed N, Khan S, Asim Ur R. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano 2020; 14(4): 4662-81.
[http://dx.doi.org/10.1021/acsnano.0c00364] [PMID: 32207921]
[63]
Xu XL, Li WS, Wang XJ, et al. Endogenous sialic acid-engineered micelles: A multifunctional platform for on-demand methotrexate delivery and bone repair of rheumatoid arthritis. Nanoscale 2018; 10(6): 2923-35.
[http://dx.doi.org/10.1039/C7NR08430G] [PMID: 29369319]
[64]
Fan Z, Li J, Liu J, Jiao H, Liu B. Anti-inflammation and joint lubrication dual effects of a novel hyaluronic acid/curcumin nanomicelle improve the efficacy of rheumatoid arthritis therapy. ACS Appl Mater Interfaces 2018; 10(28): 23595-604.
[http://dx.doi.org/10.1021/acsami.8b06236] [PMID: 29920067]
[65]
Zhang N, Xu C, Li N, et al. Folate receptor-targeted mixed polysialic acid micelles for combating rheumatoid arthritis: in vitro and in vivo evaluation. Drug Deliv 2018; 25(1): 1182-91.
[http://dx.doi.org/10.1080/10717544.2018.1472677] [PMID: 29790372]
[66]
Yadav K, Chauhan NS, Saraf S, Singh D, Singh MR. Challenges and need of delivery carriers for bioactives and biological agents: An introduction. In: Advances and Avenues in the Development of Novel Carriers for Bioactives and Biological Agents. Academic Press 2020; pp. 1-36.
[http://dx.doi.org/10.1016/B978-0-12-819666-3.00001-8]
[67]
Samie SM, Nasr M. Food to medicine transformation of stilbenoid vesicular and lipid-based nanocarriers: Technological advances. Drug Deliv Aspects 2020; pp. 227-45.
[68]
Mirchandani Y, Patravale VB, Brijesh S. Hyaluronic acid-coated solid lipid nanoparticles enhance antirheumatic activity and reduce toxicity of methotrexate. Nanomedicine 2022; 17(16): 1099-114.
[http://dx.doi.org/10.2217/nnm-2022-0009] [PMID: 36178114]
[69]
Li H, Gou R, Liao J, et al. Recent advances in nano-targeting drug delivery systems for rheumatoid arthritis treatment. Acta Materia Medica 2023; 2(1): 23-41.
[http://dx.doi.org/10.15212/AMM-2022-0039]
[70]
Song P, Yang C, Thomsen JS, et al. Lipidoid-siRNA nanoparticle-mediated IL-1β gene silencing for systemic arthritis therapy in a mouse model. Mol Ther 2019; 27(8): 1424-35.
[http://dx.doi.org/10.1016/j.ymthe.2019.05.002] [PMID: 31153827]
[71]
Trujillo-Nolasco RM, Morales-Avila E, Ocampo-García BE, et al. Preparation and in vitro evaluation of radiolabeled HA-PLGA nanoparticles as novel MTX delivery system for local treatment of rheumatoid arthritis. Mater Sci Eng C 2019; 103: 109766.
[http://dx.doi.org/10.1016/j.msec.2019.109766] [PMID: 31349410]
[72]
Aldayel AM, O’Mary HL, Valdes SA, et al. Lipid nanoparticles with minimum burst release of TNF-α siRNA show strong activity against rheumatoid arthritis unresponsive to methotrexate. J Control Release 2018; 283: 280-9.
[http://dx.doi.org/10.1016/j.jconrel.2018.05.035] [PMID: 29859232]
[73]
Begines B, Ortiz T, Pérez-Aranda M, et al. Polymeric Nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020; 10(7): 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[74]
Siddique R, Mehmood MH, Haris M, Saleem A, Chaudhry Z. Promising role of polymeric nanoparticles in the treatment of rheumatoid arthritis. Inflammopharmacology 2022; 30(4): 1207-18.
[http://dx.doi.org/10.1007/s10787-022-00997-x] [PMID: 35524837]
[75]
Tan T, Huang Q, Chu W, et al. Delivery of germacrone (GER) using macrophages-targeted polymeric nanoparticles and its application in rheumatoid arthritis. Drug Deliv 2022; 29(1): 692-701.
[http://dx.doi.org/10.1080/10717544.2022.2044936] [PMID: 35225122]
[76]
Wang Y, Liu Z, Li T, et al. Enhanced therapeutic effect of RGD-modified polymeric micelles loaded with low-dose methotrexate and nimesulide on rheumatoid arthritis. Theranostics 2019; 9(3): 708-20.
[http://dx.doi.org/10.7150/thno.30418] [PMID: 30809303]
[77]
Li R, He Y, Zhu Y, et al. Route to rheumatoid arthritis by macrophage-derived microvesicle-coated nanoparticles. Nano Lett 2019; 19(1): 124-34.
[http://dx.doi.org/10.1021/acs.nanolett.8b03439] [PMID: 30521345]
[78]
Shi Y, Xie F, Rao P, et al. TRAIL-expressing cell membrane nanovesicles as an anti-inflammatory platform for rheumatoid arthritis therapy. J Control Release 2020; 320: 304-13.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.054] [PMID: 32004586]
[79]
Cao J, Zhang N, Wang Z, et al. Microneedle-assisted transdermal delivery of etanercept for rheumatoid arthritis treatment. Pharmaceutics 2019; 11(5): 235.
[http://dx.doi.org/10.3390/pharmaceutics11050235] [PMID: 31096705]
[80]
Khan SA. Metal nanoparticles toxicity: Role of physicochemical aspects. In: Metal nanoparticles for drug delivery and diagnostic applications. Elsevier 2020; pp. 1-11.
[81]
Zheng Y, Lakshmanan S. Dose-dependent efficacy of umbelliferone and gelatin-coated ZnO/ZnS core-shell nanoparticles: A novel arthritis agent for severe knee arthritis. Oxid Med Cell Longev 2022; 2022: 1-15.
[http://dx.doi.org/10.1155/2022/7795602] [PMID: 35432722]
[82]
Qiao H, Mei J, Yuan K, et al. Immune-regulating strategy against rheumatoid arthritis by inducing tolerogenic dendritic cells with modified zinc peroxide nanoparticles. J Nanobiotechnology 2022; 20(1): 323.
[http://dx.doi.org/10.1186/s12951-022-01536-0] [PMID: 35836178]
[83]
Yang Y, Guo L, Wang Z, et al. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and Re-polarization. Biomaterials 2021; 264: 120390.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120390] [PMID: 32980634]
[84]
Carneiro MFH, Machado ART, Antunes LMG, et al. Gold-coated superparamagnetic iron oxide nanoparticles attenuate collagen-induced arthritis after magnetic targeting. Biol Trace Elem Res 2020; 194(2): 502-13.
[http://dx.doi.org/10.1007/s12011-019-01799-z] [PMID: 31313244]
[85]
Park JY, Kwon S, Kim SH, Kang YJ, Khang D. Triamcinolone–Gold nanoparticles repolarize synoviocytes and macrophages in an inflamed synovium. ACS Appl Mater Interfaces 2020; 12(35): 38936-49.
[http://dx.doi.org/10.1021/acsami.0c09842] [PMID: 32805872]
[86]
Pandey PK, Maheshwari R, Raval N, Gondaliya P, Kalia K, Tekade RK. Nanogold-core multifunctional dendrimer for pulsatile chemo-, photothermal- and photodynamic-therapy of rheumatoid arthritis. J Colloid Interface Sci 2019; 544: 61-77.
[http://dx.doi.org/10.1016/j.jcis.2019.02.073] [PMID: 30825801]
[87]
Fontana F, Albertini S, Correia A, et al. Bioengineered porous silicon nanoparticles@macrophages cell membrane as composite platforms for rheumatoid arthritis. Adv Funct Mater 2018; 28(22): 1801355.
[http://dx.doi.org/10.1002/adfm.201801355]
[88]
Jaiswal M, Dudhe R, Sharma PK. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech 2015; 5(2): 123-7.
[89]
Suresh P, Salem-Bekhit MM, Veedu HP, et al. Development of a novel methotrexate-loaded nanoemulsion for rheumatoid arthritis treatment with site-specific targeting subcutaneous delivery. Nanomaterials 2022; 12(8): 1299.
[http://dx.doi.org/10.3390/nano12081299] [PMID: 35458007]
[90]
Abbasifard M, Yousefpoor Y, Amani A, Arababadi MK. Topical bee venom nano-emulsion ameliorates serum level of Endothelin-1 in collagen-induced rheumatoid arthritis model. Bionanoscience 2021; 11(3): 810-5.
[http://dx.doi.org/10.1007/s12668-021-00871-0]
[91]
Gokhale JP, Mahajan HS, Surana SJ. Quercetin loaded nanoemulsion-based gel for rheumatoid arthritis: in vivo and in vitro studies. Biomed Pharmacother 2019; 112: 108622.
[http://dx.doi.org/10.1016/j.biopha.2019.108622] [PMID: 30797146]
[92]
Spicer CD, Jumeaux C, Gupta B, Stevens MM. Peptide and protein nanoparticle conjugates: Versatile platforms for biomedical applications. Chem Soc Rev 2018; 47(10): 3574-620.
[http://dx.doi.org/10.1039/C7CS00877E] [PMID: 29479622]
[93]
Liu L, Hu F, Wang H, et al. Secreted protein acidic and rich in cysteine mediated biomimetic delivery of methotrexate by albumin-based nanomedicines for rheumatoid arthritis therapy. ACS Nano 2019; 13(5): 5036-48.
[http://dx.doi.org/10.1021/acsnano.9b01710] [PMID: 30978282]
[94]
Meka RR, Venkatesha SH, Moudgil KD. Peptide-directed liposomal delivery improves the therapeutic index of an immunomodulatory cytokine in controlling autoimmune arthritis. J Control Release 2018; 286: 279-88.
[http://dx.doi.org/10.1016/j.jconrel.2018.08.007] [PMID: 30081142]
[95]
Cook Sangar ML, Girard EJ, Hopping G, et al. A potent peptide-steroid conjugate accumulates in cartilage and reverses arthritis without evidence of systemic corticosteroid exposure. Sci Transl Med 2020; 12(533): eaay1041.
[http://dx.doi.org/10.1126/scitranslmed.aay1041] [PMID: 32132215]
[96]
Zeng Y, Li S, Zhang S, Wang L, Yuan H, Hu F. Cell membrane coated-nanoparticles for cancer immunotherapy. Acta Pharm Sin B 2022; 12(8): 3233-54.
[http://dx.doi.org/10.1016/j.apsb.2022.02.023] [PMID: 35967284]
[97]
Zhang L, Qin Z, Sun H, et al. Nanoenzyme engineered neutrophil-derived exosomes attenuate joint injury in advanced rheumatoid arthritis via regulating inflammatory environment. Bioact Mater 2022; 18: 1-14.
[http://dx.doi.org/10.1016/j.bioactmat.2022.02.017] [PMID: 35387158]
[98]
Li J, Zhang H, Han Y, Hu Y, Geng Z, Su J. Targeted and responsive biomaterials in osteoarthritis. Theranostics 2023; 13(3): 931-54.
[http://dx.doi.org/10.7150/thno.78639] [PMID: 36793867]
[99]
Zhang Q, Dehaini D, Zhang Y, et al. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat Nanotechnol 2018; 13(12): 1182-90.
[http://dx.doi.org/10.1038/s41565-018-0254-4] [PMID: 30177807]
[100]
Zhang M, Hu W, Cai C, Wu Y, Li J, Dong S. Advanced application of stimuli-responsive drug delivery system for inflammatory arthritis treatment. Mater Today Bio 2022; 14: 100223.
[http://dx.doi.org/10.1016/j.mtbio.2022.100223] [PMID: 35243298]
[101]
Yan Y, Ding H. pH-responsive nanoparticles for cancer immunotherapy: A brief review. Nanomaterials 2020; 10(8): 1613.
[http://dx.doi.org/10.3390/nano10081613] [PMID: 32824578]
[102]
Li P, Yang X, Yang Y, et al. Synergistic effect of all-trans-retinal and triptolide encapsulated in an inflammation-targeted nanoparticle on collagen-induced arthritis in mice. J Control Release 2020; 319: 87-103.
[http://dx.doi.org/10.1016/j.jconrel.2019.12.025] [PMID: 31862360]
[103]
Yu C, Li X, Hou Y, et al. Hyaluronic acid coated acid-sensitive nanoparticles for targeted therapy of adjuvant-induced arthritis in rats. Molecules 2019; 24(1): 146.
[http://dx.doi.org/10.3390/molecules24010146] [PMID: 30609724]
[104]
Sun X, Dong S, Li X, et al. Delivery of siRNA using folate receptor-targeted pH-sensitive polymeric nanoparticles for rheumatoid arthritis therapy. Nanomedicine 2019; 20: 102017.
[http://dx.doi.org/10.1016/j.nano.2019.102017] [PMID: 31128293]
[105]
Zhao J, Zhang X, Sun X, et al. Dual-functional lipid polymeric hybrid pH-responsive nanoparticles decorated with cell penetrating peptide and folate for therapy against rheumatoid arthritis. Eur J Pharm Biopharm 2018; 130: 39-47.
[http://dx.doi.org/10.1016/j.ejpb.2018.06.020] [PMID: 29928978]
[106]
Gouveia VM, Lopes-de-Araújo J, Costa LSA, Nunes C, Reis S. Hyaluronic acid-conjugated pH-sensitive liposomes for targeted delivery of prednisolone on rheumatoid arthritis therapy. Nanomedicine 2018; 13(9): 1037-49.
[http://dx.doi.org/10.2217/nnm-2017-0377] [PMID: 29790395]
[107]
Wang Q, Li Y, Chen X, Jiang H, Zhang Z, Sun X. Optimized in vivo performance of acid-liable micelles for the treatment of rheumatoid arthritis by one single injection. Nano Res 2019; 12(2): 421-8.
[http://dx.doi.org/10.1007/s12274-018-2233-3]
[108]
He L, Fan D, Liang W, Wang Q, Fang J. Matrix metalloproteinase-responsive PEGylated lipid nanoparticles for controlled drug delivery in the treatment of rheumatoid arthritis. ACS Appl Bio Mater 2020; 3(5): 3276-84.
[http://dx.doi.org/10.1021/acsabm.0c00242] [PMID: 35025370]
[109]
Zhang G, Jiang X. Temperature responsive nanoparticles based on PEGylated polyaspartamide derivatives for drug delivery. Polymers 2019; 11(2): 316.
[http://dx.doi.org/10.3390/polym11020316] [PMID: 30960299]
[110]
Gupta P, Rawal S, Bhatnagar P, Yadav HN, Dinda AK. Solid lipid nanoformulation of berberine attenuates doxorubicin triggered in vitro inflammation in H9c2 rat cardiomyocytes. Comb Chem High Throughput Screen 2022; 25(10): 1695-706.
[http://dx.doi.org/10.2174/1386207325666220617113744] [PMID: 35718970]
[111]
Sujitha S, Dinesh P, Rasool M. Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. Eur J Pharm Biopharm 2020; 149: 170-91.
[http://dx.doi.org/10.1016/j.ejpb.2020.02.007] [PMID: 32068029]
[112]
Arora R, Kuhad A, Kaur IP, Chopra K. Curcumin loaded solid lipid nanoparticles ameliorate adjuvant-induced arthritis in rats. Eur J Pain 2015; 19(7): 940-52.
[http://dx.doi.org/10.1002/ejp.620] [PMID: 25400173]
[113]
Sun Z, Wei T, Zhou X. Liposomes encapsulated dimethyl curcumin regulates dipeptidyl peptidase I activity, gelatinase release and cell cycle of spleen lymphocytes in-vivo to attenuate collagen induced arthritis in rats. Int Immunopharmacol 2018; 65: 511-21.
[http://dx.doi.org/10.1016/j.intimp.2018.10.039] [PMID: 30408628]
[114]
Zhang L, Chang J, Zhao Y, et al. Fabrication of a triptolide-loaded and poly-γ-glutamic acid-based amphiphilic nanoparticle for the treatment of rheumatoid arthritis. Int J Nanomedicine 2018; 13: 2051-64.
[http://dx.doi.org/10.2147/IJN.S151233] [PMID: 29670349]
[115]
Lin Y, Yi O, Hu M, et al. Multifunctional nanoparticles of sinomenine hydrochloride for treat-to-target therapy of rheumatoid arthritis via modulation of proinflammatory cytokines. J Control Release 2022; 348: 42-56.
[http://dx.doi.org/10.1016/j.jconrel.2022.05.016] [PMID: 35569587]
[116]
Mohanty S, Konkimalla VB, Pal A, Sharma T, Si SC. Naringin as sustained delivery nanoparticles ameliorates the anti-inflammatory activity in a freund’s complete adjuvant-induced arthritis model. ACS Omega 2021; 6(43): 28630-41.
[http://dx.doi.org/10.1021/acsomega.1c03066] [PMID: 34746558]
[117]
Zhang G, Sun G, Guan H, et al. Naringenin nanocrystals for improving anti-rheumatoid arthritis activity. Asian J Pharm Sci 2021; 16(6): 816-25.
[http://dx.doi.org/10.1016/j.ajps.2021.09.001] [PMID: 35027956]
[118]
Liao W, Liu Z, Zhang T, et al. Enhancement of anti-inflammatory properties of nobiletin in macrophages by a nano-emulsion preparation. J Agric Food Chem 2018; 66(1): 91-8.
[http://dx.doi.org/10.1021/acs.jafc.7b03953] [PMID: 29236498]
[119]
Guidance for industry rheumatoid arthritis: Developing drug products for treatment In: Draft guidance US Department of Health and Human Services 2013.
[120]
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of nanoparticles and an overview of current experimental models. Iran Biomed J 2016; 20(1): 1-11.
[PMID: 26286636]
[121]
Gupta R, Xie H. Nanoparticles in daily life: Applications, toxicity and regulations. J Environ Pathol Toxicol Oncol 2018; 37(3): 209-30.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.2018026009] [PMID: 30317972]
[122]
Sayes CM, Reed KL, Warheit DB. Assessing toxicity of fine and nanoparticles: Comparing in vitro measurements to in vivo pulmonary toxicity profiles. Toxicol Sci 2007; 97(1): 163-80.
[http://dx.doi.org/10.1093/toxsci/kfm018] [PMID: 17301066]
[123]
Molinari BL, Tasat DR, Palmieri MA, O’Connor SE, Cabrini RL. Cell-based quantitative evaluation of the MTT assay. Anal Quant Cytol Histol 2003; 25(5): 254-62.
[PMID: 14603722]
[124]
Casey A, Herzog E, Davoren M, Lyng FM, Byrne HJ, Chambers G. Spectroscopic analysis confirms the interactions between single walled carbon nanotubes and various dyes commonly used to assess cytotoxicity. Carbon 2007; 45(7): 1425-32.
[http://dx.doi.org/10.1016/j.carbon.2007.03.033]
[125]
Punshon G, Vara D, Sales K, Kidane A, Salacinski H, Seifalian A. Interactions between endothelial cells and a poly(carbonate-silsesquioxane-bridge-urea)urethane. Biomaterials 2005; 26(32): 6271-9.
[http://dx.doi.org/10.1016/j.biomaterials.2005.03.034] [PMID: 15913770]
[126]
Lee KJ, Nallathamby PD, Browning LM, Osgood CJ, Xu XHN. In vivo imaging of transport and biocompatibility of single silver nanoparticles in early development of zebrafish embryos. ACS Nano 2007; 1(2): 133-43.
[http://dx.doi.org/10.1021/nn700048y] [PMID: 19122772]
[127]
Jin Y, Kannan S, Wu M, Zhao JX. Toxicity of luminescent silica nanoparticles to living cells. Chem Res Toxicol 2007; 20(8): 1126-33.
[http://dx.doi.org/10.1021/tx7001959] [PMID: 17630705]
[128]
Pan Y, Neuss S, Leifert A, et al. Size-dependent cytotoxicity of gold nanoparticles. Small 2007; 3(11): 1941-9.
[http://dx.doi.org/10.1002/smll.200700378] [PMID: 17963284]
[129]
Vanden Berghe T, Grootjans S, Goossens V, et al. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 2013; 61(2): 117-29.
[http://dx.doi.org/10.1016/j.ymeth.2013.02.011] [PMID: 23473780]
[130]
Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 1985; 24(2-3): 119-24.
[http://dx.doi.org/10.1016/0378-4274(85)90046-3] [PMID: 3983963]
[131]
Strober W. Trypan blue exclusion test of cell viability. Curr Protoc Immunol 2015; 111(1): A3-B.
[http://dx.doi.org/10.1002/0471142735.ima03bs111]
[132]
Krzyminiewski R, Dobosz B, Krist B, Schroeder G, Kurczewska J, Bluyssen HAR. ESR method in monitoring of nanoparticle endocytosis in cancer cells. Int J Mol Sci 2020; 21(12): 4388.
[http://dx.doi.org/10.3390/ijms21124388] [PMID: 32575638]
[133]
Gomes A, Fernandes E, Lima JLFC. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 2005; 65(2-3): 45-80.
[http://dx.doi.org/10.1016/j.jbbm.2005.10.003] [PMID: 16297980]
[134]
Hussain SM, Javorina AK, Schrand AM, Duhart HM, Ali SF, Schlager JJ. The interaction of manganese nanoparticles with PC-12 cells induces dopamine depletion. Toxicol Sci 2006; 92(2): 456-63.
[http://dx.doi.org/10.1093/toxsci/kfl020] [PMID: 16714391]
[135]
Kumar V, Sharma N, Maitra SS. In vitro and in vivo toxicity assessment of nanoparticles. Int Nano Lett 2017; 7(4): 243-56.
[http://dx.doi.org/10.1007/s40089-017-0221-3]
[136]
Liyuan W, Meng W. Medicine containing methotrexate, preparation method thereof, pharmaceutical composition and application thereof. Patent CN110960683B, 2022.
[137]
Santamaria P. Compositions and methods for the prevention and treatment of autoimmune conditions. Patent CA2680227C, 2021.
[138]
Puisis J. Immune-modifying nanoparticles for the treatment of inflammatory disease. Patent US11045492B2, 2021.
[139]
Kim Hwa W, Han S, Park JH, Rhoj JG, Yoon U. Pharmaceutical composition containing hyaluronic acid nanoparticles for preventing or treating inflammatory disease and metabolic disease. Patent US10806800B2, 2020.
[140]
Bin Wu. Microparticles and nanoparticles having negative surface charges. Patent US10780053B2, 2020.
[141]
Kaufman RC. Methods of treating inflammatory disorders and global inflammation with compositions comprising phospholipid nanoparticle encapsulations of NSAIDs. Patent CA2970917C, 2019.
[142]
Fahmy TM, Look M, Craft J. Methods of treating inflammatory and autoimmune diseases and disorders. Patent US10195144B2, 2019.
[143]
Weigandt M, Hanefeld A, Kuebelbeck A, Larbig G. Silicon dioxide nanoparticles and the use thereof for vaccination. Patent US10111952B2, 2018.
[144]
Asmatulu R, Misak H, Yang SY, Wooley P. Composite magnetic nanoparticle drug delivery system. Patent US9782342B2, 2017.
[145]
Hong K, Luke SS, Yun-Long G, et al. Methods of treating arthritis. Patent US20150174069A1, 2017.
[146]
Fahmy TM, Pfefferle LD, Haller GL. Carbon nanotube compositions and methods of use thereof. Patent US9737593B2, 2017.
[147]
Bader RA. Polysialic Acid-based N-Trimethyl chitosan gel nanoparticles for systemic drug delivery. Patent US9241913B2, 2016.
[148]
Kurzrock R, Li L, Mehta K, Aggarwal BB, Helson L. Liposomal curcumin for treatment of diseases. Patent US8784881B2, 2014.
[149]
Kyung Y, Seonmi H, Park Y, Hyungjun HK. Pharmaceutical composition for treatment rheumatoid arthritis comprising multi-functional nanoparticles. Patent KR101338516B1, 2013.
[150]
Metselaar JM. Liposomal corticosteroids for treatment of inflammatory disorders in humans. Patent WO2013066179A1, 2013.
[151]
Zhang CY, Lei ZZ, Qingqing W. Tripterine nano structure lipid carrier and preparation method and application thereof. Patent CN102225205B, 2013.
[152]
Burkhard P. Self-assembling peptide nanoparticles useful as vaccines. Patent AU2009221419B2, 2013.
[153]
Holzman T, Gibbons W, Lerner C. Assays for clinical assessments of rheumatoid arthritis. Patent US20110014632A1, 2011.
[154]
Available From: https://clinicaltrials.gov/NCT05347602 (Accessed on 1st March 2023).
[155]
Available From: https://clinicaltrials.gov/NCT04649697 (Accessed on 1st March 2023).
[156]
Available From: https://clinicaltrials.gov/NCT00241982 (Accessed on 1st March 2023).
[157]
Available From: https://clinicaltrials.gov/NCT05117593 (Accessed on 1st March 2023).
[158]
Available From: https://clinicaltrials.gov/NCT03140657 (Accessed on 1st March 2023).
[159]
Available From: https://clinicaltrials.gov/NCT05496205 (Accessed on 1st March 2023).
[160]
Available From: https://clinicaltrials.gov/NCT05176795 (Accessed on 1st March 2023).

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy