Generic placeholder image

Current Indian Science

Editor-in-Chief

ISSN (Print): 2210-299X
ISSN (Online): 2210-3007

Research Article

Synthesis of New Zirconium (IV) Schiff-base Complexes: Spectral, Theoretical, and Molecular Docking Studies

Author(s): Naveen Dhingra, S. Khaturia, VS Solanki and Har Lal Singh*

Volume 1, 2023

Published on: 06 September, 2023

Article ID: e210723219005 Pages: 10

DOI: 10.2174/2210299X01666230721153433

Price: $

Abstract

Background: The development of the discipline of coordination chemistry owes a great deal to the use of Schiff-base metal chelates. Both Schiff base ligands and metal complexes are of interest due to their potential pharmacological effects. Schiff base derivatives have an extensive range of biological effects, including antitumor, antifungal, antibacterial, anticonvulsant, and antiviral properties.

Objective: This study aimed to study the inorganic compound-based metallodrugs that have recently come into existence to provide an effective mechanism for medications that depend on the metal used and its characteristics. An effective platform for diverse pharmacological and therapeutic uses can be found in medicinal complex substances.

Methods: The bi-molar reactions of zirconium tetrachloride with bidentate ligands were carried out in dry THF and were characterized by IR, UV-Visible, NMR and C, H, N, S analysis. The DFT method was used to investigate the molecular stability and bond strengths. Gaussian 09 and MolDock were used to optimise the geometry and to calculate the binding energy of all the complexes, respectively.

Results: The analysis of the data revealed that the Schiff base, which has bivalent ligands (NS), was coordinated to zirconium via nitrogen and sulfur atoms. The optimum values for the structural parameters were calculated by density functional theory. Compound 5 showed the highest MolDock Score (-123.47 kcal/ mol) and H-bond interaction with active amino acids.

Conclusion: The spectroscopic result indicates that the zirconium compounds were all non-electrolyte monomers with deformed octahedral structures. Compound 5 was shown to be the most active and effective of the bunch by both Gaussian software calculations and molecular docking study.

[1]
Raczuk, E.; Dmochowska, B.; Samaszko-Fiertek, J.; Madaj, J. Different schiff bases—structure, importance and classification. Molecules, 2022, 27(3), 787.
[http://dx.doi.org/10.3390/molecules27030787] [PMID: 35164049]
[2]
Mohamed, G.G. Synthesis, characterization and biological activity of bis(phenylimine) Schiff base ligands and their metal complexes. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2006, 64(1), 188-195.
[http://dx.doi.org/10.1016/j.saa.2005.05.044] [PMID: 16574474]
[3]
Chandra, S.; Jain, D.; Sharma, A.K.; Sharma, P. Coordination modes of a schiff base pentadentate derivative of 4-aminoantipyrine with cobalt(II), nickel(II) and copper(II) metal ions: Synthesis, spectroscopic and antimicrobial studies. Molecules, 2009, 14(1), 174-190.
[http://dx.doi.org/10.3390/molecules14010174] [PMID: 19127246]
[4]
Golcu, A.; Tumer, M.; Demirelli, H.; Wheatley, R.A. Cd(II) and Cu(II) complexes of polydentate Schiff base ligands: Synthesis, characterization, properties and biological activity. Inorg. Chim. Acta, 2005, 358(6), 1785-1797.
[http://dx.doi.org/10.1016/j.ica.2004.11.026]
[5]
Sinha, D.; Tiwari, A.K.; Singh, S.; Shukla, G.; Mishra, P.; Chandra, H.; Mishra, A.K. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur. J. Med. Chem., 2008, 43(1), 160-165.
[http://dx.doi.org/10.1016/j.ejmech.2007.03.022] [PMID: 17532543]
[6]
Ünaleroğlu, C.; Temelli, B.; Hökelek, T. Conformational and structural analysis of N-N′-bis (4-methoxybenzylidene) ethylenediamine. J. Mol. Struct., 2001, 570(1-3), 91-95.
[http://dx.doi.org/10.1016/S0022-2860(01)00469-0]
[7]
Patil, S.; Jadhav, S.D.; Shinde, S.K. CES as an efficient natural catalyst for synthesis of schiff bases under solvent-free conditions: An innovative green approach. Org. Chem. Int., 2012, 2012, 1-5.
[http://dx.doi.org/10.1155/2012/153159]
[8]
Sakhare, D.T.; Chondhekar, T.K.; Shankarwar, S.G.; Shankarwar, A.G. Synthesis, characterization of some transition metal complexes of bidentate schiff base and their antifungal and antimicrobial studies. Adv. Appl. Sci. Res., 2015, 6, 10-16.
[9]
Alisher, K.K.; Khamza, T.S.; Ikbol, Y.S. Quantum-chemical study of geometric and energy characteristics of some bases of shiff gossipol. Progress in Chemical and Biochemical Research, 2019, 2(1), 1-5.
[http://dx.doi.org/10.33945/SAMI/PCBR.2019.2.15]
[10]
Abraham, K.G.; Lokhande, M.V.; Bhusare, S. Synthesis and characterization of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) complexes with 4-{(E)-[(2-chlorophenyl)imino]methyl} benzene-1,2-diamine. Biol. Phy. Sci, 2011, 2, 137.
[11]
Nagajothi, A.; Kiruthika, A.; Chitra, S.; Parameswari, K. Synthesis and characterization of tetradentate Co(II) schiff base complexes: Antimicrobial and DNA cleavage studies. Int. J. Res. Pharm. Biomed. Sci., 2012, 3, 1768-1778.
[12]
Gupta, Y.K.; Agarwal, S.C.; Madnawat, S.P.; Narain, R. Synthesis, characterization and antimicrobial studies of some transition metal complexes of schiff bases. Res. J. Chem. Sci, 2012, 2, 68-71.
[13]
Ashraf, M.A.; Mahmood, K.; Wajid, A. Synthesis, characterization and biological activity of schiff bases. Int. Proc. Chem. Biol. Environ. Eng., 2011, 10, 1-7.
[PMID: 22029966]
[14]
Prakash, A.; Adhikari, D. Application of schiff bases and their metal complexes-A Review. Int. J. Chemtech Res., 2011, 3, 891-896.
[15]
Kiranmai, K.; Prashanthi, Y.; Subhashini, N.J.P. Shivaraj, Synthesis, charcetrization and biological activity of metal complexes of 3– amino–5- methyl isoxazole schiff bases. J. Chem. Pharm. Res., 2010, 2, 375-384.
[16]
Harohally, N.V.; Cherita, C.; Bhatt, P.; Anu Appaiah, K.A. Antiaflatoxigenic and antimicrobial activities of schiff bases of 2-hydroxy-4-methoxybenzaldehyde, cinnamaldehyde, and similar aldehydes. J. Agric. Food Chem., 2017, 65(40), 8773-8778.
[http://dx.doi.org/10.1021/acs.jafc.7b02576] [PMID: 28942637]
[17]
Singh, H.L. Synthesis, spectral, and 3D molecular modeling of tin (II) and organotin (IV) complexes of biologically active Schiff bases having nitrogen and sulfur donor ligands. Phosphorus Sulfur Silicon Relat. Elem., 2009, 184(7), 1768-1778.
[http://dx.doi.org/10.1080/10426500802340236]
[18]
Gałczyńska, K.; Drulis-Kawa, Z.; Arabski, M. Antitumor Activity of Pt(II), Ru(III) and Cu(II) Complexes. Molecules, 2020, 25(15), 3492.
[http://dx.doi.org/10.3390/molecules25153492] [PMID: 32751963]
[19]
Wu, S.; Wu, Z.; Ge, Q.; Zheng, X.; Yang, Z. Antitumor activity of tridentate pincer and related metal complexes. Org. Biomol. Chem., 2021, 19(24), 5254-5273.
[http://dx.doi.org/10.1039/D1OB00577D] [PMID: 34059868]
[20]
Shanmugakala, R.; Tharmaraj, P.; Sheela, C.D.; Chidambaranathan, N. Transition metal complexes of s-triazine derivative: New class of anticonvulsant, anti-inflammatory, and neuroprotective agents. Med. Chem. Res., 2014, 23(1), 329-342.
[http://dx.doi.org/10.1007/s00044-013-0634-0]
[21]
Alam, M.M.; Verma, G.; Marella, A.; Shaquiquzzaman, M.; Akhtar, M.; Ali, M.R. A review exploring biological activities of hydrazones. J. Pharm. Bioallied Sci., 2014, 6(2), 69-80.
[http://dx.doi.org/10.4103/0975-7406.129170] [PMID: 24741273]
[22]
Karges, J.; Cohen, S.M. Metal complexes as antiviral agents for SARS‐CoV‐2. ChemBioChem, 2021, 22(16), 2600-2607.
[http://dx.doi.org/10.1002/cbic.202100186] [PMID: 34002456]
[23]
Arshad, R.; Bukhari, I.H.; Anum, F.; Aftab, Z.; Noreen, Z. Synthesis, spectral and biological studies of transition metal complexes of schiff base derived from ofloxacin. Int. J. Adv. Res. Biol. Sci., 2016, 3, 99-108.
[24]
Malinowski, J.; Zych, D.; Jacewicz, D.; Gawdzik, B.; Drzeżdżon, J. Application of coordination compounds with transition metal ions in the chemical industry-a review. Int. J. Mol. Sci., 2020, 21(15), 5443.
[http://dx.doi.org/10.3390/ijms21155443] [PMID: 32751682]
[25]
Ferraz de Paiva, R.E.; Vieira, E.G.; Rodrigues da Silva, D.; Wegermann, C.A.; Costa Ferreira, A.M. Anticancer Compounds Based on Isatin-Derivatives: Strategies to Ameliorate Selectivity and Efficiency. Front. Mol. Biosci., 2021, 7, 627272.
[http://dx.doi.org/10.3389/fmolb.2020.627272] [PMID: 33614708]
[26]
Deshpande, V.G.; Shah, S.; Deshpande, M.M.; Habib, S.I.; Kulkarni, P.A. Synthesis and antimicrobial evaluation of schiff bases derived from 2-amino-4, 6-dimethyl benzothiazole with 2-hydroxy-naphthalene-1-carb-aldehyde, 3-methyl-thiophene-2-carbaldehyde and their metal complexes. Int. J. Pharm. Chem. Sci, 2013, 2, 801-807.
[27]
Wang, Y.; Ren, H.; Zhao, H. Expanding the boundary of biocatalysis: Design and optimization of in vitro tandem catalytic reactions for biochemical production. Crit. Rev. Biochem. Mol. Biol., 2018, 53(2), 115-129.
[http://dx.doi.org/10.1080/10409238.2018.1431201] [PMID: 29411648]
[28]
Takaya, J. Catalysis using transition metal complexes featuring main group metal and metalloid compounds as supporting ligands. Chem. Sci. (Camb.), 2021, 12(6), 1964-1981.
[http://dx.doi.org/10.1039/D0SC04238B] [PMID: 34163959]
[29]
Novoa, N.; Manzur, C.; Roisnel, T.; Kahlal, S.; Saillard, J.Y.; Carrillo, D.; Hamon, J.R. Nickel(II)-based building blocks with schiff base derivatives: Experimental insights and DFT calculations. Molecules, 2021, 26(17), 5316.
[http://dx.doi.org/10.3390/molecules26175316] [PMID: 34500754]
[30]
McDevitt, D.; Rosenberg, M. Exploiting genomics to discover new antibiotics. Trends Microbiol., 2001, 9(12), 611-617.
[http://dx.doi.org/10.1016/S0966-842X(01)02235-1] [PMID: 11728875]
[31]
Gerdes, S.Y.; Scholle, M.D.; D’Souza, M.; Bernal, A.; Baev, M.V.; Farrell, M.; Kurnasov, O.V.; Daugherty, M.D.; Mseeh, F.; Polanuyer, B.M.; Campbell, J.W.; Anantha, S.; Shatalin, K.Y.; Chowdhury, S.A.K.; Fonstein, M.Y.; Osterman, A.L. From genetic footprinting to antimicrobial drug targets: Examples in cofactor biosynthetic pathways. J. Bacteriol., 2002, 184(16), 4555-4572.
[http://dx.doi.org/10.1128/JB.184.16.4555-4572.2002] [PMID: 12142426]
[32]
Osterman, A.L.; Begley, T.P. A subsystems-based approach to the identification of drug targets in bacterial pathogens. Prog. Drug Res., 2007, 64(131), 131-170, 133-170.
[http://dx.doi.org/10.1007/978-3-7643-7567-6_6] [PMID: 17195474]
[33]
Sorci, L.; Martynowski, D.; Rodionov, D.A.; Eyobo, Y.; Zogaj, X.; Klose, K.E.; Nikolaev, E.V.; Magni, G.; Zhang, H.; Osterman, A.L. Nicotinamide mononucleotide synthetase is the key enzyme for an alternative route of NAD biosynthesis in Francisella tularensis. Proc. Natl. Acad. Sci. USA, 2009, 106(9), 3083-3088.
[http://dx.doi.org/10.1073/pnas.0811718106] [PMID: 19204287]
[34]
Jauch, R.; Humm, A.; Huber, R.; Wahl, M.C. Structures of Escherichia coli NAD synthetase with substrates and products reveal mechanistic rearrangements. J. Biol. Chem., 2005, 280(15), 15131-15140.
[http://dx.doi.org/10.1074/jbc.M413195200] [PMID: 15699042]
[35]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E. Gaussian03 2004. Available From: https://www.cup.uni-muenchen.de/ch/compchem/gaussian03.html
[36]
Sharma, A.; Dhingra, N.; Singh, H.L.; Khaturia, S.; Bhardawaj, U. New Complexes of organotin (IV) and organosilicon (IV) with 2-{(3, 4-dimethoxybenzylidene) amino}-benzenethiol: Synthesis, spectral, theoretical, antibacterial, docking studies. J. Mol. Struct., 2022, 1261, 132812.
[http://dx.doi.org/10.1016/j.molstruc.2022.132812]
[37]
Varshney, A.K.; Varshney, S.; Sharma, M.; Singh, H.L. Spectral Studies Of Some Coordination Compounds Of Tin (II) With Benzothiazolines. Main Group Met. Chem., 1998, 21(9), 495-500.
[http://dx.doi.org/10.1515/MGMC.1998.21.9.495]
[38]
Dhingra, N.; Singh, J.B.; Singh, H.L. Synthesis, spectroscopy, and density functional theory of organotin and organosilicon complexes of bioactive ligands containing nitrogen, sulfur donor atoms as antimicrobial agents: in vitro and in silico studies. Dalton Trans., 2022, 51(22), 8821-8831.
[http://dx.doi.org/10.1039/D2DT01051H] [PMID: 35620880]
[39]
Singh, H.L. Synthesis, spectroscopic, and theoretical studies of tin(II) complexes with biologically active Schiff bases derived from amino acids. Main Group Met. Chem., 2016, 39(3-4), 67-76.
[http://dx.doi.org/10.1515/mgmc-2015-0039]
[40]
Bhanuka, S.; Khaturia, S.; Chahar, M.; Singh, H.L. Design, spectroscopic characterization and theoretical studies of organotin (IV) and organosilicon (IV) complexes with schiff base ligands derived from amino acids. Asian J. Chem., 2020, 32(11), 2821-2828.
[http://dx.doi.org/10.14233/ajchem.2020.22850]
[41]
Singh, H.L.; Singh, J. Synthesis of new zirconium (IV) complexes with amino acid schiff bases: Spectral, molecular modeling, and fluorescence studies. Int. J. Inorg. Chem., 2013, 2013, 1-10.
[http://dx.doi.org/10.1155/2013/847071]
[42]
Srivastava, V.; Sengupta, S.K.; Tripathi, S.C. Coordination compounds of zirconium(lV) with thiosemicarbazones. Synth. React. Inorg. Met.-Org. Chem., 1985, 15(2), 163-173.
[http://dx.doi.org/10.1080/00945718508059377]
[43]
Borzov, D.P.; Veksler, M.N. (2-diphenylphosphinoethyl) cyclopentadienyl complexes of zirconium(IV): synthesis, crystal structure and dynamic behaviour in solutions. Polyhedron, 1999, 17(22), 3889-3901.
[44]
Singh, H.L.; Singh, J.B.; Bhanuka, S. Synthesis and spectral, antibacterial, molecular studies of biologically active organosilicon(IV) complexes. J Associat Arab Uni Basic and Appl Sci, 2017, 23(1), 1-9.
[http://dx.doi.org/10.1016/j.jaubas.2016.05.003]
[45]
Akram, T.; Abbasi, M.A.; Mahmood, A.; Barboza de Lima, E.; Perveen, F.; Ashraf, M.; Ahmad, I.; Goumri-Said, S.; Goumri-Said, S. Synthesis, molecular structure, spectroscopic properties and biological evaluation of 4-substituted-N-(1H-tetrazol-5-yl)benzenesulfonamides: Combined experimental, DFT and docking study. J. Mol. Struct., 2019, 1195, 119-130.
[http://dx.doi.org/10.1016/j.molstruc.2019.05.065]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy