Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Letter Article

In vitro Antibacterial Activity of Dye Compounds

Author(s): Alize Hoepfner, Johannes Jacobus Bezuidenhout, Anél Petzer, Jacobus Petrus Petzer and Theunis Theodorus Cloete*

Volume 21, Issue 14, 2024

Published on: 04 October, 2023

Page: [2791 - 2798] Pages: 8

DOI: 10.2174/1570180820666230725110021

Price: $65

Abstract

Background: Methylene blue and some of its analogues have known antibacterial activity, however their exact mechanism of action is unknown.

Objective: In this study, the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of several methylene blue analogues were determined against five bacterial strains, whereafter the data were used to create and validate a pharmacophore model.

Methods: The agar dilution method was used to screen the analogues for antibacterial activity, while the broth microdilution method was used to determine their MIC and MBC. A pharmacophore model was constructed and validated using the rank score, fit value, enrichment factor (EF10%), hit rate (HR10%) and receiver operating characteristic area under the curve (ROC-AUC) as metrics.

Results: Against Staphylococcus aureus, pyronin B (0.125 μg/ml) was more active than tetracycline (1 μg/ml) and pyronin Y (0.5 μg/ml), 1,9-dimethylmethylene blue (2 μg/ml), basic blue 3 (2 μg/ml), new methylene blue (2 μg/ml) and Nile blue (2 μg/ml) had similar activity compared to tetracycline. Pyronin B, 1,9-dimethylmethylene blue and new methylene blue were bactericidal. A pharmacophore model was created (rank score: 36.55, max. fit value: 3), which was able to identify active analogues out of the test set (EF10%: 2.83, HR10%: 28.57%, ROC-AUC: 0.84 ± 0.04). The pharmacophore model highlighted that a positive ionisable, aromatic ring as well as a hydrophobic moiety are important for antibacterial activity.

Conclusion: Methylene blue analogues were found to have potent antibacterial activity and a pharmacophore model was created to understand the structural requirements for activity.

[1]
Singer, A.C.; Kirchhelle, C.; Roberts, A.P. (Inter)nationalising the antibiotic research and development pipeline. Lancet Infect. Dis., 2020, 20(2), e54-e62.
[http://dx.doi.org/10.1016/S1473-3099(19)30552-3] [PMID: 31753765]
[2]
Ash, S.R.; Steczko, J.; Brewer, L.B.; Winger, R.K. Microbial inactivation properties of methylene blue-citrate solution. ASAIO J., 2006, 52(2), 11-20.
[http://dx.doi.org/10.1097/00002480-200603000-00063]
[3]
Edwards, K. New twist on an old favorite: Gentian violet and methylene blue antibacterial foams. Adv. Wound Care (New Rochelle), 2016, 5(1), 11-18.
[http://dx.doi.org/10.1089/wound.2014.0593] [PMID: 26858911]
[4]
Li, R.; Chen, J.; Cesario, T.C.; Wang, X.; Yuan, J.S.; Rentzepis, P.M. Synergistic reaction of silver nitrate, silver nanoparticles, and methylene blue against bacteria. Proc. Natl. Acad. Sci. USA, 2016, 113(48), 13612-13617.
[http://dx.doi.org/10.1073/pnas.1611193113] [PMID: 27849602]
[5]
Thesnaar, L.; Bezuidenhout, J.J.; Petzer, A.; Petzer, J.P.; Cloete, T.T. Methylene blue analogues: In vitro antimicrobial minimum inhibitory concentrations and in silico pharmacophore modelling. Eur. J. Pharm. Sci., 2021, 157, 105603.
[http://dx.doi.org/10.1016/j.ejps.2020.105603] [PMID: 33091571]
[6]
Aparoy, P.; Kumar Reddy, K.; Reddanna, P. Structure and ligand based drug design strategies in the development of novel 5- LOX inhibitors. Curr. Med. Chem., 2012, 19(22), 3763-3778.
[http://dx.doi.org/10.2174/092986712801661112] [PMID: 22680930]
[7]
Lee, C.H.; Huang, H.C.; Juan, H.F. Reviewing ligand-based rational drug design: The search for an ATP synthase inhibitor. Int. J. Mol. Sci., 2011, 12(8), 5304-5318.
[http://dx.doi.org/10.3390/ijms12085304] [PMID: 21954360]
[8]
Macalino, S.J.Y.; Gosu, V.; Hong, S.; Choi, S. Role of computer-aided drug design in modern drug discovery. Arch. Pharm. Res., 2015, 38(9), 1686-1701.
[http://dx.doi.org/10.1007/s12272-015-0640-5] [PMID: 26208641]
[9]
Hawkins, P.C.D.; Skillman, A.G.; Nicholls, A. Comparison of shape-matching and docking as virtual screening tools. J. Med. Chem., 2007, 50(1), 74-82.
[http://dx.doi.org/10.1021/jm0603365] [PMID: 17201411]
[10]
Pascual, R.; Almansa, C.; Plata-Salamán, C.; Vela, J.M. A new pharmacophore model for the design of sigma-1 ligands validated on a large experimental dataset. Front. Pharmacol., 2019, 10, 519.
[http://dx.doi.org/10.3389/fphar.2019.00519] [PMID: 31214020]
[11]
Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 2008, 3(2), 163-175.
[http://dx.doi.org/10.1038/nprot.2007.521] [PMID: 18274517]
[12]
Cockerill, F.R.; Wikler, M.A.; Alder, J.; Dudley, M.N.; Eliopoulos, G.M.; Ferraro, M.J.; Hardy, D.J.; Hecht, D.W.; Hindler, J.A.; Patel, J.B.; Powell, M.; Swenson, J.M.; Thomson, R.B.; Traczewski, M.M.; Turnbrighe, J.D.; Weinstein, M.P.; Zimmer, B.L. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 9th ed; Clinical and Laboratory Standards Institute: Wayne, PA, 2012, pp. M07-a9.
[13]
Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect., 2003, 9(8), ix-xv.
[http://dx.doi.org/10.1046/j.1469-0691.2003.00790.x]
[14]
Hacek, D.M.; Dressel, D.C.; Peterson, L.R. Highly reproducible bactericidal activity test results by using a modified national committee for clinical laboratory standards broth macrodilution technique. J. Clin. Microbiol., 1999, 37(6), 1881-1884.
[http://dx.doi.org/10.1128/JCM.37.6.1881-1884.1999] [PMID: 10325341]
[15]
Eagle, H.; Musselman, A.D. The slow recovery of bacteria from the toxic effects of penicillin. J. Bacteriol., 1949, 58(4), 475-490.
[http://dx.doi.org/10.1128/jb.58.4.475-490.1949] [PMID: 16561809]
[16]
Motyl, M.; Dorso, K.; Barrett, J.; Giacobbe, R. Basic microbiological techniques used in antibacterial drug discovery. Curr. Protoc., 2005, 31(3), 13A.
[http://dx.doi.org/10.1002/0471141755.ph13a03s31]
[17]
Mouton, J.W.; Vinks, A.A. Relationship between minimum inhibitory concentration and stationary concentration revisited: Growth rates and minimum bactericidal concentrations. Clin. Pharmacokinet., 2005, 44(7), 767-768.
[http://dx.doi.org/10.2165/00003088-200544070-00007] [PMID: 15966758]
[18]
John, S.; Thangapandian, S.; Arooj, M.; Hong, J.C.; Kim, K.D.; Lee, K.W. Development, evaluation and application of 3D QSAR Pharmacophore model in the discovery of potential human renin inhibitors. BMC Bioinformatics, 2011, 12(S14)(Suppl. 14), S4.
[http://dx.doi.org/10.1186/1471-2105-12-S14-S4] [PMID: 22372967]
[19]
Qing, X.; Lee, X.Y.; de Raeymaeker, J.; Zhang, K.Y.; Pei, J. Pharmacophore modeling: Advances, limitations, and current utility in drug discovery. J. Receptor Ligand Channel Res., 2014, 7, 81-92.
[20]
Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem., 2012, 55(14), 6582-6594.
[http://dx.doi.org/10.1021/jm300687e] [PMID: 22716043]
[21]
Tripathi, A.C.; Sonar, P.K.; Rathore, R.; Saraf, S.K. Structural insights into the molecular design of HER2 inhibitors. Open Pharm. Sci. J., 2016, 3(1), 164-181.
[http://dx.doi.org/10.2174/1874844901603010164]
[22]
Chen, H.; Lyne, P.D.; Giordanetto, F.; Lovell, T.; Li, J. On evaluating molecular-docking methods for pose prediction and enrichment factors. J. Chem. Inf. Model., 2006, 46(1), 401-415.
[http://dx.doi.org/10.1021/ci0503255] [PMID: 16426074]
[23]
Wei, B.Q.; Baase, W.A.; Weaver, L.H.; Matthews, B.W.; Shoichet, B.K. A model binding site for testing scoring functions in molecular docking. J. Mol. Biol., 2002, 322(2), 339-355.
[http://dx.doi.org/10.1016/S0022-2836(02)00777-5] [PMID: 12217695]
[24]
Hamza, A.; Wei, N.N.; Zhan, C.G. Ligand-based virtual screening approach using a new scoring function. J. Chem. Inf. Model., 2012, 52(4), 963-974.
[http://dx.doi.org/10.1021/ci200617d] [PMID: 22486340]
[25]
Breijyeh, Z.; Jubeh, B.; Karaman, R. Resistance of gram-negative bacteria to current antibacterial agents and approaches to resolve it. Molecules, 2020, 25(6), 1340.
[http://dx.doi.org/10.3390/molecules25061340] [PMID: 32187986]
[26]
Parasuraman, P. R y, T.; Shaji, C.; Sharan, A.; Bahkali, A.H.; Al-Harthi, H.F.; Syed, A.; Anju, V.T.; Dyavaiah, M.; Siddhardha, B. Biogenic silver nanoparticles decorated with methylene blue potentiated the photodynamic inactivation of Pseudomonas aeruginosa and Staphylococcus aureus. Pharmaceutics, 2020, 12(8), 709.
[http://dx.doi.org/10.3390/pharmaceutics12080709] [PMID: 32751176]
[27]
Xu, X.; Hu, Y.; Zhang, L.; Liu, B.; Yang, Y.; Tang, T.; Tian, J.; Peng, K.; Liu, T. Lactic- co -glycolic acid-coated methylene blue nanoparticles with enhanced antibacterial activity for efficient wound healing. RSC Advances, 2020, 10(21), 12304-12307.
[http://dx.doi.org/10.1039/D0RA01034K] [PMID: 35497590]
[28]
Zingue, D.; Bouam, A.; Tian, R.B.D.; Drancourt, M. Buruli ulcer, a prototype for ecosystem-related infection, caused by Mycobacterium ulcerans. Clin. Microbiol. Rev., 2017, 31(1), 31.
[PMID: 29237707]
[29]
Heylen, E.; Neyts, J.; Jochmans, D. Drug candidates and model systems in respiratory syncytial virus antiviral drug discovery. Biochem. Pharmacol., 2017, 127, 1-12.
[http://dx.doi.org/10.1016/j.bcp.2016.09.014] [PMID: 27659812]
[30]
Villagra, N.A.; Hidalgo, A.A.; Santiviago, C.A.; Saavedra, C.P.; Mora, G.C. Smva, and not acrb, is the major efflux pump for acriflavine and related compounds in Salmonella enterica serovar typhimurium. J. Antimicrob. Chemother., 2008, 62(6), 1273-1276.
[http://dx.doi.org/10.1093/jac/dkn407] [PMID: 18819967]
[31]
Feng, J.; Shi, W.; Zhang, S.; Zhang, Y. Identification of new compounds with high activity against stationary phase Borrelia burgdorferi from the NCI compound collection. Emerg. Microbes Infect., 2015, 4(1), 1-15.
[http://dx.doi.org/10.1038/emi.2015.31] [PMID: 26954881]
[32]
Grigg, G.W.; Edwards, M.J.; Brown, D.J. Effects of coumarin, thiopurines, and pyronin Y on amplification of phleomycin-induced death and deoxyribonucleic acid breakdown in Escherichia coli. J. Bacteriol., 1971, 107(3), 599-609.
[http://dx.doi.org/10.1128/jb.107.3.599-609.1971] [PMID: 4937777]
[33]
Kern, W.V.; Steinke, P.; Schumacher, A.; Schuster, S.; Baum, H.; Bohnert, J.A. Effect of 1-(1-naphthylmethyl)-piperazine, a novel putative efflux pump inhibitor, on antimicrobial drug susceptibility in clinical isolates of Escherichia coli. J. Antimicrob. Chemother., 2006, 57(2), 339-343.
[http://dx.doi.org/10.1093/jac/dki445] [PMID: 16354747]
[34]
Kaatz, G.W.; Moudgal, V.V.; Seo, S.M.; Kristiansen, J.E. Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother., 2003, 47(2), 719-726.
[http://dx.doi.org/10.1128/AAC.47.2.719-726.2003] [PMID: 12543683]
[35]
Shanholtzer, C.J.; Peterson, L.R.; Mohn, M.L.; Moody, J.A.; Gerding, D.N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob. Agents Chemother., 1984, 26(2), 214-219.
[http://dx.doi.org/10.1128/AAC.26.2.214] [PMID: 6486764]
[36]
Jarrad, A.M.; Blaskovich, M.A.T.; Prasetyoputri, A.; Karoli, T.; Hansford, K.A.; Cooper, M.A. Detection and investigation of eagle effect resistance to vancomycin in Clostridium difficile With an ATP-bioluminescence assay. Front. Microbiol., 2018, 9, 1420.
[http://dx.doi.org/10.3389/fmicb.2018.01420] [PMID: 30013531]
[37]
Wu, M.L.; Tan, J.; Dick, T. Eagle effect in nonreplicating persister mycobacteria. Antimicrob. Agents Chemother., 2015, 59(12), 7786-7789.
[http://dx.doi.org/10.1128/AAC.01476-15] [PMID: 26349831]
[38]
Gresser-Burns, M.E.; Shanholtzer, C.J.; Peterson, L.R.; Gerding, D.N. Occurrence and reproducibility of the “skip” phenomenon in bactericidal testing of Staphylococcus aureus. Diagn. Microbiol. Infect. Dis., 1987, 6(4), 335-342.
[http://dx.doi.org/10.1016/0732-8893(87)90184-2] [PMID: 3581738]
[39]
Kowalska-Krochmal, B.; Dudek-Wicher, R. The minimum inhibitory concentration of antibiotics: methods, interpretation, clinical relevance. Pathogens, 2021, 10(2), 165.
[http://dx.doi.org/10.3390/pathogens10020165] [PMID: 33557078]
[40]
Hannan, P.C.T. Guidelines and recommendations for antimicrobial minimum inhibitory concentration (MIC) testing against veterinary mycoplasma species. Vet. Res., 2000, 31(4), 373-395.
[http://dx.doi.org/10.1051/vetres:2000100] [PMID: 10958240]
[41]
Wu, G.; Yang, Q.; Long, M.; Guo, L.; Li, B.; Meng, Y.; Zhang, A.; Wang, H.; Liu, S.; Zou, L. Evaluation of agar dilution and broth microdilution methods to determine the disinfectant susceptibility. J. Antibiot., 2015, 68(11), 661-665.
[http://dx.doi.org/10.1038/ja.2015.51] [PMID: 25944532]
[42]
Sakkiah, S.; Thangapandian, S.; Kim, Y.S.; Lee, K.W. Pharmacophore modeling and molecular dynamics simulation to find the potent leads for aurora kinase B. Bull. Korean Chem. Soc., 2012, 33(3), 869-880.
[http://dx.doi.org/10.5012/BKCS.2012.33.3.869]

© 2025 Bentham Science Publishers | Privacy Policy