Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

Exploring Brazilian Natural Products as Potential Bioactive Compounds against Trypanosoma cruzi by Targeting Squalene Synthase

Author(s): Caroline Reis Santiago Paschoal, Vitor Won-Held Rabelo, Tamillis Figueiredo de Oliveira and Paula Alvarez Abreu*

Volume 21, Issue 14, 2024

Published on: 06 October, 2023

Page: [2777 - 2790] Pages: 14

DOI: 10.2174/1570180820666230816141241

Price: $65

Abstract

Introduction: Chagas disease is a neglected disease caused by the protozoan Trypanosoma cruzi that affects 7 million people worldwide. The current treatment is limited due to safety and efficacy issues. Therefore, the search for new antiparasitic drugs is fundamental. The enzyme squalene synthase (SQS) is an attractive therapeutic target since it participates in the ergosterol biosynthesis pathway.

Objective: In the present study, we explored the Brazilian biodiversity to search for potential inhibitors of T. cruzi SQS (TcSQS) using ligand and structure-based virtual screening strategies.

Materials and Methods: A virtual screening was performed within the NuBBE database, with more than 2,200 natural products (NP) or semisynthetic derivatives from the Brazilian biodiversity. Molecular docking and ADMET predictions were then performed.

Results: A set of 12 NP showed interactions with TcSQS like those observed by known inhibitors and shared literature evidence that supports the predicted activity.

Conclusion: Three compounds (flavonoids) showed good ADMET properties as potential inhibitors of TcSQS.

Next »
[1]
The causes and impacts of neglected tropical and zoonotic diseases: Opportunities for integrated intervention strategies. National Academies Press (US): Washington (DC), 2022.
[2]
World Health Organization. Neglected tropical diseases, Available From: https://www.who.int/health-topics/neglected-tropical-diseases#tab=tab_2 (Accessed on Sep 12 2022)
[3]
Gachelin, G.; Bestetti, R.B. Early clinics of the cardiac forms of Chagas’ disease: Discovery and study of original medical files (1909–1915). Int. J. Cardiol., 2017, 244, 206-212.
[http://dx.doi.org/10.1016/j.ijcard.2017.06.102] [PMID: 28676242]
[4]
World Health Organization. Available From: https://www.who.int/news-room/fact-sheets/detail/chagas-disease-(american-trypanosomiasis)(Accessed on Sep 12 2022).
[5]
Conners, E.E.; Vinetz, J.M.; Weeks, J.R.; Brouwer, K.C. A global systematic review of Chagas disease prevalence among migrants. Acta Trop., 2016, 156, 68-78.
[http://dx.doi.org/10.1016/j.actatropica.2016.01.002] [PMID: 26777312]
[6]
Lidani, K.C.F.; Andrade, F.A.; Bavia, L.; Damasceno, F.S.; Beltrame, M.H.; Messias-Reason, I.J.; Sandri, T.L. Chagas disease: From discovery to a worldwide health problem. Front. Public Health, 2019, 7, 166.
[http://dx.doi.org/10.3389/fpubh.2019.00166] [PMID: 31312626]
[7]
Pan American Health Organization. Chagas disease, Available From: https://www.paho.org/en/topics/chagas-disease( Accessed on Sep 12 2022).
[8]
Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31612-4] [PMID: 28673423]
[9]
Rangel-Gamboa, L.; López-García, L.; Moreno-Sánchez, F.; Hoyo-Ulloa, I.; Vega-Mémije, M.E.; Mendoza-Bazán, N.; Romero-Valdovinos, M.; Olivo-Díaz, A.; Villalobos, G.; Martínez-Hernández, F. Trypanosoma cruzi infection associated with atypical clinical manifestation during the acute phase of the Chagas disease. Parasit. Vectors, 2019, 12(1), 506.
[http://dx.doi.org/10.1186/s13071-019-3766-3] [PMID: 31666114]
[10]
Matsuda, N.M.; Miller, S.M.; Evora, P.R.B. The chronic gastrointestinal manifestations of Chagas disease. Clinics, 2009, 64(12), 1219-1224.
[http://dx.doi.org/10.1590/S1807-59322009001200013] [PMID: 20037711]
[11]
Guarner, J. Chagas disease as example of a reemerging parasite. Semin. Diagn. Pathol., 2019, 36(3), 164-169.
[http://dx.doi.org/10.1053/j.semdp.2019.04.008] [PMID: 31006555]
[12]
Daré, L.O.; Bruand, P.E.; Gérard, D.; Marin, B.; Lameyre, V.; Boumédiène, F.; Preux, P.M. Co-morbidities of mental disorders and chronic physical diseases in developing and emerging countries: A meta-analysis. BMC Public Health, 2019, 19(1), 304.
[http://dx.doi.org/10.1186/s12889-019-6623-6] [PMID: 30866883]
[13]
OPS OP of health. control, interruption of transmission and elimination of chagas disease as a public health problem. evaluation, verification and validation guide; Organización Panamericana de LaSalud: Washington, DC, 2019.
[14]
Scarim, C.B.; Jornada, D.H.; Chelucci, R.C.; de Almeida, L.; dos Santos, J.L.; Chung, M.C. Current advances in drug discovery for Chagas disease. Eur. J. Med. Chem., 2018, 155, 824-838.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.040] [PMID: 30033393]
[15]
Kratz, J.M. Drug discovery for chagas disease: A viewpoint. Acta Trop., 2019, 198, 105107.
[http://dx.doi.org/10.1016/j.actatropica.2019.105107] [PMID: 31351074]
[16]
Jackson, Y.; Wyssa, B.; Chappuis, F. Tolerance to nifurtimox and benznidazole in adult patients with chronic Chagas’ disease. J. Antimicrob. Chemother., 2020, 75(3), 690-696.
[http://dx.doi.org/10.1093/jac/dkz473] [PMID: 31754690]
[17]
Patterson, S.; Wyllie, S. Nitro drugs for the treatment of trypanosomatid diseases: past, present, and future prospects. Trends Parasitol., 2014, 30(6), 289-298.
[http://dx.doi.org/10.1016/j.pt.2014.04.003] [PMID: 24776300]
[18]
Campos, M.C.; Phelan, J.; Francisco, A.F.; Taylor, M.C.; Lewis, M.D.; Pain, A.; Clark, T.G.; Kelly, J.M. Genome-wide mutagenesis and multi-drug resistance in American trypanosomes induced by the front-line drug benznidazole. Sci. Rep., 2017, 7(1), 14407.
[http://dx.doi.org/10.1038/s41598-017-14986-6] [PMID: 29089615]
[19]
Revollo, S.; Oury, B.; Vela, A.; Tibayrenc, M.; Sereno, D. In vitro benznidazole and nifurtimox susceptibility profile of trypanosoma cruzi strains belonging to discrete typing units tci, tcii, and tcv. Pathogens, 2019, 8(4), 197.
[http://dx.doi.org/10.3390/pathogens8040197] [PMID: 31635071]
[20]
Rabelo, V.W.H.; Romeiro, N.C.; Abreu, P.A. Design strategies of oxidosqualene cyclase inhibitors: Targeting the sterol biosynthetic pathway. J. Steroid Biochem. Mol. Biol., 2017, 171, 305-317.
[http://dx.doi.org/10.1016/j.jsbmb.2017.05.002] [PMID: 28479228]
[21]
Osorio-Méndez, J.F.; Cevallos, A.M. Discovery and genetic validation of chemotherapeutic targets for chagas’ disease. Front. Cell. Infect. Microbiol., 2019, 8, 439.
[http://dx.doi.org/10.3389/fcimb.2018.00439] [PMID: 30666299]
[22]
Villalta, F.; Rachakonda, G. Advances in preclinical approaches to Chagas disease drug discovery. Expert Opin. Drug Discov., 2019, 14(11), 1161-1174.
[http://dx.doi.org/10.1080/17460441.2019.1652593] [PMID: 31411084]
[23]
de Souza, W.; Rodrigues, J.C.F. Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdiscip. Perspect. Infect. Dis., 2009, 2009, 1-19.
[http://dx.doi.org/10.1155/2009/642502] [PMID: 19680554]
[24]
Urbina, J.A. Ergosterol biosynthesis and drug development for Chagas disease. Mem. Inst. Oswaldo Cruz, 2009, 104(Suppl. 1), 311-318.
[http://dx.doi.org/10.1590/S0074-02762009000900041] [PMID: 19753490]
[25]
Shang, N.; Li, Q.; Ko, T.P.; Chan, H.C.; Li, J.; Zheng, Y.; Huang, C.H.; Ren, F.; Chen, C.C.; Zhu, Z.; Galizzi, M.; Li, Z.H.; Rodrigues-Poveda, C.A.; Gonzalez-Pacanowska, D.; Veiga-Santos, P.; de Carvalho, T.M.U.; de Souza, W.; Urbina, J.A.; Wang, A.H.J.; Docampo, R.; Li, K.; Liu, Y.L.; Oldfield, E.; Guo, R.T. Squalene synthase as a target for Chagas disease therapeutics. PLoS Pathog., 2014, 10(5), e1004114.
[http://dx.doi.org/10.1371/journal.ppat.1004114] [PMID: 24789335]
[26]
Goldstein, J.L.; Brown, M.S. The cholesterol quartet., 2001, 292(5520), 1310-1312.
[http://dx.doi.org/10.1126/science.1061815]
[27]
Urbina, J.A.; Concepcion, J.L.; Rangel, S.; Visbal, G.; Lira, R. Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. Mol. Biochem. Parasitol., 2002, 125(1-2), 35-45.
[http://dx.doi.org/10.1016/S0166-6851(02)00206-2] [PMID: 12467972]
[28]
Benaim, G.; Sanders, J.M.; Garcia-Marchán, Y.; Colina, C.; Lira, R.; Caldera, A.R.; Payares, G.; Sanoja, C.; Burgos, J.M.; Leon-Rossell, A.; Concepcion, J.L.; Schijman, A.G.; Levin, M.; Oldfield, E.; Urbina, J.A. Amiodarone has intrinsic anti-Trypanosoma cruzi activity and acts synergistically with posaconazole. J. Med. Chem., 2006, 49(3), 892-899.
[http://dx.doi.org/10.1021/jm050691f] [PMID: 16451055]
[29]
Urbina, J.A.; Concepcion, J.L.; Montalvetti, A.; Rodriguez, J.B.; Docampo, R. Mechanism of action of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against Trypanosoma cruzi, the causative agent of Chagas’ disease. Antimicrob. Agents Chemother., 2003, 47(6), 2047-2050.
[http://dx.doi.org/10.1128/AAC.47.6.2047-2050.2003] [PMID: 12760897]
[30]
Urbina, J.A.; Concepcion, J.L.; Caldera, A.; Payares, G.; Sanoja, C.; Otomo, T.; Hiyoshi, H. In vitro and in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi. Antimicrob. Agents Chemother., 2004, 48(7), 2379-2387.
[http://dx.doi.org/10.1128/AAC.48.7.2379-2387.2004] [PMID: 15215084]
[31]
Izumi, E.; Ueda-Nakamura, T.; Dias Filho, B.P.; Veiga Júnior, V.F.; Nakamura, C.V. Natural products and Chagas’ disease: A review of plant compounds studied for activity against Trypanosoma cruzi. Nat. Prod. Rep., 2011, 28(4), 809-823.
[http://dx.doi.org/10.1039/c0np00069h] [PMID: 21290079]
[32]
Alviano, D.S.; Barreto, A.L.S.; Dias, F.A.; Rodrigues, I.A.; Rosa, M.S.S.; Alviano, C.S.; Soares, R.M.A. Conventional therapy and promising plant-derived compounds against trypanosomatid parasites. Front. Microbiol., 2012, 3, 283.
[http://dx.doi.org/10.3389/fmicb.2012.00283] [PMID: 22888328]
[33]
Moraes Neto, R.N.; Setúbal, R.F.B.; Higino, T.M.M.; Brelaz-de-Castro, M.C.A.; da Silva, L.C.N.; Aliança, A.S.S. Aliança AS dos S. Asteraceae plants as sources of compounds against leishmaniasis and chagas disease. Front. Pharmacol., 2019, 10, 477.
[http://dx.doi.org/10.3389/fphar.2019.00477] [PMID: 31156427]
[34]
Shahhamzehei, N.; Abdelfatah, S.; Efferth, T. In silico and in vitro identification of pan-coronaviral main protease inhibitors from a large natural product library. Pharmaceuticals, 2022, 15(3), 308.
[http://dx.doi.org/10.3390/ph15030308] [PMID: 35337106]
[35]
Sama-ae, I.; Sangkanu, S.; Siyadatpanah, A.; Norouzi, R.; Chuprom, J.; Mitsuwan, W.; Surinkaew, S.; Boonhok, R.; Paul, A.K.; Mahboob, T. Targeting acanthamoeba proteins interaction with flavonoids of propolis extract by in vitro and in silico studies for promising therapeutic effects. F1000 Res., 2023, 111274.
[http://dx.doi.org/10.12688/f1000research.126227.3]
[36]
Valli, M.; Russo, H.M.; Bolzani, V.S. The potential contribution of the natural products from Brazilian biodiversity to bioeconomy. An. Acad. Bras. Cienc., 2018, 90(Suppl. 1), 763-778.
[http://dx.doi.org/10.1590/0001-3765201820170653] [PMID: 29668803]
[37]
Pilon, A.C.; Valli, M.; Dametto, A.C.; Pinto, M.E.F.; Freire, R.T.; Castro-Gamboa, I.; Andricopulo, A.D.; Bolzani, V.S. NuBBEDB: an updated database to uncover chemical and biological information from Brazilian biodiversity. Sci. Rep., 2017, 7(1), 7215.
[http://dx.doi.org/10.1038/s41598-017-07451-x] [PMID: 28775335]
[38]
Saldívar-González, F.I.; Valli, M.; Andricopulo, A.D.; da Silva Bolzani, V.; Medina-Franco, J.L. Chemical space and diversity of the nubbe database: a chemoinformatic characterization. J. Chem. Inf. Model., 2019, 59(1), 74-85.
[http://dx.doi.org/10.1021/acs.jcim.8b00619] [PMID: 30508485]
[39]
O’Boyle, N.M.; Banck, M.; James, C.A.; Morley, C.; Vandermeersch, T.; Hutchison, G.R. Open Babel: An open chemical toolbox. J. Cheminform., 2011, 3(1), 33.
[http://dx.doi.org/10.1186/1758-2946-3-33] [PMID: 21982300]
[40]
Sunseri, J.; Koes, D.R. Pharmit: Interactive exploration of chemical space. Nucleic Acids Res., 2016, 44(W1), W442-W448.
[http://dx.doi.org/10.1093/nar/gkw287] [PMID: 27095195]
[41]
Koes, D.R.; Camacho, C.J. Pharmer: Efficient and exact pharmacophore search. J. Chem. Inf. Model., 2011, 51(6), 1307-1314.
[http://dx.doi.org/10.1021/ci200097m] [PMID: 21604800]
[42]
Lagorce, D.; Bouslama, L.; Becot, J.; Miteva, M.A.; Villoutreix, B.O. FAF-Drugs4: Free ADME-tox filtering computations for chemical biology and early stages drug discovery. Bioinformatics, 2017, 33(22), 3658-3660.
[http://dx.doi.org/10.1093/bioinformatics/btx491] [PMID: 28961788]
[43]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), NA.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[44]
Dallakyan, S.; Olson, A. Small-molecule library screening by docking with pyrx. In: Methods in Molecular Biology; Humana Press: New York, NY, 2015; pp. 243-250.
[45]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-Pdb Viewer: An environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[http://dx.doi.org/10.1002/elps.1150181505] [PMID: 9504803]
[46]
BIOVIA. Discovery studio visualizer; Dassault Systèmes BIOVIA, 2017.
[47]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. PkCSM: predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[48]
Li, F; Zhang, L; Zhang, Z Lie group machine learning., 2018.
[http://dx.doi.org/10.1515/9783110499506]
[49]
Goad, L.; Keithly, J.; Berman, J.; Beach, D.; Holz, G. Possible implications for chemotherapy. In: Leishmania: The Sterols of Leishmania Promastigotes and Amastigotes; Springer US: Boston, MA, 1989; pp. 495-501.
[http://dx.doi.org/10.1007/978-1-4613-1575-9_61]
[50]
Tasdemir, D.; Kaiser, M.; Brun, R.; Yardley, V.; Schmidt, T.J.; Tosun, F.; Rüedi, P. Antitrypanosomal and antileishmanial activities of flavonoids and their analogues: In vitro, in vivo, structure-activity relationship, and quantitative structure-activity relationship studies. Antimicrob. Agents Chemother., 2006, 50(4), 1352-1364.
[http://dx.doi.org/10.1128/AAC.50.4.1352-1364.2006] [PMID: 16569852]
[51]
Leite, A.C.; Placeres Neto, A.; Ambrozin, A.R.P.; Fernandes, J.B.; Vieira, P.C. Silva MF das GF da, de Albuquerque S. Trypanocidal activity of flavonoids and limonoids isolated from myrsinaceae and meliaceae active plant extracts. Rev. Bras. Farmacogn., 2010, 20(1), 1-6.
[52]
Grecco, S.S.; Reimão, J.Q.; Tempone, A.G.; Sartorelli, P.; Cunha, R.L.O.R.; Romoff, P.; Ferreira, M.J.P.; Fávero, O.A.; Lago, J.H.G. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Exp. Parasitol., 2012, 130(2), 141-145.
[http://dx.doi.org/10.1016/j.exppara.2011.11.002] [PMID: 22143090]
[53]
Huber, L; Rodrigues-Amaya, D. Flavonoids and flavones: The brazilian sources and factors that influence the composition in food. Brazilian J. Food Nutr., 2008, 19(1)
[54]
Mamani-Matsuda, M.; Rambert, J.; Malvy, D.; Lejoly-Boisseau, H.; Daulouède, S.; Thiolat, D.; Coves, S.; Courtois, P.; Vincendeau, P.; Mossalayi, M.D. Quercetin induces apoptosis of trypanosoma brucei gambiense and decreases the proinflammatory response of human macrophages. Antimicrob. Agents Chemother., 2004, 48(3), 924-929.
[http://dx.doi.org/10.1128/AAC.48.3.924-929.2004] [PMID: 14982785]
[55]
Sen, G.; Mukhopadhyay, S.; Ray, M.; Biswas, T. Quercetin interferes with iron metabolism in Leishmania donovani and targets ribonucleotide reductase to exert leishmanicidal activity. J. Antimicrob. Chemother., 2008, 61(5), 1066-1075.
[http://dx.doi.org/10.1093/jac/dkn053] [PMID: 18285311]
[56]
Loo, V.G.; Lalonde, R.G. Role of iron in intracellular growth of Trypanosoma cruzi. Infect. Immun., 1984, 45(3), 726-730.
[http://dx.doi.org/10.1128/iai.45.3.726-730.1984] [PMID: 6381312]
[57]
Martins, R.C.C.; Lago, J.H.G.; Albuquerque, S.; Kato, M.J. Trypanocidal tetrahydrofuran lignans from inflorescences of Piper solmsianum. Phytochemistry, 2003, 64(2), 667-670.
[http://dx.doi.org/10.1016/S0031-9422(03)00356-X] [PMID: 12943793]
[58]
Piccirillo, E.; Amaral, A. Busca virtual de compostos bioativos: Conceitos e aplicações. Quim. Nova, 2018, 41(6), 662-677.
[http://dx.doi.org/10.21577/0100-4042.20170210]
[59]
Caron, G.; Digiesi, V.; Solaro, S.; Ermondi, G. Flexibility in early drug discovery: Focus on the beyond-Rule-of-5 chemical space. Drug Discov. Today, 2020, 25(4), 621-627.
[http://dx.doi.org/10.1016/j.drudis.2020.01.012] [PMID: 31991117]
[60]
Doak, B.C.; Over, B.; Giordanetto, F.; Kihlberg, J. Oral druggable space beyond the rule of 5: Insights from drugs and clinical candidates. Chem. Biol., 2014, 21(9), 1115-1142.
[http://dx.doi.org/10.1016/j.chembiol.2014.08.013] [PMID: 25237858]
[61]
Doak, B.C.; Zheng, J.; Dobritzsch, D.; Kihlberg, J. How beyond rule of 5 drugs and clinical candidates bind to their targets. J. Med. Chem., 2016, 59(6), 2312-2327.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01286] [PMID: 26457449]
[62]
Doak, B.C.; Kihlberg, J. Drug discovery beyond the rule of 5: Opportunities and challenges. Expert Opin. Drug Discov., 2017, 12(2), 115-119.
[http://dx.doi.org/10.1080/17460441.2017.1264385] [PMID: 27883294]
[63]
Poongavanam, V.; Doak, B.C.; Kihlberg, J. Opportunities and guidelines for discovery of orally absorbed drugs in beyond rule of 5 space. Curr. Opin. Chem. Biol., 2018, 44, 23-29.
[http://dx.doi.org/10.1016/j.cbpa.2018.05.010] [PMID: 29803972]
[64]
Lipinski, C.A. Rule of five in 2015 and beyond: Target and ligand structural limitations, ligand chemistry structure and drug discovery project decisions. Adv. Drug Deliv. Rev., 2016, 101, 34-41.
[http://dx.doi.org/10.1016/j.addr.2016.04.029] [PMID: 27154268]
[65]
Rabelo, V.W.H.; Viegas, D.J.; Tucci, E.M.N.; Romeiro, N.C.; Abreu, P.A. Virtual screening and drug repositioning as strategies for the discovery of new antifungal inhibitors of oxidosqualene cyclase. J. Steroid Biochem. Mol. Biol., 2019, 185, 189-199.
[http://dx.doi.org/10.1016/j.jsbmb.2018.09.001] [PMID: 30193921]
[66]
Regasini, L.O.; Martins de Oliveira, C.; José, C.R.V. olga maria mascarenhas de faria oliveira, dulce helena siqueira silva, vanderlan da silva bolzani. free radical scavenging activity of pterogyne nitens tul. (fabaceae). Afr. J. Biotechnol., 2008, 7(24), 4609-4613.
[67]
Regasini, L.O.; Vellosa, J.C.R.; Silva, D.H.S.; Furlan, M.; de Oliveira, O.M.M.; Khalil, N.M.; Brunetti, I.L.; Young, M.C.M.; Barreiro, E.J.; Bolzani, V.S. Flavonols from Pterogyne nitens and their evaluation as myeloperoxidase inhibitors. Phytochemistry, 2008, 69(8), 1739-1744.
[http://dx.doi.org/10.1016/j.phytochem.2008.01.006] [PMID: 18395762]
[68]
Gallo, M.B.C.; Marques, A.S.F.; Vieira, P.C.; da Silva, M.F.G.F.; Fernandes, J.B.; Silva, M.; Guido, R.V.; Oliva, G.; Thiemann, O.H.; Albuquerque, S.; Fairlamb, A.H. Enzymatic inhibitory activity and trypanocidal effects of extracts and compounds from Siphoneugena densiflora O. Berg and Vitex polygama Cham. Z. Naturforsch. C J. Biosci., 2008, 63(5-6), 371-382.
[http://dx.doi.org/10.1515/znc-2008-5-611] [PMID: 18669023]
[69]
de Sousa, L.R.F.; Ramalho, S.D.; Burger, M.C.M.; Nebo, L.; Fernandes, J.B.; da Silva, M.F.G.F.; Iemma, M.R.C.; Corrêa, C.J.; Souza, D.H.F.; Lima, M.I.S.; Vieira, P.C. Isolation of arginase inhibitors from the bioactivity-guided fractionation of Byrsonima coccolobifolia leaves and stems. J. Nat. Prod., 2014, 77(2), 392-396.
[http://dx.doi.org/10.1021/np400717m] [PMID: 24521209]
[70]
Gallo, M.B.C.; Rocha, W.C.; da Cunha, U.S.; Diogo, F.A.; da Silva, F.C.; Vieira, P.C.; Vendramim, J.D.; Fernandes, J.B.; da Silva, M.F.G.F.; Batista-Pereira, L.G. Bioactivity of extracts and isolated compounds fromVitex polygama (Verbenaceae) and Siphoneugena densiflora (Myrtaceae) againstSpodoptera frugiperda (Lepidoptera: Noctuidae). Pest Manag. Sci., 2006, 62(11), 1072-1081.
[http://dx.doi.org/10.1002/ps.1278] [PMID: 16953496]
[71]
Hamerski, L.; Carbonezi, C.A.; Cavalheiro, A.J.; Bolzani, V.S.; Young, M.C.M. Saponinas triterpênicas de Tocoyena brasiliensis Mart. (Rubiaceae). Quim. Nova, 2005, 28(4), 601-604.
[http://dx.doi.org/10.1590/S0100-40422005000400009]
[72]
Bolzani, V.D.S.; Gunatilaka, A.A.L.; Kingston, D.G.I. Bioactive guanidine alkaloids from pterogyne nitens. J. Nat. Prod., 1995, 58(11), 1683-1688.
[http://dx.doi.org/10.1021/np50125a006]
[73]
Fernandes, D.C.; Regasini, L.O.; Vellosa, J.C.R.; Pauletti, P.M.; Castro-gamboa, I.; Bolzani, V.S.; Oliveira, O.M.M.; Silva, D.H.S. Myeloperoxidase inhibitory and radical scavenging activities of flavones from Pterogyne nitens. Chem. Pharm. Bull., 2008, 56(5), 723-726.
[http://dx.doi.org/10.1248/cpb.56.723] [PMID: 18451567]
[74]
Silva, V.C.; Bolzani, V.S.; Young, M.C.M.; Lopes, M.N. A new antifungal phenolic glycoside derivative, iridoids and lignans from Alibertia sessilis (vell.) k. schum. (Rubiaceae). J. Braz. Chem. Soc., 2007, 18(7), 1405-1409.
[http://dx.doi.org/10.1590/S0103-50532007000700017]
[75]
Bolzani, V.S.; Trevisan, L.M.V.; Izumisawa, C.M.; Young, M.C.M. Antifungal iridoids from the stems of tocoyena formosa. J. Braz. Chem. Soc., 1996, 7(3), 157-160.
[http://dx.doi.org/10.5935/0103-5053.19960024]
[76]
Regasini, L.O.; Fernandes, D.C.; Castro-Gamboa, I.; Silva, D.H.S.; Furlan, M. Bolzani, V. da. S.; Barreiro, E.J.; Cardoso-Lopes, E.M.; Young, M.C.M.; Torres, L.B Constituintes químicos das flores de pterogyne nitens (caesalpinioideae). Quim. Nova, 2008, 31(4), 802-806.

© 2025 Bentham Science Publishers | Privacy Policy