Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Editorial

CD44 as the Target Site for Hyaluronic Acid in Favor of Colitis Management

Author(s): Amandeep Singh*, Akshita Arora and Okesanya Olalekan John

Volume 21, Issue 12, 2024

Published on: 22 August, 2023

Page: [2189 - 2194] Pages: 6

DOI: 10.2174/1570180820666230511155747

Price: $65

Next »
[1]
Singh, A.; Kaur, K.; Mandal, U.K.; Narang, R.K. Nanoparticles as budding trends in colon drug delivery for the management of ulcerative colitis. Curr. Nanosci., 2020, 10(3), 225-247.
[http://dx.doi.org/10.2174/2468187310999200621200615]
[2]
Singh, A.; Mandal, U.K.; Narang, R.K. Development and characterization of enteric coated pectin pellets containing mesalamine and Saccharomyces boulardii for specific inflamed colon: In vitro and in vivo evaluation. J. Drug Deliv. Sci. Technol., 2021, 62, 102393.
[http://dx.doi.org/10.1016/j.jddst.2021.102393]
[3]
Cristofori, F.; Dargenio, V.N.; Dargenio, C.; Miniello, V.L.; Barone, M.; Francavilla, R. Anti-inflammatory and immunomodulatory effects of probiotics in gut inflammation: A door to the body. Front. Immunol., 2021, 12, 578386.
[http://dx.doi.org/10.3389/fimmu.2021.578386] [PMID: 33717063]
[4]
Yaghobi, Z.; Movassaghpour, A.; Talebi, M.; Abdoli Shadbad, M.; Hajiasgharzadeh, K.; Pourvahdani, S.; Baradaran, B. The role of CD44 in cancer chemoresistance: A concise review. Eur. J. Pharmacol., 2021, 903, 174147.
[http://dx.doi.org/10.1016/j.ejphar.2021.174147] [PMID: 33961871]
[5]
Weng, X.; Maxwell-Warburton, S.; Hasib, A.; Ma, L.; Kang, L. The membrane receptor CD44: Novel insights into metabolism. Trends Endocrinol. Metab., 2022, 33(5), 318-332.
[http://dx.doi.org/10.1016/j.tem.2022.02.002] [PMID: 35249813]
[6]
Karbownik, M.S.; Nowak, J.Z. Hyaluronan: Towards novel anti-cancer therapeutics. Pharmacol. Rep., 2013, 65(5), 1056-1074.
[http://dx.doi.org/10.1016/S1734-1140(13)71465-8] [PMID: 24399703]
[7]
Naor, D. interaction between hyaluronic acid and its receptors (CD44, RHAMM) regulates the activity of inflammation and cancer. Front. Immunol., 2016, 7, 39.
[http://dx.doi.org/10.3389/fimmu.2016.00039] [PMID: 26904028]
[8]
Misra, S.; Hascall, V.C.; Markwald, R.R.; Ghatak, S. Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer. Front. Immunol., 2015, 6, 201.
[http://dx.doi.org/10.3389/fimmu.2015.00201] [PMID: 25999946]
[9]
Bayer, I.S. Hyaluronic acid and controlled release: A review. Molecules, 2020, 25(11), 2649.
[http://dx.doi.org/10.3390/molecules25112649] [PMID: 32517278]
[10]
Garantziotis, S.; Savani, R.C. Hyaluronan biology: A complex balancing act of structure, function, location and context. Matrix Biol., 2019, 78-79, 1-10.
[http://dx.doi.org/10.1016/j.matbio.2019.02.002] [PMID: 30802498]
[11]
Zhang, J.; Zhao, Y.; Hou, T.; Zeng, H.; Kalambhe, D.; Wang, B.; Shen, X.; Huang, Y. Macrophage-based nanotherapeutic strategies in ulcerative colitis. J. Control. Release, 2020, 320, 363-380.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.047] [PMID: 32001299]
[12]
Tavianatou, A.G.; Caon, I.; Franchi, M.; Piperigkou, Z.; Galesso, D.; Karamanos, N.K. Hyaluronan: Molecular size‐dependent signaling and biological functions in inflammation and cancer. FEBS J., 2019, 286(15), 2883-2908.
[http://dx.doi.org/10.1111/febs.14777] [PMID: 30724463]
[13]
Carvalho, A.M.; Soares da Costa, D.; Paulo, P.M.R.; Reis, R.L.; Pashkuleva, I. Co-localization and crosstalk between CD44 and RHAMM depend on hyaluronan presentation. Acta Biomater., 2021, 119, 114-124.
[http://dx.doi.org/10.1016/j.actbio.2020.10.024] [PMID: 33091625]
[14]
Spinelli, F.M.; Vitale, D.L.; Demarchi, G.; Cristina, C.; Alaniz, L. The immunological effect of hyaluronan in tumor angiogenesis. Clin. Transl. Immunology, 2015, 4(12), e52.
[http://dx.doi.org/10.1038/cti.2015.35] [PMID: 26719798]
[15]
Simpson, M.; Schaefer, L.; Hascall, V.; Esko, J.D. Hyaluronan.Essentials of Glycobiology; Cold Spring Harbor Laboratory Press: New York, 2022.
[16]
Mouw, J.K.; Ou, G.; Weaver, V.M. Extracellular matrix assembly: A multiscale deconstruction. Nat. Rev. Mol. Cell Biol., 2014, 15(12), 771-785.
[http://dx.doi.org/10.1038/nrm3902] [PMID: 25370693]
[17]
Kaul, A.; Short, W.D.; Wang, X.; Keswani, S.G. Hyaluronidases in human diseases. Int. J. Mol. Sci., 2021, 22(6), 3204.
[http://dx.doi.org/10.3390/ijms22063204] [PMID: 33809827]
[18]
Pallio, G.; Bitto, A.; Ieni, A.; Irrera, N.; Mannino, F.; Pallio, S.; Altavilla, D.; Squadrito, F.; Scarpignato, C.; Minutoli, L. Combined treatment with polynucleotides and hyaluronic acid improves tissue repair in experimental colitis. Biomedicines, 2020, 8(10), 438.
[http://dx.doi.org/10.3390/biomedicines8100438] [PMID: 33092298]
[19]
Gao, Y.; Zou, J.; Chen, B.; Cao, Y.; Hu, D.; Zhang, Y.; Zhao, X.; Wen, J.; Liu, K.; Wang, K. Hyaluronic acid/serotonin cerium dioxide nanomedicine for targeted treatment of ulcerative colitis. Biomater. Sci., 2022.
[PMID: 36484291]
[20]
Luo, R.; Lin, M.; Fu, C.; Zhang, J.; Chen, Q.; Zhang, C.; Shi, J.; Pu, X.; Dong, L.; Xu, H.; Ye, N.; Sun, J.; Lin, D.; Deng, B.; McDowell, A.; Fu, S.; Gao, F. Calcium pectinate and hyaluronic acid modified lactoferrin nanoparticles loaded rhein with dual-targeting for ulcerative colitis treatment. Carbohydr. Polym., 2021, 263, 117998.
[http://dx.doi.org/10.1016/j.carbpol.2021.117998] [PMID: 33858583]
[21]
Nasr, M.; Cavalu, S.; Saber, S.; Youssef, M.E.; Abdelhamid, A.M.; Elagamy, H.I.; Kamal, I.; Gaafar, A.G.A.; El-Ahwany, E.; Amin, N.A.; Girgis, S.; El-Sandarosy, R.; Mahmoud, F.; Rizk, H.; Mansour, M.; Hasaballah, A.; El-Rafi, A.A.; El-Azez, R.A.; Essam, M.; Mohamed, D.; Essam, N.; Mohammed, O.A. Canagliflozin-loaded chitosan-hyaluronic acid microspheres modulate AMPK/NF-κB/NLRP3 axis: A new paradigm in the rectal therapy of ulcerative colitis. Biomed. Pharmacother., 2022, 153, 113409.
[http://dx.doi.org/10.1016/j.biopha.2022.113409] [PMID: 36076534]
[22]
Zhang, S.; Kang, L.; Hu, S.; Hu, J.; Fu, Y.; Hu, Y.; Yang, X. Carboxymethyl chitosan microspheres loaded hyaluronic acid/gelatin hydrogels for controlled drug delivery and the treatment of inflammatory bowel disease. Int. J. Biol. Macromol., 2021, 167, 1598-1612.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.11.117] [PMID: 33220374]
[23]
Xu, J.; Chu, T.; Yu, T.; Li, N.; Wang, C.; Li, C.; Zhang, Y.; Meng, H.; Nie, G. Design of Diselenide-Bridged hyaluronic acid nano-antioxidant for Efficient ROS scavenging to relieve colitis. ACS Nano, 2022, 16(8), 13037-13048.
[http://dx.doi.org/10.1021/acsnano.2c05558] [PMID: 35861614]
[24]
Huang, L.; Wang, J.; Kong, L.; Wang, X.; Li, Q.; Zhang, L.; Shi, J.; Duan, J.; Mu, H. ROS-responsive hyaluronic acid hydrogel for targeted delivery of probiotics to relieve colitis. Int. J. Biol. Macromol., 2022, 222(Pt A), 1476-1486.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.09.247] [PMID: 36195227]
[25]
Lv, F.; Zhang, Y.; Peng, Q.; Zhao, X.; Hu, D.; Wen, J.; Liu, K.; Li, R.; Wang, K.; Sun, J. Apigenin-Mn(II) loaded hyaluronic acid nanoparticles for ulcerative colitis therapy in mice. Front Chem., 2022, 10, 969962.
[http://dx.doi.org/10.3389/fchem.2022.969962] [PMID: 35936086]
[26]
Jhundoo, H.D.; Siefen, T.; Liang, A.; Schmidt, C.; Lokhnauth, J.; Moulari, B.; Béduneau, A.; Pellequer, Y.; Larsen, C.C.; Lamprecht, A. Hyaluronic acid increases anti-inflammatory efficacy of rectal 5-Amino salicylic acid administration in a murine colitis model. Biomol. Ther., 2021, 29(5), 536-544.
[http://dx.doi.org/10.4062/biomolther.2020.227] [PMID: 34059563]
[27]
Nishiguchi, A.; Taguchi, T. Oligoethyleneimine‐Conjugated hyaluronic acid modulates inflammatory responses and enhances therapeutic efficacy for ulcerative colitis. Adv. Funct. Mater., 2021, 31(30), 2100548.
[http://dx.doi.org/10.1002/adfm.202100548]
[28]
Wei, W.; Zhang, Y.; Li, R.; Cao, Y.; Yan, X.; Ma, Y.; Zhang, Y.; Yang, M.; Zhang, M. Oral delivery of pterostilbene by L-Arginine-Mediated “Nano-Bomb” carrier for the treatment of ulcerative colitis. Int. J. Nanomedicine, 2022, 17, 603-616.
[http://dx.doi.org/10.2147/IJN.S347506] [PMID: 35177902]
[29]
Xiao, B.; Xu, Z.; Viennois, E.; Zhang, Y.; Zhang, Z.; Zhang, M.; Han, M.K.; Kang, Y.; Merlin, D. Orally targeted delivery of tripeptide KPV via hyaluronic acid-functionalized nanoparticles efficiently alleviates ulcerative colitis. Mol. Ther., 2017, 25(7), 1628-1640.
[http://dx.doi.org/10.1016/j.ymthe.2016.11.020] [PMID: 28143741]

© 2025 Bentham Science Publishers | Privacy Policy