Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Insight View on the Pharmacological Potential and Bio-active Components of Ginger

Author(s): Ayushi Sethiya, Pankaj Teli, Dinesh Kumar Agarwal and Shikha Agarwal*

Volume 21, Issue 12, 2024

Published on: 04 October, 2023

Page: [2195 - 2209] Pages: 15

DOI: 10.2174/1570180820666230807152019

Price: $65

Abstract

Ginger is a very renowned herbaceous plant that has been extensively used as a flavoring agent and herbal medicine for decades. It possesses a plethora of pharmacological properties, including antiinflammatory, anti-oxidant, antimicrobial, anti-diabetic, anti-tumor, anti-viral, anti-Alzheimer, analgesic, cardio-vascular, etc. In this review, a comprehensive summary of the pharmacological potentials of ginger and its bioactive components is described. Their mechanisms of action against different diseases and targets are also discussed, which can lay the foundation for their medical applications.

[1]
Prakash, B.; Thakur, M.; Singh, K.; Khedkar, R. Eds,; Functional and preservative properties of phytochemicals. phytochemicals: Extraction process, safety assessment, toxicological evaluations, and regulatory issues; Academic Press, 2020, pp. 341-361.
[2]
Sultanbawa, Y.; Sivakumar, D. Enhanced nutritional and phytochemical profiles of selected underutilized fruits, vegetables, and legumes. Curr. Opin. Food Sci., 2022, 46, 100853.
[http://dx.doi.org/10.1016/j.cofs.2022.100853]
[3]
Priya, S.; Satheeshkumar, P.K. Natural products from plants: Recent developments in phytochemicals, phytopharmaceuticals, and plant-based neutraceuticals as anticancer agents. In: Parkash, B.; (Eds.); Functional and Preservative Properties of Phytochemicals; Elseveir, 2020; pp. 145-163.
[4]
Prakash, B.; Kumar, A.; Singh, P.P.; Songachan, L.S. Antimicrobial and antioxidant properties of phytochemicals: Current status and future perspective. In: Parkash, B.; (Eds.); Functional and Preservative Properties of Phytochemicals; Elseveir, 2020; pp. 1-45.
[5]
Sajad, M.; Kumar, R.; Thakur, S.C. History in perspective: The prime pathological players and role of phytochemicals in Alzheimer’s disease. In: IBRO Neuroscience Reports; , 2022.
[6]
Faddladdeen, K.A. The possible protective and therapeutic effects of ginger and cinnamon on the testis and coda epididymis of streptozotocin-induced-diabetic rats: Histological and biochemical studies. Saudi J. Biol. Sci., 2022, 29(12), 103452.
[http://dx.doi.org/10.1016/j.sjbs.2022.103452] [PMID: 36164289]
[7]
Thongwong, P.; Wattanathorn, J.; Thukhammee, W.; Tiamkao, S. The potential role of the novel orodispersible film from rice polymer loaded with silkworm pupae hydrolysate and the combined extract of holy basil and ginger for the management of stroke with stress. Biomaterials, 2023, 299, 122175.
[http://dx.doi.org/10.1016/j.biomaterials.2023.122175] [PMID: 37262936]
[8]
Rao, T.; Tan, Z.; Peng, J.; Guo, Y.; Chen, Y.; Zhou, H.; Ouyang, D. The pharmacogenetics of natural products: A pharmacokinetic and pharmacodynamic perspective. Pharmacol. Res., 2019, 146, 104283.
[http://dx.doi.org/10.1016/j.phrs.2019.104283] [PMID: 31129178]
[9]
Tang, S.M.; Deng, X.T.; Zhou, J.; Li, Q.P.; Ge, X.X.; Miao, L. Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. Biomed. Pharmacother., 2020, 121, 109604.
[http://dx.doi.org/10.1016/j.biopha.2019.109604] [PMID: 31733570]
[10]
Ahmad, I.; Hoda, M. Attenuation of diabetic retinopathy and neuropathy by resveratrol: Review on its molecular mechanisms of action. Life Sci., 2020, 245, 117350.
[http://dx.doi.org/10.1016/j.lfs.2020.117350] [PMID: 31982401]
[11]
Al-Daihan, S.; Al-Faham, M.; Al-shawi, N.; Almayman, R.; Brnawi, A. zargar, S.; Bhat, R. Antibacterial activity and phytochemical screening of some medicinal plants commonly used in Saudi Arabia against selected pathogenic microorganisms. J. King Saud Univ. Sci., 2013, 25(2), 115-120.
[http://dx.doi.org/10.1016/j.jksus.2012.11.003]
[12]
Mao, Q.Q.; Xu, X.Y.; Cao, S.Y.; Gan, R.Y.; Corke, H.; Beta, T.; Li, H.B. Bioactive compounds and bioactivities of ginger (Zingiber Officinale Roscoe). Foods, 2019, 8(6), 185.
[http://dx.doi.org/10.3390/foods8060185] [PMID: 31151279]
[13]
Zhang, M.; Zhao, R.; Wang, D.; Wang, L.; Zhang, Q.; Wei, S.; Lu, F.; Peng, W.; Wu, C. Ginger (ZINGIBER OFFICINALE Rosc.) and its bioactive components are potential resources for health beneficial agents. Phytother. Res., 2021, 35(2), 711-742.
[http://dx.doi.org/10.1002/ptr.6858] [PMID: 32954562]
[14]
Ma, R.H.; Ni, Z.J.; Zhu, Y.Y.; Thakur, K.; Zhang, F.; Zhang, Y.Y.; Hu, F.; Zhang, J.G.; Wei, Z.J. A recent update on the multifaceted health benefits associated with ginger and its bioactive components. Food Funct., 2021, 12(2), 519-542.
[http://dx.doi.org/10.1039/D0FO02834G] [PMID: 33367423]
[15]
Rostamkhani, H.; Faghfouri, A.H.; Veisi, P.; Rahmani, A.; Noshadi, N.; Ghoreishi, Z. The protective antioxidant activity of ginger extracts (Zingiber Officinale) in acute kidney injury: A systematic review and meta-analysis of animal studies. J. Funct. Foods, 2022, 94, 105111.
[http://dx.doi.org/10.1016/j.jff.2022.105111]
[16]
Citronberg, J.; Bostick, R.; Ahearn, T.; Turgeon, D.K.; Ruffin, M.T.; Djuric, Z.; Sen, A.; Brenner, D.E.; Zick, S.M. Effects of ginger supplementation on cell-cycle biomarkers in the normal-appearing colonic mucosa of patients at increased risk for colorectal cancer: Results from a pilot, randomized, and controlled trial. Cancer Prev. Res., 2013, 6(4), 271-281.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0327] [PMID: 23303903]
[17]
Boonnop, R.; Meetam, P.; Siangjong, L.; Tuchinda, P.; Thongphasuk, P.; Soodvilai, S.; Soodvilai, S. Black ginger extract and its active compound, 5,7-dimethoxyflavone, increase intestinal drug absorption via efflux drug transporter inhibitions. Drug Metab. Pharmacokinet., 2023, 50, 100500.
[http://dx.doi.org/10.1016/j.dmpk.2023.100500] [PMID: 36948091]
[18]
Nile, S.H.; Park, S.W. Chromatographic analysis, antioxidant, anti-inflammatory, and xanthine oxidase inhibitory activities of ginger extracts and its reference compounds. Ind. Crops Prod., 2015, 70, 238-244.
[http://dx.doi.org/10.1016/j.indcrop.2015.03.033]
[19]
Suk, S.; Kwon, G.T.; Lee, E.; Jang, W.J.; Yang, H.; Kim, J.H.; Thimmegowda, N.R.; Chung, M.Y.; Kwon, J.Y.; Yang, S.; Kim, J.K.; Park, J.H.Y.; Lee, K.W. Gingerenone A, a polyphenol present in ginger, suppresses obesity and adipose tissue inflammation in high-fat diet-fed mice. Mol. Nutr. Food Res., 2017, 61(10), 1700139.
[http://dx.doi.org/10.1002/mnfr.201700139] [PMID: 28556482]
[20]
Vijendra Kumar, N.; Murthy, P.S.; Manjunatha, J.R.; Bettadaiah, B.K. Synthesis and quorum sensing inhibitory activity of key phenolic compounds of ginger and their derivatives. Food Chem., 2014, 159, 451-457.
[http://dx.doi.org/10.1016/j.foodchem.2014.03.039] [PMID: 24767081]
[21]
Wei, C.K.; Tsai, Y.H.; Korinek, M.; Hung, P.H.; El-Shazly, M.; Cheng, Y.B.; Wu, Y.C.; Hsieh, T.J.; Chang, F.R. 6-Paradol and 6-shogaol, the pungent compounds of ginger, promote glucose utilization in adipocytes and myotubes, and 6-paradol reduces blood glucose in high-fat diet-fed mice. Int. J. Mol. Sci., 2017, 18(1), 168.
[http://dx.doi.org/10.3390/ijms18010168] [PMID: 28106738]
[22]
Ho, S.C.; Chang, K.S.; Lin, C.C. Anti-neuroinflammatory capacity of fresh ginger is attributed mainly to 10-gingerol. Food Chem., 2013, 141(3), 3183-3191.
[http://dx.doi.org/10.1016/j.foodchem.2013.06.010] [PMID: 23871076]
[23]
Townsend, E.A.; Siviski, M.E.; Zhang, Y.; Xu, C.; Hoonjan, B.; Emala, C.W. Effects of ginger and its constituents on airway smooth muscle relaxation and calcium regulation. Am. J. Respir. Cell Mol. Biol., 2013, 48(2), 157-163.
[http://dx.doi.org/10.1165/rcmb.2012-0231OC] [PMID: 23065130]
[24]
Xu, C.; Jin, S.Q.; Jin, C.; Dai, Z.H.; Wu, Y.H.; He, G.L.; Ma, H.W.; Xu, C.Y.; Fang, W.L. Cedrol, a Ginger-derived sesquiterpineol, suppresses estrogen-deficient osteoporosis by intervening NFATc1 and reactive oxygen species. Int. Immunopharmacol., 2023, 117, 109893.
[http://dx.doi.org/10.1016/j.intimp.2023.109893] [PMID: 36842234]
[25]
Menon, V.; Elgharib, M.; El-awady, R.; Saleh, E. Ginger: From serving table to salient therapy. Food Biosci., 2021, 41, 100934.
[http://dx.doi.org/10.1016/j.fbio.2021.100934]
[26]
Stoner, G.D. Ginger: Is it ready for prime time? Cancer Prev. Res., 2013, 6(4), 257-262.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0055] [PMID: 23559451]
[27]
Prasad, S.; Tyagi, A.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. Gastroenterol. Res. Pract., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/142979] [PMID: 25838819]
[28]
Ji, K.; Fang, L.; Zhao, H.; Li, Q.; Shi, Y.; Xu, C.; Wang, Y.; Du, L.; Wang, J.; Liu, Q. Ginger oleoresin alleviated gamma-ray irradiation-induced reactive oxygen species via the Nrf2 protective response in human mesenchymal stem cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-12.
[http://dx.doi.org/10.1155/2017/1480294] [PMID: 29181121]
[29]
Schadich, E.; Hlaváč, J.; Volná, T.; Varanasi, L.; Hajdúch, M.; Džubák, P. Effects of ginger phenylpropanoids and quercetin on Nrf2-ARE pathway in human BJ fibroblasts and HaCaT keratinocytes. BioMed Res. Int., 2016, 2016, 1-6.
[http://dx.doi.org/10.1155/2016/2173275] [PMID: 26942188]
[30]
Yeh, H.; Chuang, C.; Chen, H.; Wan, C.; Chen, T.; Lin, L. Bioactive components analysis of two various gingers (Zingiber Officinale Roscoe) and antioxidant effect of ginger extracts. Lebensm. Wiss. Technol., 2014, 55(1), 329-334.
[http://dx.doi.org/10.1016/j.lwt.2013.08.003]
[31]
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci., 2017, 38(7), 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[32]
Li, S.; Li, S.K.; Gan, R.Y.; Song, F.L.; Kuang, L.; Li, H.B. Antioxidant capacities and total phenolic contents of infusions from 223 medicinal plants. Ind. Crops Prod., 2013, 51, 289-298.
[http://dx.doi.org/10.1016/j.indcrop.2013.09.017]
[33]
Abolaji, A.O.; Ojo, M.; Afolabi, T.T.; Arowoogun, M.D.; Nwawolor, D.; Farombi, E.O. Protective properties of 6-gingerol-rich fraction from Zingiber Officinale (Ginger) on chlorpyrifos-induced oxidative damage and inflammation in the brain, ovary and uterus of rats. Chem. Biol. Interact., 2017, 270, 15-23.
[http://dx.doi.org/10.1016/j.cbi.2017.03.017] [PMID: 28373059]
[34]
Li, Y.; Hong, Y.; Han, Y.; Wang, Y.; Xia, L. Chemical characterization and antioxidant activities comparison in fresh, dried, stir-frying and carbonized ginger. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2016, 1011, 223-232.
[http://dx.doi.org/10.1016/j.jchromb.2016.01.009] [PMID: 26799205]
[35]
Romero, A.; Forero, M.; Sequeda-Castañeda, L.G.; Grismaldo, A.; Iglesias, J.; Celis-Zambrano, C.A.; Schuler, I.; Morales, L. Effect of ginger extract on membrane potential changes and AKT activation on a peroxide-induced oxidative stress cell model. J. King Saud Univ. Sci., 2018, 30(2), 263-269.
[http://dx.doi.org/10.1016/j.jksus.2017.09.015]
[36]
Chen, H.; Fu, J.; Chen, H.; Hu, Y.; Soroka, D.N.; Prigge, J.R.; Schmidt, E.E.; Yan, F.; Major, M.B.; Chen, X.; Sang, S. Ginger compound [6]-shogaol and its cysteine-conjugated metabolite (M2) activate Nrf2 in colon epithelial cells in vitro and in vivo. Chem. Res. Toxicol., 2014, 27(9), 1575-1585.
[http://dx.doi.org/10.1021/tx500211x] [PMID: 25148906]
[37]
Peng, S.; Yao, J.; Liu, Y.; Duan, D.; Zhang, X.; Fang, J. Activation of Nrf2 target enzymes conferring protection against oxidative stress in PC12 cells by ginger principal constituent 6-shogaol. Food Funct., 2015, 6(8), 2813-2823.
[http://dx.doi.org/10.1039/C5FO00214A] [PMID: 26169810]
[38]
Saiah, W.; Halzoune, H.; Djaziri, R.; Tabani, K.; Koceir, E.A.; Omari, N. Antioxidant and gastroprotective actions of butanol fraction of Zingiber Officinale against diclofenac sodium-induced gastric damage in rats. J. Food Biochem., 2018, 42(1), e12456.
[http://dx.doi.org/10.1111/jfbc.12456]
[39]
Akinyemi, A.J.; Ademiluyi, A.O.; Oboh, G. Aqueous extracts of two varieties of ginger (Zingiber Officinale) inhibit angiotensin I-converting enzyme, iron(II), and sodium nitroprusside-induced lipid peroxidation in the rat heart in vitro. J. Med. Food, 2013, 16(7), 641-646.
[http://dx.doi.org/10.1089/jmf.2012.0022] [PMID: 23875904]
[40]
Hosseinzadeh, A.; Bahrampour Juybari, K.; Fatemi, M.J.; Kamarul, T.; Bagheri, A.; Tekiyehmaroof, N.; Sharifi, A.M. Protective effect of ginger (Zingiber Officinale Roscoe) extract against oxidative stress and mitochondrial apoptosis induced by interleukin-1 beta in cultured chondrocytes. Cells Tissues Organs, 2017, 204(5-6), 241-250.
[http://dx.doi.org/10.1159/000479789] [PMID: 28877520]
[41]
Malmir, S.; Ebrahimi, A.; Mahjoubi, F. Effect of ginger extracts on colorectal cancer HCT-116 cell line in the expression of MMP-2 and KRAS. Gene Rep., 2020, 21, 100824.
[http://dx.doi.org/10.1016/j.genrep.2020.100824]
[42]
Saha, A.; Blando, J.; Silver, E.; Beltran, L.; Sessler, J.; DiGiovanni, J. 6-Shogaol from dried ginger inhibits growth of prostate cancer cells both in vitro and in vivo through inhibition of STAT3 and NF-κB signaling. Cancer Prev. Res., 2014, 7(6), 627-638.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0420] [PMID: 24691500]
[43]
Tahir, A.A.; Sani, N.F.A.; Murad, N.A.; Makpol, S.; Ngah, W.Z.W.; Yusof, Y.A.M. Combined ginger extract & Gelam honey modulate Ras/ERK and PI3K/AKT pathway genes in colon cancer HT29 cells. Nutr. J., 2015, 14(1), 31.
[http://dx.doi.org/10.1186/s12937-015-0015-2] [PMID: 25889965]
[44]
Liu, C.M.; Kao, C.L.; Tseng, Y.T.; Lo, Y.C.; Chen, C.Y. Ginger phytochemicals inhibit cell growth and modulate drug resistance factors in docetaxel resistant prostate cancer cell. Molecules, 2017, 22(9), 1477.
[http://dx.doi.org/10.3390/molecules22091477] [PMID: 28872603]
[45]
Deol, P.K.; Kaur, I.P. Improving the therapeutic efficiency of ginger extract for treatment of colon cancer using a suitably designed multiparticulate system. J. Drug Target., 2013, 21(9), 855-865.
[http://dx.doi.org/10.3109/1061186X.2013.829076] [PMID: 23962278]
[46]
Jiang, Y.; Turgeon, D.K.; Wright, B.D.; Sidahmed, E.; Ruffin, M.T.; Brenner, D.E.; Sen, A.; Zick, S.M. Effect of ginger root on cyclooxygenase-1 and 15-hydroxyprostaglandin dehydrogenase expression in colonic mucosa of humans at normal and increased risk for colorectal cancer. Eur. J. Cancer Prev., 2013, 22(5), 455-460.
[http://dx.doi.org/10.1097/CEJ.0b013e32835c829b] [PMID: 23222413]
[47]
Brahmbhatt, M.; Gundala, S.R.; Asif, G.; Shamsi, S.A.; Aneja, R. Ginger phytochemicals exhibit synergy to inhibit prostate cancer cell proliferation. Nutr. Cancer, 2013, 65(2), 263-272.
[http://dx.doi.org/10.1080/01635581.2013.749925] [PMID: 23441614]
[48]
Gundala, S.R.; Mukkavilli, R.; Yang, C.; Yadav, P.; Tandon, V.; Vangala, S.; Prakash, S.; Aneja, R. Enterohepatic recirculation of bioactive ginger phytochemicals is associated with enhanced tumor growth-inhibitory activity of ginger extract. Carcinogenesis, 2014, 35(6), 1320-1329.
[http://dx.doi.org/10.1093/carcin/bgu011] [PMID: 24431413]
[49]
Zhang, F.; Zhang, J.G.; Qu, J.; Zhang, Q.; Prasad, C.; Wei, Z.J. Assessment of anti-cancerous potential of 6-gingerol (Tongling White Ginger) and its synergy with drugs on human cervical adenocarcinoma cells. Food Chem. Toxicol., 2017, 109(Pt 2), 910-922.
[http://dx.doi.org/10.1016/j.fct.2017.02.038] [PMID: 28249781]
[50]
Zhang, M.; Viennois, E.; Prasad, M.; Zhang, Y.; Wang, L.; Zhang, Z.; Han, M.K.; Xiao, B.; Xu, C.; Srinivasan, S.; Merlin, D. Edible ginger-derived nanoparticles: A novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials, 2016, 101, 321-340.
[http://dx.doi.org/10.1016/j.biomaterials.2016.06.018] [PMID: 27318094]
[51]
Akimoto, M.; Iizuka, M.; Kanematsu, R.; Yoshida, M.; Takenaga, K. Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS One, 2015, 10(5), e0126605.
[http://dx.doi.org/10.1371/journal.pone.0126605] [PMID: 25961833]
[52]
Bernard, M.M.; McConnery, J.R.; Hoskin, D.W. [10]-Gingerol, a major phenolic constituent of ginger root, induces cell cycle arrest and apoptosis in triple-negative breast cancer cells. Exp. Mol. Pathol., 2017, 102(2), 370-376.
[http://dx.doi.org/10.1016/j.yexmp.2017.03.006] [PMID: 28315687]
[53]
Li, C.L.; Ou, C.M.; Huang, C.C.; Wu, W.C.; Chen, Y.P.; Lin, T.E.; Ho, L.C.; Wang, C.W.; Shih, C.C.; Zhou, H.C.; Lee, Y.C.; Tzeng, W.F.; Chiou, T.J.; Chu, S.T.; Cang, J.; Chang, H.T. Carbon dots prepared from ginger exhibiting efficient inhibition of human hepatocellular carcinoma cells. J. Mater. Chem. B Mater. Biol. Med., 2014, 2(28), 4564-4571.
[http://dx.doi.org/10.1039/c4tb00216d] [PMID: 32261557]
[54]
Woźniak, M.; Makuch, S.; Winograd, K.; Wiśniewski, J.; Ziółkowski, P.; Agrawal, S. 6-Shogaol enhances the anticancer effect of 5-fluorouracil, oxaliplatin, and irinotecan via increase of apoptosis and autophagy in colon cancer cells in hypoxic/aglycemic conditions. BMC Complement. Med. Ther, 2020, 20(1), 141.
[http://dx.doi.org/10.1186/s12906-020-02913-8] [PMID: 32393373]
[55]
Warin, R.F.; Chen, H.; Soroka, D.N.; Zhu, Y.; Sang, S. Induction of lung cancer cell apoptosis through a p53 pathway by [6]-shogaol and its cysteine-conjugated metabolite M2. J. Agric. Food Chem., 2014, 62(6), 1352-1362.
[http://dx.doi.org/10.1021/jf405573e] [PMID: 24446736]
[56]
Morvaridzadeh, M.; Fazelian, S.; Agah, S.; Khazdouz, M.; Rahimlou, M.; Agh, F.; Potter, E.; Heshmati, S.; Heshmati, J. Effect of ginger (Zingiber Officinale) on inflammatory markers: A systematic review and meta-analysis of randomized controlled trials. Cytokine, 2020, 135, 155224.
[http://dx.doi.org/10.1016/j.cyto.2020.155224] [PMID: 32763761]
[57]
Liu, Y.; Deng, S.; Zhang, Z.; Gu, Y.; Xia, S.; Bao, X.; Cao, X.; Xu, Y. 6-Gingerol attenuates microglia-mediated neuroinflammation and ischemic brain injuries through Akt-mTOR-STAT3 signaling pathway. Eur. J. Pharmacol., 2020, 883, 173294.
[http://dx.doi.org/10.1016/j.ejphar.2020.173294] [PMID: 32681941]
[58]
Zahoor, A.; Yang, C.; Yang, Y.; Guo, Y.; Zhang, T.; Jiang, K.; Guo, S.; Deng, G. 6-Gingerol exerts anti-inflammatory effects and protective properties on LTA-induced mastitis. Phytomedicine, 2020, 76, 153248.
[http://dx.doi.org/10.1016/j.phymed.2020.153248] [PMID: 32531697]
[59]
Hsiang, C.Y.; Lo, H.Y.; Huang, H.C.; Li, C.C.; Wu, S.L.; Ho, T.Y. Ginger extract and zingerone ameliorated trinitrobenzene sulphonic acid-induced colitis in mice via modulation of nuclear factor-κB activity and interleukin-1β signalling pathway. Food Chem., 2013, 136(1), 170-177.
[http://dx.doi.org/10.1016/j.foodchem.2012.07.124] [PMID: 23017409]
[60]
Luettig, J.; Rosenthal, R.; Lee, I.F.M.; Krug, S.M.; Schulzke, J.D. The ginger component 6-shogaol prevents TNF-α-induced barrier loss via inhibition of PI3K/Akt and NF-κB signaling. Mol. Nutr. Food Res., 2016, 60(12), 2576-2586.
[http://dx.doi.org/10.1002/mnfr.201600274] [PMID: 27487982]
[61]
Zehsaz, F.; Farhangi, N.; Mirheidari, L. Clinical immunology The effect of Zingiber Officinale R. rhizomes (ginger) on plasma pro-inflammatory cytokine levels in well-trained male endurance runners. Cent. Eur. J. Immunol., 2014, 2(2), 174-180.
[http://dx.doi.org/10.5114/ceji.2014.43719] [PMID: 26155120]
[62]
Teng, Y.; Ren, Y.; Sayed, M.; Hu, X.; Lei, C.; Kumar, A.; Hutchins, E.; Mu, J.; Deng, Z.; Luo, C.; Sundaram, K.; Sriwastva, M.K.; Zhang, L.; Hsieh, M.; Reiman, R.; Haribabu, B.; Yan, J.; Jala, V.R.; Miller, D.M.; Van Keuren-Jensen, K.; Merchant, M.L.; McClain, C.J.; Park, J.W.; Egilmez, N.K.; Zhang, H.G. Plant-derived exosomal micrornas shape the gut microbiota. Cell Host Microbe, 2018, 24(5), 637-652.e8.
[http://dx.doi.org/10.1016/j.chom.2018.10.001] [PMID: 30449315]
[63]
Park, M.; Bae, J.; Lee, D.S. Antibacterial activity of [10]-gingerol and [12]-gingerol isolated from ginger rhizome against periodontal bacteria. Phytother. Res., 2008, 22(11), 1446-1449.
[http://dx.doi.org/10.1002/ptr.2473] [PMID: 18814211]
[64]
Teles, A.M.; dos Santos, B.A.; Ferreira, C.G.; Mouchreck, A.N.; da Silva Calabrese, K.; Abreu-Silva, A.L.; Almeida-Souza, F. Ginger (Zingiber Officinale) antimicrobial potential: A review. In: Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials; IntechOpen, 2019.
[http://dx.doi.org/10.5772/intechopen.89780]
[65]
Chakotiya, A.S.; Tanwar, A.; Narula, A.; Sharma, R.K. Zingiber Officinale: Its antibacterial activity on Pseudomonas aeruginosa and mode of action evaluated by flow cytometry. Microb. Pathog., 2017, 107, 254-260.
[http://dx.doi.org/10.1016/j.micpath.2017.03.029] [PMID: 28389345]
[66]
Kim, H.S.; Park, H.D. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14. PLoS One, 2013, 8(9), e76106.
[http://dx.doi.org/10.1371/journal.pone.0076106] [PMID: 24086697]
[67]
Rampogu, S.; Baek, A.; Gajula, R.G.; Zeb, A.; Bavi, R.S.; Kumar, R.; Kim, Y.; Kwon, Y.J.; Lee, K.W. Ginger (Zingiber Officinale) phytochemicals-gingerenone-A and shogaol inhibit SaHPPK: Molecular docking, molecular dynamics simulations and in vitro approaches. Ann. Clin. Microbiol. Antimicrob., 2018, 17(1), 16.
[http://dx.doi.org/10.1186/s12941-018-0266-9] [PMID: 29609660]
[68]
Yamamoto-Ribeiro, M.M.G.; Grespan, R.; Kohiyama, C.Y.; Ferreira, F.D.; Mossini, S.A.G.; Silva, E.L.; Abreu Filho, B.A.; Mikcha, J.M.G.; Machinski, Junior, M. Effect of Zingiber Officinale essential oil on Fusarium verticillioides and fumonisin production. Food Chem., 2013, 141(3), 3147-3152.
[http://dx.doi.org/10.1016/j.foodchem.2013.05.144] [PMID: 23871071]
[69]
Chang, J.S.; Wang, K.C.; Yeh, C.F.; Shieh, D.E.; Chiang, L.C. Fresh ginger (Zingiber Officinale) has anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines. J. Ethnopharmacol., 2013, 145(1), 146-151.
[http://dx.doi.org/10.1016/j.jep.2012.10.043] [PMID: 23123794]
[70]
Nerilo, S.B.; Rocha, G.H.O.; Tomoike, C.; Mossini, S.A.G.; Grespan, R.; Mikcha, J.M.G.; Machinski, M. Jr Antifungal properties and inhibitory effects upon aflatoxin production by Zingiber Officinale essential oil in Aspergillus flavus. Int. J. Food Sci. Technol., 2016, 51(2), 286-292.
[http://dx.doi.org/10.1111/ijfs.12950]
[71]
Sreeniwas Kumar, A.; Sinha, N. Cardiovascular disease in India: A 360 degree overview. Med. J. Armed Forces India, 2020, 76(1), 1-3.
[http://dx.doi.org/10.1016/j.mjafi.2019.12.005] [PMID: 32020960]
[72]
Akinyemi, A.J.; Thomé, G.R.; Morsch, V.M.; Bottari, N.B.; Baldissarelli, J.; de Oliveira, L.S.; Goularte, J.F.; Belló-Klein, A.; Oboh, G.; Schetinger, M.R.C. Dietary supplementation of ginger and turmeric rhizomes modulates platelets ectonucleotidase and adenosine deaminase activities in normotensive and hypertensive rats. Phytother. Res., 2016, 30(7), 1156-1163.
[http://dx.doi.org/10.1002/ptr.5621] [PMID: 27151061]
[73]
Roudsari, N.M.; Lashgari, N.A.; Momtaz, S.; Roufogalis, B.; Abdolghaffari, A.H.; Sahebkar, A. Ginger: A complementary approach for management of cardiovascular diseases. Biofactors, 2021, 47(6), 933-951.
[http://dx.doi.org/10.1002/biof.1777] [PMID: 34388275]
[74]
Khosravani, M.; Azarbayjani, M.A.; Abolmaesoomi, M.; Yusof, A.; Zainal Abidin, N.; Rahimi, E.; Feizolahi, F.; Akbari, M.; Seyedjalali, S.; Dehghan, F. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats. Eur. Rev. Med. Pharmaco., 2016, 20(8), 1617-1622.
[PMID: 27160137]
[75]
de las Heras, N.; Valero-Muñoz, M.; Martín-Fernández, B.; Ballesteros, S.; López-Farré, A.; Ruiz-Roso, B.; Lahera, V. Molecular factors involved in the hypolipidemic- and insulin-sensitizing effects of a ginger (Zingiber Officinale Roscoe) extract in rats fed a high-fat diet. Appl. Physiol. Nutr. Metab., 2017, 42(2), 209-215.
[http://dx.doi.org/10.1139/apnm-2016-0374] [PMID: 28125276]
[76]
Akinyemi, A.J.; Thome, G.R.; Morsch, V.M.; Stefanello, N.; Goularte, J.F.; Belló-Klein, A.; Oboh, G.; Schetinger, M.R.C. Effect of dietary supplementation of ginger and turmeric rhizomes on angiotensin-1 converting enzyme (ACE) and arginase activities in L-NAME induced hypertensive rats. J. Funct. Foods, 2015, 17, 792-801.
[http://dx.doi.org/10.1016/j.jff.2015.06.011]
[77]
Wu, H.C.; Horng, C.T.; Tsai, S.C.; Lee, Y.L.; Hsu, S.C.; Tsai, Y.J.; Tsai, F.J.; Chiang, J.H.; Kuo, D.H.; Yang, J.S. Relaxant and vasoprotective effects of ginger extracts on porcine coronary arteries. Int. J. Mol. Med., 2018, 41(4), 2420-2428.
[http://dx.doi.org/10.3892/ijmm.2018.3380] [PMID: 29328426]
[78]
Wang, Y.; Yu, H.; Zhang, X.; Feng, Q.; Guo, X.; Li, S.; Li, R.; Chu, D.; Ma, Y. Evaluation of daily ginger consumption for the prevention of chronic diseases in adults: A cross-sectional study. Nutrition, 2017, 36, 79-84.
[http://dx.doi.org/10.1016/j.nut.2016.05.009] [PMID: 28336112]
[79]
Zhang, L.; Lu, X.; Wang, J.; Li, P.; Li, H.; Wei, S.; Zhou, X.; Li, K.; Wang, L.; Wang, R.; Zhao, Y.; Xiao, X. Zingiberis rhizoma mediated enhancement of the pharmacological effect of aconiti lateralis radix praeparata against acute heart failure and the underlying biological mechanisms. Biomed. Pharmacother., 2017, 96(14), 246-255.
[http://dx.doi.org/10.1016/j.biopha.2017.09.145] [PMID: 28987949]
[80]
Lv, X.; Xu, T.; Wu, Q.; Zhou, Y.; Huang, G.; Xu, Y.; Zhong, G. 6-Gingerol activates PI3K/Akt and inhibits apoptosis to attenuate myocardial ischemia/reperfusion injury. Evid. Based Complement. Alternat. Med., 2018, 2018, 1-9.
[http://dx.doi.org/10.1155/2018/9024034] [PMID: 29743926]
[81]
Arcusa, R.; Villaño, D.; Marhuenda, J.; Cano, M.; Cerdà, B.; Zafrilla, P. Potential role of ginger (Zingiber Officinale roscoe) in the prevention of neurodegenerative diseases. Front. Nutr., 2022, 9, 809621.
[http://dx.doi.org/10.3389/fnut.2022.809621] [PMID: 35369082]
[82]
Mohd Sahardi, N.F.N.; Makpol, S. Ginger (Zingiber Officinale Roscoe) in the prevention of ageing and degenerative diseases: Review of current evidence. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/5054395] [PMID: 31531114]
[83]
Azam, F.; Amer, A.; Abulifa, A.; Elzwawi, M. Ginger components as new leads for the design and development of novel multi-targeted anti-Alzheimer’s drugs: A computational investigation. Drug Des. Devel. Ther., 2014, 8, 2045-2059.
[http://dx.doi.org/10.2147/DDDT.S67778] [PMID: 25364231]
[84]
Zeng, G.; Zhang, Z.; Lu, L.; Xiao, D.; Zong, S.; He, J. Protective effects of ginger root extract on Alzheimer disease-induced behavioral dysfunction in rats. Rejuvenation Res., 2013, 16(2), 124-133.
[http://dx.doi.org/10.1089/rej.2012.1389] [PMID: 23374025]
[85]
Lim, S.; Moon, M.; Oh, H.; Kim, H.G.; Kim, S.Y.; Oh, M.S. Ginger improves cognitive function via NGF-induced ERK/CREB activation in the hippocampus of the mouse. J. Nutr. Biochem., 2014, 25(10), 1058-1065.
[http://dx.doi.org/10.1016/j.jnutbio.2014.05.009] [PMID: 25049196]
[86]
Yao, J.; Ge, C.; Duan, D.; Zhang, B.; Cui, X.; Peng, S.; Liu, Y.; Fang, J. Activation of the phase II enzymes for neuroprotection by ginger active constituent 6-dehydrogingerdione in PC12 cells. J. Agric. Food Chem., 2014, 62(24), 5507-5518.
[http://dx.doi.org/10.1021/jf405553v] [PMID: 24869427]
[87]
Safaei, M.; Sundararajan, E.A.; Driss, M.; Boulila, W.; Shapi’i, A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med., 2021, 136, 104754.
[http://dx.doi.org/10.1016/j.compbiomed.2021.104754] [PMID: 34426171]
[88]
Ebrahimzadeh Attari, V.; Malek Mahdavi, A.; Javadivala, Z.; Mahluji, S.; Zununi Vahed, S.; Ostadrahimi, A. A systematic review of the anti-obesity and weight lowering effect of ginger (Zingiber Officinale Roscoe) and its mechanisms of action. Phytother. Res., 2018, 32(4), 577-585.
[http://dx.doi.org/10.1002/ptr.5986] [PMID: 29193411]
[89]
Wang, J.; Li, D.; Wang, P.; Hu, X.; Chen, F. Ginger prevents obesity through regulation of energy metabolism and activation of browning in high-fat diet-induced obese mice. J. Nutr. Biochem., 2019, 70, 105-115.
[http://dx.doi.org/10.1016/j.jnutbio.2019.05.001] [PMID: 31200315]
[90]
Seo, S.H.; Fang, F.; Kang, I. Ginger (Zingiber Officinale) attenuates obesity and adipose tissue remodeling in high-fat diet-fed C57BL/6 Mice. Int. J. Environ. Res. Public Health, 2021, 18(2), 631.
[http://dx.doi.org/10.3390/ijerph18020631] [PMID: 33451038]
[91]
Mahmoud, R.H.; Elnour, W.A. Comparative evaluation of the efficacy of ginger and orlistat on obesity management, pancreatic lipase and liver peroxisomal catalase enzyme in male albino rats. Eur. Rev. Med. Pharmacol. Sci., 2013, 17(1), 75-83.
[PMID: 23329526]
[92]
Ebrahimzadeh Attari, V.; Ostadrahimi, A.; Asghari Jafarabadi, M.; Mehralizadeh, S.; Mahluji, S. Changes of serum adipocytokines and body weight following Zingiber Officinale supplementation in obese women: A RCT. Eur. J. Nutr., 2016, 55(6), 2129-2136.
[http://dx.doi.org/10.1007/s00394-015-1027-6] [PMID: 26318445]
[93]
Miyamoto, M.; Matsuzaki, K.; Katakura, M.; Hara, T.; Tanabe, Y.; Shido, O. Oral intake of encapsulated dried ginger root powder hardly affects human thermoregulatory function, but appears to facilitate fat utilization. Int. J. Biometeorol., 2015, 59(10), 1461-1474.
[http://dx.doi.org/10.1007/s00484-015-0957-2] [PMID: 25875447]
[94]
Beiranvand, S.; Alvani, M.; Sorori, M. The effect of ginger on postoperative nausea and vomiting among patients undergoing upper and lower limb surgery: A randomized controlled trial. J. Perianesth. Nurs., 2022, 37(3), 365-368.
[http://dx.doi.org/10.1016/j.jopan.2021.05.006] [PMID: 35304019]
[95]
Lete, I.; Alluέ, J. The effectiveness of ginger in the prevention of nausea and vomiting during pregnancy and chemotherapy. Integr. Med. Insights, 2016, 11, IMI.S36273.
[http://dx.doi.org/10.4137/IMI.S36273] [PMID: 27053918]
[96]
Marx, W.; McCarthy, A.; Ried, K.; McKavanagh, D.; Vitetta, L.; Sali, A.; Lohning, A.; Isenring, E. The effect of a standardized ginger extract on chemotherapy-induced nausea-related quality of life in patients undergoing moderately or highly emetogenic chemotherapy: A double blind, randomized, placebo controlled trial. Nutrients, 2017, 9(8), 867.
[http://dx.doi.org/10.3390/nu9080867] [PMID: 28805667]
[97]
Bossi, P.; Cortinovis, D.; Fatigoni, S.; Cossu Rocca, M.; Fabi, A.; Seminara, P.; Ripamonti, C.; Alfieri, S.; Granata, R.; Bergamini, C.; Agustoni, F.; Bidoli, P.; Nolè, F.; Pessi, M.A.; Macchi, F.; Michellini, L.; Montanaro, F.; Roila, F. A randomized, double-blind, placebo-controlled, multicenter study of a ginger extract in the management of chemotherapy-induced nausea and vomiting (CINV) in patients receiving high-dose cisplatin. Ann. Oncol., 2017, 28(10), 2547-2551.
[http://dx.doi.org/10.1093/annonc/mdx315] [PMID: 28666335]
[98]
Jin, Z.; Lee, G.; Kim, S.; Park, C.S.; Park, Y.S.; Jin, Y.H. Ginger and its pungent constituents non-competitively inhibit serotonin currents on visceral afferent neurons. Korean J. Physiol. Pharmacol., 2014, 18(2), 149-153.
[http://dx.doi.org/10.4196/kjpp.2014.18.2.149] [PMID: 24757377]
[99]
Kalava, A.; Darji, S.J.; Kalstein, A.; Yarmush, J.M. SchianodiCola, J.; Weinberg, J. Efficacy of ginger on intraoperative and postoperative nausea and vomiting in elective cesarean section patients. Eur. J. Obstet. Gynecol. Reprod. Biol., 2013, 169(2), 184-188.
[http://dx.doi.org/10.1016/j.ejogrb.2013.02.014] [PMID: 23510951]
[100]
Dabaghzadeh, F.; Khalili, H.; Dashti-Khavidaki, S.; Abbasian, L.; Moeinifard, A. Ginger for prevention of antiretroviral-induced nausea and vomiting: A randomized clinical trial. Expert Opin. Drug Saf., 2014, 13(7), 859-866.
[http://dx.doi.org/10.1517/14740338.2014.914170] [PMID: 24820858]
[101]
Emrani, Z.; Shojaei, E.; Khalili, H. Ginger for prevention of antituberculosis-induced gastrointestinal adverse reactions including hepatotoxicity: A randomized pilot clinical trial. Phytother. Res., 2016, 30(6), 1003-1009.
[http://dx.doi.org/10.1002/ptr.5607] [PMID: 26948519]
[102]
Daily, J.W.; Yang, M.; Kim, D.S.; Park, S. Efficacy of ginger for treating Type 2 diabetes: A systematic review and meta-analysis of randomized clinical trials. Journal of Ethnic Foods, 2015, 2(1), 36-43.
[http://dx.doi.org/10.1016/j.jef.2015.02.007]
[103]
Otunola, G.A.; Afolayan, A.J. A review of the antidiabetic activities of ginger. In: Ginger Cultivation and Its Antimicrobial and Pharmacological Potentials; Intech Open, 2019.
[http://dx.doi.org/10.5772/intechopen.88899]
[104]
Shidfar, F.; Rajab, A.; Rahideh, T.; Khandouzi, N.; Hosseini, S.; Shidfar, S. The effect of ginger (Zingiber Officinale) on glycemic markers in patients with type 2 diabetes. J. Complement. Integr. Med., 2015, 12(2), 165-170.
[http://dx.doi.org/10.1515/jcim-2014-0021] [PMID: 25719344]
[105]
Zhu, Y.; Zhao, Y.; Wang, P.; Ahmedna, M.; Sang, S. Bioactive ginger constituents alleviate protein glycation by trapping methylglyoxal. Chem. Res. Toxicol., 2015, 28(9), 1842-1849.
[http://dx.doi.org/10.1021/acs.chemrestox.5b00293] [PMID: 26247545]
[106]
Sampath, C.; Rashid, M.R.; Sang, S.; Ahmedna, M. Specific bioactive compounds in ginger and apple alleviate hyperglycemia in mice with high fat diet-induced obesity via Nrf2 mediated pathway. Food Chem., 2017, 226, 79-88.
[http://dx.doi.org/10.1016/j.foodchem.2017.01.056] [PMID: 28254022]
[107]
Samad, M.B.; Mohsin, M.N.A.B.; Razu, B.A.; Hossain, M.T.; Mahzabeen, S.; Unnoor, N.; Muna, I.A.; Akhter, F.; Kabir, A.U.; Hannan, J.M.A. [6]-Gingerol, from Zingiber Officinale, potentiates GLP-1 mediated glucose-stimulated insulin secretion pathway in pancreatic β-cells and increases RAB8/RAB10-regulated membrane presentation of GLUT4 transporters in skeletal muscle to improve hyperglycemia in Leprdb/db type 2 diabetic mice. BMC Complement. Altern. Med., 2017, 17(1), 395.
[http://dx.doi.org/10.1186/s12906-017-1903-0] [PMID: 28793909]
[108]
Arablou, T.; Aryaeian, N.; Valizadeh, M.; Sharifi, F.; Hosseini, A.; Djalali, M. The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int. J. Food Sci. Nutr., 2014, 65(4), 515-520.
[http://dx.doi.org/10.3109/09637486.2014.880671] [PMID: 24490949]
[109]
Mahluji, S.; Attari, V.E.; Mobasseri, M.; Payahoo, L.; Ostadrahimi, A.; Golzari, S.E.J. Effects of ginger (Zingiber Officinale) on plasma glucose level, HbA1c and insulin sensitivity in type 2 diabetic patients. Int. J. Food Sci. Nutr., 2013, 64(6), 682-686.
[http://dx.doi.org/10.3109/09637486.2013.775223] [PMID: 23496212]
[110]
Li, Y.; Tran, V.H.; Kota, B.P.; Nammi, S.; Duke, C.C.; Roufogalis, B.D. Preventative effect of Zingiber Officinale on insulin resistance in a high-fat high-carbohydrate diet-fed rat model and its mechanism of action. Basic Clin. Pharmacol. Toxicol., 2014, 115(2), 209-215.
[http://dx.doi.org/10.1111/bcpt.12196] [PMID: 24428842]
[111]
Vahdat Shariatpanahi, Z.; Mokhtari, M.; Taleban, F.A.; Alavi, F.; Salehi Surmaghi, M.H.; Mehrabi, Y.; Shahbazi, S. Effect of enteral feeding with ginger extract in acute respiratory distress syndrome. J. Crit. Care, 2013, 28(2), 217.e1-217.e6.
[http://dx.doi.org/10.1016/j.jcrc.2012.04.017] [PMID: 22884532]
[112]
Townsend, E.A.; Zhang, Y.; Xu, C.; Wakita, R.; Emala, C.W. Active components of ginger potentiate β-agonist-induced relaxation of airway smooth muscle by modulating cytoskeletal regulatory proteins. Am. J. Respir. Cell Mol. Biol., 2014, 50(1), 115-124.
[http://dx.doi.org/10.1165/rcmb.2013-0133OC] [PMID: 23962082]
[113]
Mangprayool, T.; Kupittayanant, S.; Chudapongse, N. Participation of citral in the bronchodilatory effect of ginger oil and possible mechanism of action. Fitoterapia, 2013, 89, 68-73.
[http://dx.doi.org/10.1016/j.fitote.2013.05.012] [PMID: 23685048]
[114]
Khan, A.M.; Shahzad, M.; Raza Asim, M.B.; Imran, M.; Shabbir, A. Zingiber Officinale ameliorates allergic asthma via suppression of Th2-mediated immune response. Pharm. Biol., 2015, 53(3), 359-367.
[http://dx.doi.org/10.3109/13880209.2014.920396] [PMID: 25420680]
[115]
Çifci, A.; Tayman, C.; Yakut, H.I.; Halil, H.; Çakır, E.; Çakır, U.; Aydemir, S. Ginger (Zingiber Officinale) prevents severe damage to the lungs due to hyperoxia and inflammation. Turk. J. Med. Sci., 2018, 48(4), 892-900.
[http://dx.doi.org/10.3906/sag-1803-223] [PMID: 30121057]
[116]
Kashefi, F.; Khajehei, M.; Alavinia, M.; Golmakani, E.; Asili, J. Effect of ginger (Zingiber Officinale) on heavy menstrual bleeding: A placebo-controlled, randomized clinical trial. Phytother. Res., 2015, 29(1), 114-119.
[http://dx.doi.org/10.1002/ptr.5235] [PMID: 25298352]
[117]
Atashpour, S.; Kargar Jahromi, H.; Kargar Jahromi, Z.; Maleknasab, M. Comparison of the effects of Ginger extract with clomiphene citrate on sex hormones in rats with polycystic ovarian syndrome. Int. J. Reprod. Biomed., 2017, 15(9), 561-568.
[http://dx.doi.org/10.29252/ijrm.15.9.561] [PMID: 29662964]
[118]
Shah, M.Z.; Shrivastava, V.K.; Mir, M.A. Ginger extract ameliorates endocrine-metabolic disturbances in letrozole-induced PCOS mice model by altering androgen-adiponectin status. Obes. Med., 2023, 39, 100485.
[http://dx.doi.org/10.1016/j.obmed.2023.100485]
[119]
Maleki, H.; Azadi, H.; Yousefpoor, Y.; Doostan, M.; Doostan, M.; Farzaei, M.H. Encapsulation of Ginger extract in nanoemulsions: Preparation, characterization and in vivo evaluation in Rheumatoid Arthritis. J. Pharm. Sci., 2023, 112(6), 1687-1697.
[http://dx.doi.org/10.1016/j.xphs.2023.02.003] [PMID: 36773928]
[120]
Sadeghi, S.; Esmaeili, A.; Zarrabi, A. Dextran-coated iron oxide nanoparticles in combination with ginger extract without NGF promote neurite outgrowth and PC12 cell branching. Environ. Res., 2023, 232, 116302.
[http://dx.doi.org/10.1016/j.envres.2023.116302] [PMID: 37286125]
[121]
Teschke, R.; Xuan, T. Viewpoint: A contributory role of shell ginger (Alpinia zerumbet) for human longevity in Okinawa, Japan? Nutrients, 2018, 10(2), 166.
[http://dx.doi.org/10.3390/nu10020166] [PMID: 29385084]
[122]
Squinca, P.; Berglund, L.; Hanna, K.; Rakar, J.; Junker, J.; Khalaf, H.; Farinas, C.S.; Oksman, K. Multifunctional ginger nanofiber hydrogels with tunable absorption: The potential for advanced wound dressing applications. Biomacromolecules, 2021, 22(8), 3202-3215.
[http://dx.doi.org/10.1021/acs.biomac.1c00215] [PMID: 34254779]
[123]
Ahmed Ismail, K.; El Askary, A.; Farea, M.O.; Awwad, N.S.; Ibrahium, H.A.; Eid Moustapha, M.; Menazea, A.A. Perspectives on composite films of chitosan-based natural products (Ginger, Curcumin, and Cinnamon) as biomaterials for wound dressing. Arab. J. Chem., 2022, 15(4), 103716.
[http://dx.doi.org/10.1016/j.arabjc.2022.103716]
[124]
Ibrar, M.; Ayub, Y.; Nazir, R.; Irshad, M.; Hussain, N.; Saleem, Y.; Ahmad, M. Garlic and ginger essential oil-based neomycin nano-emulsions as effective and accelerated treatment for skin wounds’ healing and inflammation: In-vivo and in-vitro studies. Saudi Pharm. J., 2022, 30(12), 1700-1709.
[http://dx.doi.org/10.1016/j.jsps.2022.09.015] [PMID: 36601499]
[125]
Li, J.; Fu, W.; Zhang, X.; Zhang, Q.; Ma, D.; Wang, Y.; Qian, W.; Zhu, D. Green preparation of ginger-derived carbon dots accelerates wound healing. Carbon, 2023, 208, 208-215.
[http://dx.doi.org/10.1016/j.carbon.2023.03.039]
[126]
Shaukat, M.N.; Palmeri, R.; Restuccia, C.; Parafati, L.; Fallico, B. Glycerol ginger extract addition to edible coating formulation for preventing oxidation and fungal spoilage of stored walnuts. Food Biosci., 2023, 52, 102420.
[http://dx.doi.org/10.1016/j.fbio.2023.102420]
[127]
Yücel, Ç.; Karatoprak, G.Ş.; Açıkara, Ö.B.; Akkol, E.K.; Barak, T.H.; Sobarzo-Sánchez, E.; Aschner, M.; Shirooie, S. Immunomodulatory and anti-inflammatory therapeutic potential of gingerols and their nanoformulations. Front. Pharmacol., 2022, 13, 902551.
[http://dx.doi.org/10.3389/fphar.2022.902551] [PMID: 36133811]
[128]
Mao, Y.; Han, M.; Chen, C.; Wang, X.; Han, J.; Gao, Y.; Wang, S. A biomimetic nanocomposite made of a ginger-derived exosome and an inorganic framework for high-performance delivery of oral antibodies. Nanoscale, 2021, 13(47), 20157-20169.
[http://dx.doi.org/10.1039/D1NR06015E] [PMID: 34846415]

© 2024 Bentham Science Publishers | Privacy Policy