Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Review Article

The Metabolic Basis for Nervous System Dysfunction in Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease

Author(s): Kenneth Maiese*

Volume 20, Issue 3, 2023

Published on: 26 July, 2023

Page: [314 - 333] Pages: 20

DOI: 10.2174/1567202620666230721122957

Price: $65

Abstract

Disorders of metabolism affect multiple systems throughout the body but may have the greatest impact on both central and peripheral nervous systems. Currently available treatments and behavior changes for disorders that include diabetes mellitus (DM) and nervous system diseases are limited and cannot reverse the disease burden. Greater access to healthcare and a longer lifespan have led to an increased prevalence of metabolic and neurodegenerative disorders. In light of these challenges, innovative studies into the underlying disease pathways offer new treatment perspectives for Alzheimer’s Disease, Parkinson’s Disease, and Huntington’s Disease. Metabolic disorders are intimately tied to neurodegenerative diseases and can lead to debilitating outcomes, such as multi-nervous system disease, susceptibility to viral pathogens, and long-term cognitive disability. Novel strategies that can robustly address metabolic disease and neurodegenerative disorders involve a careful consideration of cellular metabolism, programmed cell death pathways, the mechanistic target of rapamycin (mTOR) and its associated pathways of mTOR Complex 1 (mTORC1), mTOR Complex 2 (mTORC2), AMP-activated protein kinase (AMPK), growth factor signaling, and underlying risk factors such as the apolipoprotein E (APOE-ε4) gene. Yet, these complex pathways necessitate comprehensive understanding to achieve clinical outcomes that target disease susceptibility, onset, and progression.

[1]
Organization WHO. Global report on diabetes. Geneva: World Health Organization 2016; pp. 1-83.
[2]
Alves HR, Lomba GSB, Gonçalves-de-Albuquerque CF, Burth P. Irisin, exercise, and COVID-19. Front Endocrinol 2022; 13: 879066.
[http://dx.doi.org/10.3389/fendo.2022.879066] [PMID: 35784579]
[3]
Maiese K. Cognitive impairment with diabetes mellitus and metabolic disease: Innovative insights with the mechanistic target of rapamycin and circadian clock gene pathways. Expert Rev Clin Pharmacol 2020; 13(1): 23-34.
[http://dx.doi.org/10.1080/17512433.2020.1698288] [PMID: 31794280]
[4]
Maiese K. Novel nervous and multi-system regenerative therapeutic strategies for diabetes mellitus with mTOR. Neural Regen Res 2016; 11(3): 372-85.
[http://dx.doi.org/10.4103/1673-5374.179032] [PMID: 27127460]
[5]
Maiese K. Dysregulation of metabolic flexibility: The impact of mTOR on autophagy in neurodegenerative disease. Int Rev Neurobiol 2020; 155: 1-35.
[http://dx.doi.org/10.1016/bs.irn.2020.01.009] [PMID: 32854851]
[6]
International Diabetes Federation. IDF Diabetes Atlas. 9th Ed. 2019. Available from: https://diabetesatlas.org/atlas/ninth-edition/
[7]
Centers for Medicare and Medicaid Services. National Health Expenditure Projections 2018-2027. 2019. Available from: https://www.cms.gov/research-statistics-data-and-systems/statistics-trends-and-reports/nationalhealthexpenddata/downloads/forecastsu mmary.pdf
[8]
Centers for Disease Control and Prevention. National Diabetes Statistics Report. 2020. Available from: https://www.cdc.gov/diabetes/pdfs/data/statistics/national-diabetes-statistics-report.pdf
[9]
Maiese K. Nicotinamide as a foundation for treating neurodegenerative disease and metabolic disorders. Curr Neurovasc Res 2021; 18(1): 134-49.
[http://dx.doi.org/10.2174/18755739MTEzaMDMw2] [PMID: 33397266]
[10]
Orkaby AR, Dushkes R, Ward R, et al. Effect of vitamin D 3 and omega-3 fatty acid supplementation on risk of frailty. JAMA Netw Open 2022; 5(9): e2231206.
[http://dx.doi.org/10.1001/jamanetworkopen.2022.31206] [PMID: 36098968]
[11]
Maiese K. New insights for nicotinamide metabolic disease autophagy and mTOR. Front Biosci 2020; 25(11): 1925-73.
[http://dx.doi.org/10.2741/4886] [PMID: 32472766]
[12]
Maiese K. Heightened attention for Wnt signaling in diabetes mellitus. Curr Neurovasc Res 2020; 17(3): 215-7.
[http://dx.doi.org/10.2174/1567202617999200327134835] [PMID: 32216737]
[13]
Maiese K. Prospects and perspectives for WISP1 (CCN4) in diabetes mellitus. Curr Neurovasc Res 2020; 17(3): 327-31.
[http://dx.doi.org/10.2174/1567202617666200327125257] [PMID: 32216738]
[14]
Nie X, Wei X, Ma H, Fan L, Chen WD. The complex role of Wnt ligands in type 2 diabetes mellitus and related complications. J Cell Mol Med 2021; 25(14): 6479-95.
[http://dx.doi.org/10.1111/jcmm.16663] [PMID: 34042263]
[15]
Schell M, Wardelmann K, Kleinridders A. Untangling the effect of insulin action on brain mitochondria and metabolism. J Neuroendocrinol 2021; 33(4): e12932.
[http://dx.doi.org/10.1111/jne.12932] [PMID: 33506556]
[16]
Maiese K. SIRT1 and stem cells: In the forefront with cardiovascular disease, neurodegeneration and cancer. World J Stem Cells 2015; 7(2): 235-42.
[http://dx.doi.org/10.4252/wjsc.v7.i2.235] [PMID: 25815111]
[17]
Chong MC, Silva A, James PF, Wu SSX, Howitt J. Exercise increases the release of NAMPT in extracellular vesicles and alters NAD+ activity in recipient cells. Aging Cell 2022; 21(7): e13647.
[http://dx.doi.org/10.1111/acel.13647] [PMID: 35661560]
[18]
Furtado GE, Letieri RV, Caldo-Silva A, et al. Sustaining efficient immune functions with regular physical exercise in the COVID‐19 era and beyond. Eur J Clin Invest 2021; 51(5): e13485.
[http://dx.doi.org/10.1111/eci.13485] [PMID: 33393082]
[19]
Maiese K. Picking a bone with WISP1 (CCN4): New strategies against degenerative joint disease. J Transl Sci 2016; 2(1): 83-5.
[http://dx.doi.org/10.15761/JTS.1000120] [PMID: 26893943]
[20]
Bramante C, Ingraham N, Murray T, Marmor S, Hoversten S, Gronski J. Observational study of metformin and risk of mortality in patients hospitalized with Covid-19. medRxiv 2020; 06(19): 20135095.
[http://dx.doi.org/10.1101/2020.06.19.20135095]
[21]
Lu M, Chen C, Lan Y, et al. Capsaicin—the major bioactive ingredient of chili peppers: Bio-efficacy and delivery systems. Food Funct 2020; 11(4): 2848-60.
[http://dx.doi.org/10.1039/D0FO00351D] [PMID: 32246759]
[22]
Maiese K. Paring down obesity and metabolic disease by targeting inflammation and oxidative stress. Curr Neurovasc Res 2015; 12(2): 107-8.
[http://dx.doi.org/10.2174/1567202612666150311101551] [PMID: 25760222]
[23]
Maiese K. Erythropoietin and diabetes mellitus. World J Diabetes 2015; 6(14): 1259-73.
[http://dx.doi.org/10.4239/wjd.v6.i14.1259] [PMID: 26516410]
[24]
Quesada I, de Paola M, Torres-Palazzolo C, et al. Effect of garlic’s active constituents in inflammation, obesity and cardiovascular disease. Curr Hypertens Rep 2020; 22(1): 6.
[http://dx.doi.org/10.1007/s11906-019-1009-9] [PMID: 31925548]
[25]
Raut SK, Khullar M. Oxidative stress in metabolic diseases: Current scenario and therapeutic relevance. Mol Cell Biochem 2023; 478(1): 185-96.
[http://dx.doi.org/10.1007/s11010-022-04496-z] [PMID: 35764861]
[26]
Yamashima T, Ota T, Mizukoshi E, et al. Intake of ω-6 polyunsaturated fatty acid-rich vegetable oils and risk of lifestyle diseases. Adv Nutr 2020; 11(6): 1489-509.
[http://dx.doi.org/10.1093/advances/nmaa072] [PMID: 32623461]
[27]
Beegum F. P v A, George KT, et al. Sirtuins as therapeutic targets for improving delayed wound healing in diabetes. J Drug Target 2022; 30(9): 911-26.
[http://dx.doi.org/10.1080/1061186X.2022.2085729] [PMID: 35787722]
[28]
Maiese K. Nicotinamide: Oversight of metabolic dysfunction through SIRT1, mTOR, and clock genes. Curr Neurovasc Res 2021; 17(5): 765-83.
[http://dx.doi.org/10.2174/18755739MTEx2NDIjx] [PMID: 33183203]
[29]
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102(3): 1449-94.
[http://dx.doi.org/10.1152/physrev.00017.2021] [PMID: 35343830]
[30]
Maiese K, Chong Z, Wang S, Shang Y. Oxidant stress and signal transduction in the nervous system with the PI 3-K, Akt, and mTOR cascade. Int J Mol Sci 2012; 13(12): 13830-66.
[http://dx.doi.org/10.3390/ijms131113830] [PMID: 23203037]
[31]
Rotllan N, Camacho M, Tondo M, Diarte-Añazco EMG, Canyelles M, Méndez-Lara KA. Therapeutic potential of emerging nad+-increasing strategies for cardiovascular diseases. Antioxidants 2021; 10(12): 1939.
[32]
O’Donnell B, Monjure T, Al-Ghadban S, et al. Aberrant expression of COX-2 and FOXG1 in infrapatellar fat pad-derived ASCs from pre-diabetic donors. Cells 2022; 11(15): 2367.
[http://dx.doi.org/10.3390/cells11152367] [PMID: 35954211]
[33]
Sun ZY, Yu TY, Jiang FX, Wang W. Functional maturation of immature β cells: A roadblock for stem cell therapy for type 1 diabetes. World J Stem Cells 2021; 13(3): 193-207.
[http://dx.doi.org/10.4252/wjsc.v13.i3.193] [PMID: 33815669]
[34]
Xu P, Wu Z, Peng Y, et al. Neuroprotection of triptolide against amyloid-Beta1-42-induced toxicity via the Akt/mTOR/p70S6K-mediated autophagy pathway. An Acad Bras Cienc 2022; 94(2): e20210938.
[http://dx.doi.org/10.1590/0001-3765202220210938] [PMID: 35946645]
[35]
Maiese K. The mechanistic target of rapamycin (mTOR): Novel considerations as an antiviral treatment. Curr Neurovasc Res 2020; 17(3): 332-7.
[http://dx.doi.org/10.2174/18755739MTA2sMTExy] [PMID: 32334502]
[36]
Pinchera B, Scotto R, Buonomo AR, et al. Diabetes and COVID-19: The potential role of mTOR. Diabetes Res Clin Pract 2022; 186: 109813.
[http://dx.doi.org/10.1016/j.diabres.2022.109813] [PMID: 35248653]
[37]
Swain O, Romano SK, Miryala R, Tsai J, Parikh V, Umanah GKE. SARS-CoV-2 neuronal invasion and complications: Potential mechanisms and therapeutic approaches. J Neurosci 2021; 41(25): 5338-49.
[http://dx.doi.org/10.1523/JNEUROSCI.3188-20.2021] [PMID: 34162747]
[38]
Maiese K. Targeting the core of neurodegeneration: FoxO, mTOR, and SIRT1. Neural Regen Res 2021; 16(3): 448-55.
[http://dx.doi.org/10.4103/1673-5374.291382] [PMID: 32985464]
[39]
World Health Organization. Description of the global burden of NCDs, their risk factors and determinants Global status report on noncommunicable diseases 2010. 2011; p. 1-176.
[40]
World Health Organization. Global action plan on the public health response to dementia 2017-2025. 2017; pp. 1-44. Available from: https://www.who.int/publications/i/item/global-act ion-plan-on-the-public-health-response-to-dementia-2017-2025s
[41]
Maiese K. Sirtuins: Developing innovative treatments for aged-related memory loss and alzheimer’s disease. Curr Neurovasc Res 2019; 15(4): 367-71.
[http://dx.doi.org/10.2174/1567202616666181128120003] [PMID: 30484407]
[42]
Jalgaonkar MP, Parmar UM, Kulkarni YA, Oza MJ. SIRT1-FOXOs activity regulates diabetic complications. Pharmacol Res 2022; 175: 106014.
[http://dx.doi.org/10.1016/j.phrs.2021.106014] [PMID: 34856334]
[43]
Maiese K. Cutting through the complexities of mTOR for the treatment of stroke. Curr Neurovasc Res 2014; 11(2): 177-86.
[http://dx.doi.org/10.2174/1567202611666140408104831] [PMID: 24712647]
[44]
Miniño AM. Death in the United States, 2011. NCHS Data Brief 2013; 115: 1-8.
[PMID: 23742756]
[45]
Maiese K. Moving to the rhythm with clock (circadian) genes, autophagy, mTOR, and SIRT1 in degenerative disease and cancer. Curr Neurovasc Res 2017; 14(3): 299-304.
[PMID: 28721811]
[46]
Chen YL, Hsieh CC, Chu PM, Chen JY, Huang YC, Chen CY. Roles of protein tyrosine phosphatases in hepatocellular carcinoma progression (Review). Oncol Rep 2023; 49(3): 48.
[http://dx.doi.org/10.3892/or.2023.8485] [PMID: 36660927]
[47]
Jiang W, Ding K, Yue R, Lei M. Therapeutic effects of icariin and icariside II on diabetes mellitus and its complications. Crit Rev Food Sci Nutr 2023; 1-26.
[http://dx.doi.org/10.1080/10408398.2022.2159317] [PMID: 36591787]
[48]
Li JB, Hu XY, Chen MW, et al. p85S6K sustains synaptic GluA1 to ameliorate cognitive deficits in Alzheimer’s disease. Transl Neurodegener 2023; 12(1): 1.
[http://dx.doi.org/10.1186/s40035-022-00334-w] [PMID: 36624510]
[49]
Kahmini FR, Ghaleh HD, Shahgaldi S. Sirtuins: Subtle regulators involved in convoluted mechanisms of pregnancy. Cell Physiol Biochem 2022; 56(6): 644-62.
[http://dx.doi.org/10.33594/000000588] [PMID: 36426389]
[50]
Liu D, Zhang M, Tian J, et al. WNT1-inducible signalling pathway protein 1 stabilizes atherosclerotic plaques in apolipoprotein-E-deficient mice via the focal adhesion kinase/mitogen-activated extracellular signal-regulated kinase/extracellular signal-regulated kinase pathway. J Hypertens 2022; 40(9): 1666-81.
[http://dx.doi.org/10.1097/HJH.0000000000003195] [PMID: 35881419]
[51]
Maiese K. Wnt Signaling and WISP1 (CCN4): Critical components in neurovascular disease, blood brain barrier regulation, and cerebral hemorrhage. Curr Neurovasc Res 2022; 19(4): 379-82.
[PMID: 36264015]
[52]
Maiese K. Cognitive impairment and dementia: Gaining insight through circadian clock gene pathways. Biomolecules 2021; 11(7): 1002.
[http://dx.doi.org/10.3390/biom11071002] [PMID: 34356626]
[53]
Maiese K. Neurodegeneration, memory loss, and dementia: the impact of biological clocks and circadian rhythm. Frontiers in Bioscience-Landmark 2021; 26(9): 614-27.
[http://dx.doi.org/10.52586/4971] [PMID: 34590471]
[54]
Patocka J, Kuca K, Oleksak P, et al. Rapamycin: Drug repurposing in SARS-CoV-2 infection. Pharmaceuticals 2021; 14(3): 217.
[http://dx.doi.org/10.3390/ph14030217] [PMID: 33807743]
[55]
Sorrells SF, Paredes MF, Zhang Z, et al. Positive controls in adults and children support that very few, if any, new neurons are born in the adult human hippocampus. J Neurosci 2021; 41(12): 2554-65.
[http://dx.doi.org/10.1523/JNEUROSCI.0676-20.2020] [PMID: 33762407]
[56]
Amanollahi M, Jameie M, Heidari A, Rezaei N. The dialogue between neuroinflammation and adult neurogenesis: Mechanisms involved and alterations in neurological diseases. Mol Neurobiol 2022; 60(2): 923-59.
[PMID: 36383328]
[57]
Mishra P, Davies DA, Albensi BC. The interaction between NF-κB and estrogen in alzheimer’s disease. Mol Neurobiol 2022; 60(3): 1515-26.
[PMID: 36512265]
[58]
Salemi M, Mogavero MP, Lanza G, Mongioì LM, Calogero AE, Ferri R. Examples of inverse comorbidity between cancer and neurodegenerative diseases: A possible role for noncoding RNA. Cells 2022; 11(12): 1930.
[http://dx.doi.org/10.3390/cells11121930] [PMID: 35741059]
[59]
Savu DI, Moisoi N. Mitochondria: Nucleus communication in neurodegenerative disease. who talks first, who talks louder? Biochim Biophys Acta Bioenerg 2022; 1863(7): 148588.
[http://dx.doi.org/10.1016/j.bbabio.2022.148588] [PMID: 35780856]
[60]
Yalçin M, Mundorf A, Thiel F, et al. It’s about time: The circadian network as time-keeper for cognitive functioning, locomotor activity and mental health. Front Physiol 2022; 13: 873237.
[http://dx.doi.org/10.3389/fphys.2022.873237] [PMID: 35547585]
[61]
Maiese K. Novel treatment strategies for neurodegenerative disease with sirtuins Sirtuin biology in medicine. Hoboken, New Jersey: Academic Press 2021; pp. 3-21.
[http://dx.doi.org/10.1016/B978-0-12-814118-2.00001-X]
[62]
Maiese K. Biomarkers for parkinson’s disease and neurodegenerative disorders: A role for non-coding RNAs. Curr Neurovasc Res 2022; 19(2): 127-30.
[http://dx.doi.org/10.2174/1567202619666220602125806] [PMID: 35657043]
[63]
Tang B, Zeng W, Song LL, et al. Extracellular vesicle delivery of neferine for the attenuation of neurodegenerative disease proteins and motor deficit in an alzheimer’s disease mouse model. Pharmaceuticals 2022; 15(1): 83.
[http://dx.doi.org/10.3390/ph15010083] [PMID: 35056140]
[64]
Maiese K. Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br J Clin Pharmacol 2016; 82(5): 1245-66.
[http://dx.doi.org/10.1111/bcp.12804] [PMID: 26469771]
[65]
World Health Organization. Dementia: A public health priority. Geneva: World Health Organization 2012; pp. 1-4.
[66]
Maiese K. MicroRNAs for the treatment of dementia and alzheimer’s disease. Curr Neurovasc Res 2019; 16(1): 1-2.
[http://dx.doi.org/10.2174/1567202616666190208094159] [PMID: 30732557]
[67]
Maiese K. Impacting dementia and cognitive loss with innovative strategies: mechanistic target of rapamycin, clock genes, circular non-coding ribonucleic acids, and Rho/Rock. Neural Regen Res 2019; 14(5): 773-4.
[http://dx.doi.org/10.4103/1673-5374.249224] [PMID: 30688262]
[68]
Maiese K. Apolipoprotein-ε4 allele (APOE-ε4) as a mediator of cognitive loss and dementia in long COVID-19. Curr Neurovasc Res 2022; 19(5): 435-9.
[http://dx.doi.org/10.2174/156720261905221227114624]
[69]
Ullah H, Hussain A, Asif M, Nawaz F, Rasool M. Natural products as bioactive agents in the prevention of dementia. CNS Neurol Disord Drug Targets 2022; 22(4): 466-76.
[PMID: 35466886]
[70]
Zhu G, Tong Q, Ye X, et al. Phototherapy for cognitive function in patients with dementia: A systematic review and meta-analysis. Front Aging Neurosci 2022; 14: 936489.
[http://dx.doi.org/10.3389/fnagi.2022.936489] [PMID: 35847661]
[71]
Maiese K. The mechanistic target of rapamycin (mTOR) and the silent mating-type information regulation 2 homolog 1 (SIRT1): Oversight for neurodegenerative disorders. Biochem Soc Trans 2018; 46(2): 351-60.
[http://dx.doi.org/10.1042/BST20170121] [PMID: 29523769]
[72]
Ding MR, Qu YJ, Hu B, An HM. Signal pathways in the treatment of alzheimer’s disease with traditional chinese medicine. Biomed Pharmacother 2022; 152: 113208.
[http://dx.doi.org/10.1016/j.biopha.2022.113208] [PMID: 35660246]
[73]
Rapaka D, Bitra VR, Challa SR, Adiukwu PC. mTOR signaling as a molecular target for the alleviation of Alzheimer’s disease pathogenesis. Neurochem Int 2022; 155: 105311.
[http://dx.doi.org/10.1016/j.neuint.2022.105311] [PMID: 35218870]
[74]
Jayaraman A, Reynolds R. Diverse pathways to neuronal necroptosis in Alzheimer’s disease. Eur J Neurosci 2022; 56(9): 5428-41.
[http://dx.doi.org/10.1111/ejn.15662] [PMID: 35377966]
[75]
Mavroidi B, Kaminari A, Matiadis D, et al. The prophylactic and multimodal activity of two isatin thiosemicarbazones against alzheimer’s Disease In Vitro. Brain Sci 2022; 12(6): 806.
[http://dx.doi.org/10.3390/brainsci12060806] [PMID: 35741690]
[76]
Maiese K. Addressing alzheimer’s disease and cognitive loss through autophagy. Curr Neurovasc Res 2020; 17(4): 339-41.
[http://dx.doi.org/10.2174/1567202617666200721150331] [PMID: 32693767]
[77]
Maiese K. Cellular metabolism: A fundamental component of degeneration in the nervous system. Biomolecules 2023; 13(5): 816.
[http://dx.doi.org/10.3390/biom13050816] [PMID: 37238686]
[78]
Hu Z, Jiao R, Wang P, et al. Shared causal paths underlying alzheimer’s dementia and type 2 diabetes. Sci Rep 2020; 10(1): 4107.
[http://dx.doi.org/10.1038/s41598-020-60682-3] [PMID: 32139775]
[79]
Min AY, Yoo JM, Sok DE, Kim MR. mulberry fruit prevents diabetes and diabetic dementia by regulation of blood glucose through upregulation of antioxidative activities and CREB/BDNF pathway in alloxan-induced diabetic mice. Oxid Med Cell Longev 2020; 2020: 1-13.
[http://dx.doi.org/10.1155/2020/1298691] [PMID: 32454931]
[80]
Caberlotto L, Nguyen TP, Lauria M, et al. Cross-disease analysis of Alzheimer’s disease and type-2 Diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Sci Rep 2019; 9(1): 3965.
[http://dx.doi.org/10.1038/s41598-019-39828-5] [PMID: 30850634]
[81]
Su M, Naderi K, Samson N, et al. Mechanisms associated with type 2 diabetes as a risk factor for alzheimer-related pathology. Mol Neurobiol 2019; 56(8): 5815-34.
[http://dx.doi.org/10.1007/s12035-019-1475-8] [PMID: 30684218]
[82]
Jiang WJ, Peng YC, Yang KM. Cellular signaling pathways regulating β cell proliferation as a promising therapeutic target in the treatment of diabetes (Review). Exp Ther Med 2018; 16(4): 3275-85.
[http://dx.doi.org/10.3892/etm.2018.6603] [PMID: 30233674]
[83]
Maiese K. New insights for oxidative stress and diabetes mellitus. Oxid Med Cell Longev 2015; 2015: 875961.
[http://dx.doi.org/10.1155/2015/875961]
[84]
Wang R, Zhu Y, Qin LF, et al. Comprehensive bibliometric analysis of stem cell research in alzheimer’s disease from 2004 to 2022. Dement Geriatr Cogn Disord 2023; 52(2): 47-73.
[http://dx.doi.org/10.1159/000528886] [PMID: 37068473]
[85]
Khan H, Tundis R, Ullah H, et al. Flavonoids targeting NRF2 in neurodegenerative disorders. Food Chem Toxicol 2020; 146: 111817.
[http://dx.doi.org/10.1016/j.fct.2020.111817] [PMID: 33069760]
[86]
Huang C, Zhang C, Cao Y, Li J, Bi F. Major roles of the circadian clock in cancer. Cancer Biol Med 2023; 20(1): 1-24.
[http://dx.doi.org/10.20892/j.issn.2095-3941.2022.0474] [PMID: 36647780]
[87]
Kalam F, James DL, Li YR, et al. Intermittent fasting interventions to leverage metabolic and circadian mechanisms for cancer treatment and supportive care outcomes. J Natl Cancer Inst Monogr 2023; 2023(61): 84-103.
[http://dx.doi.org/10.1093/jncimonographs/lgad008] [PMID: 37139971]
[88]
Mocayar Marón FJ, Ferder L, Reiter RJ, Manucha W. Daily and seasonal mitochondrial protection: Unraveling common possible mechanisms involving vitamin D and melatonin. J Steroid Biochem Mol Biol 2020; 199: 105595.
[http://dx.doi.org/10.1016/j.jsbmb.2020.105595] [PMID: 31954766]
[89]
Wang X, Xu Z, Cai Y, et al. Rheostatic balance of circadian rhythm and autophagy in metabolism and disease. Front Cell Dev Biol 2020; 8: 616434.
[http://dx.doi.org/10.3389/fcell.2020.616434] [PMID: 33330516]
[90]
Amidfar M, Garcez ML, Kim YK. The shared molecular mechanisms underlying aging of the brain, major depressive disorder, and Alzheimer’s disease: The role of circadian rhythm disturbances. Prog Neuropsychopharmacol Biol Psychiatry 2023; 123: 110721.
[http://dx.doi.org/10.1016/j.pnpbp.2023.110721] [PMID: 36702452]
[91]
Lathe R, St Clair D. Programmed ageing: Decline of stem cell renewal, immunosenescence, and Alzheimer’s disease. Biol Rev Camb Philos Soc 2023; 98(4): 1424-58.
[http://dx.doi.org/10.1111/brv.12959] [PMID: 37068798]
[92]
Olejniczak I, Pilorz V, Oster H. Circle(s) of Life: The circadian clock from birth to death. Biology 2023; 12(3): 383.
[http://dx.doi.org/10.3390/biology12030383] [PMID: 36979075]
[93]
Hsieh CF, Liu CK, Lee CT, Yu LE, Wang JY. Acute glucose fluctuation impacts microglial activity, leading to inflammatory activation or self-degradation. Sci Rep 2019; 9(1): 840.
[http://dx.doi.org/10.1038/s41598-018-37215-0] [PMID: 30696869]
[94]
Li F, Chong Z, Maiese K. Cell Life versus cell longevity: The mysteries surrounding the NAD+ precursor nicotinamide. Curr Med Chem 2006; 13(8): 883-95.
[http://dx.doi.org/10.2174/092986706776361058] [PMID: 16611073]
[95]
Tomita Y, Lee D, Tsubota K, Kurihara T. PPARα agonist oral therapy in diabetic retinopathy. Biomedicines 2020; 8(10): 433.
[http://dx.doi.org/10.3390/biomedicines8100433] [PMID: 33086679]
[96]
Yang X, Huo F, Liu B, et al. Crocin inhibits oxidative stress and pro-inflammatory response of microglial cells associated with diabetic retinopathy through the activation of PI3K/Akt signaling pathway. J Mol Neurosci 2017; 61(4): 581-9.
[http://dx.doi.org/10.1007/s12031-017-0899-8] [PMID: 28238066]
[97]
Chong ZZ, Li F, Maiese K. The pro-survival pathways of mTOR and protein kinase B target glycogen synthase kinase-3beta and nuclear factor-kappaB to foster endogenous microglial cell protection. Int J Mol Med 2007; 19(2): 263-72.
[PMID: 17203200]
[98]
Li F, Zhong Chong Z, Maiese K. Microglial integrity is maintained by erythropoietin through integration of Akt and its substrates of glycogen synthase kinase-3beta, beta-catenin, and nuclear factor-kappaB. Curr Neurovasc Res 2006; 3(3): 187-201.
[http://dx.doi.org/10.2174/156720206778018758] [PMID: 16918383]
[99]
Shang Y, Chong Z, Hou J, Maiese K. FoxO3a governs early microglial proliferation and employs mitochondrial depolarization with caspase 3, 8, and 9 cleavage during oxidant induced apoptosis. Curr Neurovasc Res 2009; 6(4): 223-38.
[http://dx.doi.org/10.2174/156720209789630302] [PMID: 19807657]
[100]
Kostić M, Korićanac G, Tepavčević S, et al. Low-intensity exercise affects cardiac fatty acid oxidation by increasing the nuclear content of PPARα, FOXO1, and Lipin1 in fructose-fed rats. Metab Syndr Relat Disord 2023; 21(2): 122-31.
[http://dx.doi.org/10.1089/met.2022.0078] [PMID: 36625880]
[101]
Maiese K. Harnessing the power of SIRT1 and non-coding RNAs in vascular disease. Curr Neurovasc Res 2017; 14(1): 82-8.
[http://dx.doi.org/10.2174/1567202613666161129112822] [PMID: 27897112]
[102]
Maiese K. Sirtuin Biology in Cancer and Metabolic Disease: Cellular Pathways for Clinical Discovery. Amsterdam: Elsevier 2021; pp. 1-300.
[103]
Maiese K. Sirtuins in metabolic disease: Innovative therapeutic strategies with SIRT1, AMPK, mTOR, and nicotinamideSirtuin Biology in Cancer and Metabolic Disease: Cellular Pathways for Clinical Discovery. Amsterdam: Elsevier 2021; pp. 3-23.
[http://dx.doi.org/10.1016/B978-0-12-822467-0.00006-1]
[104]
Ministrini S, Puspitasari YM, Beer G, Liberale L, Montecucco F, Camici GG. Sirtuin 1 in endothelial dysfunction and cardiovascular aging. Front Physiol 2021; 12: 733696.
[http://dx.doi.org/10.3389/fphys.2021.733696] [PMID: 34690807]
[105]
Penteado AB, Hassanie H, Gomes RA, Silva Emery F, Goulart Trossini GH. Human sirtuin 2 inhibitors, their mechanisms and binding modes. Future Med Chem 2023; 15(3): 291-311.
[http://dx.doi.org/10.4155/fmc-2022-0253] [PMID: 36892013]
[106]
Sadria M, Seo D, Layton AT. The mixed blessing of AMPK signaling in cancer treatments. BMC Cancer 2022; 22(1): 105.
[http://dx.doi.org/10.1186/s12885-022-09211-1] [PMID: 35078427]
[107]
Wasserfurth P, Nebl J, Rühling MR, et al. Impact of dietary modifications on plasma sirtuins 1, 3 and 5 in older overweight individuals undergoing 12-weeks of circuit training. Nutrients 2021; 13(11): 3824.
[http://dx.doi.org/10.3390/nu13113824] [PMID: 34836079]
[108]
Watroba M, Szukiewicz D. Sirtuins at the service of healthy longevity. Front Physiol 2021; 12: 724506.
[http://dx.doi.org/10.3389/fphys.2021.724506] [PMID: 34899370]
[109]
Sun C, Bai S, Liang Y, et al. The role of Sirtuin 1 and its activators in age-related lung disease. Biomed Pharmacother 2023; 162: 114573.
[http://dx.doi.org/10.1016/j.biopha.2023.114573] [PMID: 37018986]
[110]
Atef MM, El-Sayed NM, Ahmed AAM, Mostafa YM. Donepezil improves neuropathy through activation of AMPK signalling pathway in streptozotocin-induced diabetic mice. Biochem Pharmacol 2019; 159: 1-10.
[http://dx.doi.org/10.1016/j.bcp.2018.11.006] [PMID: 30414938]
[111]
Gomes MB, Negrato CA. Alpha-lipoic acid as a pleiotropic compound with potential therapeutic use in diabetes and other chronic diseases. Diabetol Metab Syndr 2014; 6(1): 80.
[http://dx.doi.org/10.1186/1758-5996-6-80] [PMID: 25104975]
[112]
Maiese K. Peripheral neuropathy: An early indication of systemic disease that involves the mechanistic target of rapamycin (mTOR). Curr Neurovasc Res 2023; 20(1): 1-4.
[http://dx.doi.org/10.2174/1567202620999230220094137] [PMID: 36803185]
[113]
Albiero M, Poncina N, Tjwa M, et al. Diabetes causes bone marrow autonomic neuropathy and impairs stem cell mobilization via dysregulated p66Shc and Sirt1. Diabetes 2014; 63(4): 1353-65.
[http://dx.doi.org/10.2337/db13-0894] [PMID: 24270983]
[114]
Maiese K, Fox O. FoxO transcription factors and regenerative pathways in diabetes mellitus. Curr Neurovasc Res 2015; 12(4): 404-13.
[http://dx.doi.org/10.2174/1567202612666150807112524] [PMID: 26256004]
[115]
Bayaraa O, Inman CK, Thomas SA, et al. Hyperglycemic conditions induce rapid cell dysfunction-promoting transcriptional alterations in human aortic endothelial cells. Sci Rep 2022; 12(1): 20912.
[http://dx.doi.org/10.1038/s41598-022-24999-5] [PMID: 36463298]
[116]
Maiese K. mTOR: Driving apoptosis and autophagy for neurocardiac complications of diabetes mellitus. World J Diabetes 2015; 6(2): 217-24.
[http://dx.doi.org/10.4239/wjd.v6.i2.217] [PMID: 25789103]
[117]
Hajibabaie F, Abedpoor N, Safavi K, Taghian F. Natural remedies medicine derived from flaxseed (secoisolariciresinol diglucoside, lignans, and α‐linolenic acid) improve network targeting efficiency of diabetic heart conditions based on computational chemistry techniques and pharmacophore modeling. J Food Biochem 2022; 46(12): e14480.
[http://dx.doi.org/10.1111/jfbc.14480] [PMID: 36239429]
[118]
Januszewski AS, Watson CJ, O’Neill V, et al. FKBPL is associated with metabolic parameters and is a novel determinant of cardiovascular disease. Sci Rep 2020; 10(1): 21655.
[http://dx.doi.org/10.1038/s41598-020-78676-6] [PMID: 33303872]
[119]
Liu P, Liu J, Wu Y, et al. Zinc supplementation protects against diabetic endothelial dysfunction via GTP cyclohydrolase 1 restoration. Biochem Biophys Res Commun 2020; 521(4): 1049-54.
[http://dx.doi.org/10.1016/j.bbrc.2019.11.046] [PMID: 31732151]
[120]
Maiese K. Disease onset and aging in the world of circular RNAs. J Transl Sci 2016; 2(6): 327-9.
[http://dx.doi.org/10.15761/JTS.1000158] [PMID: 27642518]
[121]
Pabel S, Hamdani N, Luedde M, Sossalla S. SGLT2 inhibitors and their mode of action in heart failure—has the mystery been unravelled? Curr Heart Fail Rep 2021; 18(5): 315-28.
[http://dx.doi.org/10.1007/s11897-021-00529-8] [PMID: 34523061]
[122]
Zaiou M. circRNAs signature as potential diagnostic and prognostic biomarker for diabetes mellitus and related cardiovascular complications. Cells 2020; 9(3): 659.
[http://dx.doi.org/10.3390/cells9030659] [PMID: 32182790]
[123]
Zarneshan SN, Fakhri S, Farzaei MH, Khan H, Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem Toxicol 2020; 145: 111714.
[http://dx.doi.org/10.1016/j.fct.2020.111714] [PMID: 32871194]
[124]
Zhou Q, Tang S, Zhang X, Chen L. Targeting PRAS40: A novel therapeutic strategy for human diseases. J Drug Target 2021; 29(7): 703-15.
[http://dx.doi.org/10.1080/1061186X.2021.1882470] [PMID: 33504218]
[125]
Chiareli RA, Carvalho GA, Marques BL, et al. The role of astrocytes in the neurorepair process. Front Cell Dev Biol 2021; 9: 665795.
[http://dx.doi.org/10.3389/fcell.2021.665795] [PMID: 34113618]
[126]
Engin AB, Engin A. Alzheimer’s disease and protein kinases. Adv Exp Med Biol 2021; 1275: 285-321.
[http://dx.doi.org/10.1007/978-3-030-49844-3_11] [PMID: 33539020]
[127]
Xu T, Liu J, Li X, et al. The mTOR/NF-κB pathway mediates neuroinflammation and synaptic plasticity in diabetic encephalopathy. Mol Neurobiol 2021; 58(8): 3848-62.
[http://dx.doi.org/10.1007/s12035-021-02390-1]
[128]
El-Beltagy AEFBM, Saleh AMB, Attaallah A, Gahnem RA. Therapeutic role of Azadirachta indica leaves ethanolic extract against diabetic nephropathy in rats neonatally induced by streptozotocin. Ultrastruct Pathol 2021; 45(6): 391-406.
[http://dx.doi.org/10.1080/01913123.2021.1988015] [PMID: 34720017]
[129]
Kita A, Saito Y, Miura N, et al. Altered regulation of mesenchymal cell senescence in adipose tissue promotes pathological changes associated with diabetic wound healing. Commun Biol 2022; 5(1): 310.
[http://dx.doi.org/10.1038/s42003-022-03266-3] [PMID: 35383267]
[130]
Maiese K, Chong ZZ, Shang YC. OutFOXOing disease and disability: The therapeutic potential of targeting FoxO proteins. Trends Mol Med 2008; 14(5): 219-27.
[http://dx.doi.org/10.1016/j.molmed.2008.03.002] [PMID: 18403263]
[131]
Gong Q, Wang H, Yu P, Qian T, Xu X. Protective or harmful: The dual roles of autophagy in diabetic retinopathy. Front Med 2021; 8: 644121.
[http://dx.doi.org/10.3389/fmed.2021.644121] [PMID: 33842506]
[132]
Li J, Lin F, Zhu X, Lv Z. Impact of diabetic hyperglycaemia and insulin therapy on autophagy and impairment in rat epididymis. Andrologia 2020; 52(11): e13889.
[http://dx.doi.org/10.1111/and.13889] [PMID: 33125789]
[133]
van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early alzheimer’s disease. N Engl J Med 2023; 388(1): 9-21.
[http://dx.doi.org/10.1056/NEJMoa2212948] [PMID: 36449413]
[134]
Maiese K, Fox O. FoxO proteins in the nervous system. Anal Cell Pathol 2015; 2015: 1-15.
[http://dx.doi.org/10.1155/2015/569392] [PMID: 26171319]
[135]
Maiese K. Forkhead transcription factors: Formulating a FOXO target for cognitive loss. Curr Neurovasc Res 2018; 14(4): 415-20.
[http://dx.doi.org/10.2174/1567202614666171116102911] [PMID: 29149835]
[136]
Sharma VK, Singh TG, Singh S, Garg N, Dhiman S. Apoptotic pathways and alzheimer’s disease: Probing therapeutic potential. Neurochem Res 2021; 46(12): 3103-22.
[http://dx.doi.org/10.1007/s11064-021-03418-7] [PMID: 34386919]
[137]
Wang H, Yang F, Zhang S, Xin R, Sun Y. Genetic and environmental factors in Alzheimer’s and Parkinson’s diseases and promising therapeutic intervention via fecal microbiota transplantation. NPJ Parkinsons Dis 2021; 7(1): 70.
[http://dx.doi.org/10.1038/s41531-021-00213-7] [PMID: 34381040]
[138]
Ghiasi R, Naderi R, Sheervalilou R, Alipour MR. Swimming training by affecting the pancreatic Sirtuin1 (SIRT1) and oxidative stress, improves insulin sensitivity in diabetic male rats. Horm Mol Biol Clin Investig 2019; 40(3): 20190011.
[http://dx.doi.org/10.1515/hmbci-2019-0011] [PMID: 31652118]
[139]
Maiese K. Triple play: Promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother 2008; 62(4): 218-32.
[http://dx.doi.org/10.1016/j.biopha.2008.01.009] [PMID: 18342481]
[140]
Maiese K. New directions for dementia. Curr Neurovasc Res 2018; 14(4): 305.
[http://dx.doi.org/10.2174/1567202614999171129112521] [PMID: 29185396]
[141]
Maiese K, Chong ZZ. Insights into oxidative stress and potential novel therapeutic targets for Alzheimer disease. Restor Neurol Neurosci 2004; 22(2): 87-104.
[PMID: 15272144]
[142]
Querfurth H, Lee HK. Mammalian/mechanistic target of rapamycin (mTOR) complexes in neurodegeneration. Mol Neurodegener 2021; 16(1): 44.
[http://dx.doi.org/10.1186/s13024-021-00428-5] [PMID: 34215308]
[143]
Zhou Y, Xu J, Hou Y, et al. Network medicine links SARS-CoV-2/COVID-19 infection to brain microvascular injury and neuroinflammation in dementia-like cognitive impairment. Alzheimers Res Ther 2021; 13(1): 110.
[http://dx.doi.org/10.1186/s13195-021-00850-3] [PMID: 34108016]
[144]
González-Fernández C, González P, González-Pérez F, Rodríguez FJ. Characterization of ex vivo and in vitro Wnt transcriptome induced by spinal cord injury in rat microglial cells. Brain Sci 2022; 12(6): 708.
[http://dx.doi.org/10.3390/brainsci12060708] [PMID: 35741593]
[145]
Maiese K. Inflammatory glial cells of the nervous system: Assistants or assassins? Curr Neurovasc Res 2005; 2(3): 187-8.
[http://dx.doi.org/10.2174/1567202054368380] [PMID: 16189907]
[146]
Maiese K, Li F, Chong ZZ. Erythropoietin in the brain: Can the promise to protect be fulfilled? Trends Pharmacol Sci 2004; 25(11): 577-83.
[http://dx.doi.org/10.1016/j.tips.2004.09.006] [PMID: 15491780]
[147]
Jarero-Basulto JJ, Rivera-Cervantes MC, Gasca-Martínez D, García-Sierra F, Gasca-Martínez Y, Beas-Zárate C. Current evidence on the protective effects of recombinant human erythropoietin and its molecular variants against pathological hallmarks of alzheimer’s disease. Pharmaceuticals 2020; 13(12): 424.
[http://dx.doi.org/10.3390/ph13120424] [PMID: 33255969]
[148]
Kaur D, Behl T, Sehgal A, Singh S, Sharma N, Badavath VN. Unravelling the potential neuroprotective facets of erythropoietin for the treatment of Alzheimer’s disease. Metab Brain Dis 2021; 37(1): 1-16.
[PMID: 34436747]
[149]
Liu L, Cao Q, Gao W, et al. Melatonin ameliorates cerebral ischemia‐reperfusion injury in diabetic mice by enhancing autophagy via the SIRT1‐BMAL1 pathway. FASEB J 2021; 35(12): e22040.
[http://dx.doi.org/10.1096/fj.202002718RR] [PMID: 34800293]
[150]
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S. Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition). Autophagy 2021; 17(1): 1-382.
[151]
Maiese K, Chong ZZ, Shang YC, Wang S. Targeting disease through novel pathways of apoptosis and autophagy. Expert Opin Ther Targets 2012; 16(12): 1203-14.
[http://dx.doi.org/10.1517/14728222.2012.719499] [PMID: 22924465]
[152]
Gao J, Yao M, Chang D, Liu J. mTOR (Mammalian Target of Rapamycin): Hitting the bull’s eye for enhancing neurogenesis after cerebral ischemia? Stroke 2022; 54(1): 279-85.
[PMID: 36321454]
[153]
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and apoptosis in acute CNS injuries: From mechanism to treatment. Antioxid Redox Signal 2022; 38(1-3): 234-57.
[PMID: 35579958]
[154]
Qin C, Lu Y, Bai L, Wang K. The molecular regulation of autophagy in antimicrobial immunity. J Mol Cell Biol 2022; 14(4): mjac015.
[http://dx.doi.org/10.1093/jmcb/mjac015] [PMID: 35278083]
[155]
Senousy MA, Hanafy ME, Shehata N, Rizk SM. Erythropoietin and bacillus calmette–guérin vaccination mitigate 3-nitropropionic acid-induced huntington-like disease in rats by modulating the PI3K/Akt/mTOR/P70S6K pathway and enhancing the autophagy. ACS Chem Neurosci 2022; 13(6): 721-32.
[http://dx.doi.org/10.1021/acschemneuro.1c00523] [PMID: 35226456]
[156]
Xiong K, Yan W-T, Lu S, et al. Research trends, hot spots and prospects for necroptosis in the field of neuroscience. Neural Regen Res 2021; 16(8): 1628-37.
[http://dx.doi.org/10.4103/1673-5374.303032] [PMID: 33433494]
[157]
Hou J, Zhong Chong Z, Chen Shang Y, Maiese K. Early apoptotic vascular signaling is determined by Sirt1 through nuclear shuttling, forkhead trafficking, bad, and mitochondrial caspase activation. Curr Neurovasc Res 2010; 7(2): 95-112.
[http://dx.doi.org/10.2174/156720210791184899] [PMID: 20370652]
[158]
Shang YC, Chong ZZ, Hou J, Maiese K. Wnt1, FoxO3a, and NF-κB oversee microglial integrity and activation during oxidant stress. Cell Signal 2010; 22(9): 1317-29.
[http://dx.doi.org/10.1016/j.cellsig.2010.04.009] [PMID: 20462515]
[159]
Taveira GB, Mello ÉO, Souza SB, et al. Programmed cell death in yeast by thionin-like peptide from Capsicum annuum fruits involving activation of caspases and extracellular H+ flux. Biosci Rep 2018; 38(2): BSR20180119.
[http://dx.doi.org/10.1042/BSR20180119] [PMID: 29599127]
[160]
Almasieh M, Catrinescu MM, Binan L, Costantino S, Levin LA. Axonal degeneration in retinal ganglion cells is associated with a membrane polarity-sensitive redox process. J Neurosci 2017; 37(14): 3824-39.
[http://dx.doi.org/10.1523/JNEUROSCI.3882-16.2017] [PMID: 28275163]
[161]
Viola G, Bortolozzi R, Hamel E, et al. MG-2477, a new tubulin inhibitor, induces autophagy through inhibition of the Akt/mTOR pathway and delayed apoptosis in A549 cells. Biochem Pharmacol 2012; 83(1): 16-26.
[http://dx.doi.org/10.1016/j.bcp.2011.09.017] [PMID: 21964343]
[162]
Chong ZZ, Kang JQ, Maiese K. Erythropoietin is a novel vascular protectant through activation of Akt1 and mitochondrial modulation of cysteine proteases. Circulation 2002; 106(23): 2973-9.
[http://dx.doi.org/10.1161/01.CIR.0000039103.58920.1F] [PMID: 12460881]
[163]
Maiese K. The bright side of reactive oxygen species: lifespan extension without cellular demise. J Transl Sci 2016; 2(3): 185-7.
[http://dx.doi.org/10.15761/JTS.1000138] [PMID: 27200181]
[164]
Yousafzai NA, Jin H, Ullah M, Wang X. Recent advances of SIRT1 and implications in chemotherapeutics resistance in cancer. Am J Cancer Res 2021; 11(11): 5233-48.
[PMID: 34873458]
[165]
Maiese K. A common link in neurovascular regenerative pathways: Protein kinase B (Akt). Curr Neurovasc Res 2022; 19(1): 1-4.
[http://dx.doi.org/10.2174/1567202619666220209111655] [PMID: 35139797]
[166]
Maiese K. pyroptosis, apoptosis, and autophagy: Critical players of inflammation and cell demise in the nervous system. Curr Neurovasc Res 2022; 19(3): 241-4.
[http://dx.doi.org/10.2174/1567202619666220729093449] [PMID: 35909267]
[167]
Pang Y, Qin M, Hu P, et al. Resveratrol protects retinal ganglion cells against ischemia induced damage by increasing Opa1 expression. Int J Mol Med 2020; 46(5): 1707-20.
[http://dx.doi.org/10.3892/ijmm.2020.4711] [PMID: 32901846]
[168]
Tran HN, Nguyen QH, Jeong J, et al. The embryonic patterning gene Dbx1 governs the survival of the auditory midbrain via Tcf7l2-Ap2δ transcriptional cascade. Cell Death Differ 2023; 30(6): 1563-74.
[http://dx.doi.org/10.1038/s41418-023-01165-6]
[169]
Bailey TJ, Fossum SL, Fimbel SM, Montgomery JE, Hyde DR. The inhibitor of phagocytosis, O-phospho-l-serine, suppresses Müller glia proliferation and cone cell regeneration in the light-damaged zebrafish retina. Exp Eye Res 2010; 91(5): 601-12.
[http://dx.doi.org/10.1016/j.exer.2010.07.017] [PMID: 20696157]
[170]
Wei L, Sun C, Lei M, et al. Activation of Wnt/β-catenin pathway by exogenous Wnt1 protects SH-SY5Y cells against 6-hydroxydopamine toxicity. J Mol Neurosci 2013; 49(1): 105-15.
[http://dx.doi.org/10.1007/s12031-012-9900-8] [PMID: 23065334]
[171]
Kim S, Kang IH, Nam JB, et al. Ameliorating the effect of astragaloside IV on learning and memory deficit after chronic cerebral hypoperfusion in rats. Molecules 2015; 20(2): 1904-21.
[http://dx.doi.org/10.3390/molecules20021904] [PMID: 25625683]
[172]
Maiese K. Novel applications of trophic factors, Wnt and WISP for neuronal repair and regeneration in metabolic disease. Neural Regen Res 2015; 10(4): 518-28.
[http://dx.doi.org/10.4103/1673-5374.155427] [PMID: 26170801]
[173]
Xin YJ, Yuan B, Yu B, et al. Tet1-mediated DNA demethylation regulates neuronal cell death induced by oxidative stress. Sci Rep 2015; 5(1): 7645.
[http://dx.doi.org/10.1038/srep07645] [PMID: 25561289]
[174]
Yu T, Li L, Chen T, Liu Z, Liu H, Li Z. Erythropoietin attenuates advanced glycation endproducts-induced toxicity of Schwann cells in vitro. Neurochem Res 2015; 40(4): 698-712.
[http://dx.doi.org/10.1007/s11064-015-1516-2] [PMID: 25585642]
[175]
Lan T, Xu Y, Li S, Li N, Zhang S, Zhu H. Cornin protects against cerebral ischemia/reperfusion injury by preventing autophagy via the PI3K/Akt/mTOR pathway. BMC Pharmacol Toxicol 2022; 23(1): 82.
[http://dx.doi.org/10.1186/s40360-022-00620-3] [PMID: 36280856]
[176]
Liu L, Xu S, Li P, Li L. A novel adipokine WISP1 attenuates lipopolysaccharide-induced cell injury in 3T3-L1 adipocytes by regulating the PI3K/Akt pathway. Obes Res Clin Pract 2022; 16(2): 122-9.
[http://dx.doi.org/10.1016/j.orcp.2022.03.001] [PMID: 35431155]
[177]
Mansour RM, El Sayed NS, Ahmed MAE, El-Sahar AE. Addressing peroxisome proliferator-activated receptor-gamma in 3-nitropropionic acid-induced striatal neurotoxicity in rats. Mol Neurobiol 2022; 59(7): 4368-83.
[http://dx.doi.org/10.1007/s12035-022-02856-w] [PMID: 35553009]
[178]
Sabzali M, Eidi A, Khaksari M, Khastar H. Anti-inflammatory, antioxidant, and antiapoptotic action of metformin attenuates ethanol neurotoxicity in the animal model of fetal alcohol spectrum disorders. Neurotox Res 2022; 40(2): 605-13.
[http://dx.doi.org/10.1007/s12640-022-00499-2] [PMID: 35386022]
[179]
Chong ZZ, Li F, Maiese K. Oxidative stress in the brain: Novel cellular targets that govern survival during neurodegenerative disease. Prog Neurobiol 2005; 75(3): 207-46.
[http://dx.doi.org/10.1016/j.pneurobio.2005.02.004] [PMID: 15882775]
[180]
Maiese K. WISP1: Clinical insights for a proliferative and restorative member of the CCN family. Curr Neurovasc Res 2014; 11(4): 378-89.
[http://dx.doi.org/10.2174/1567202611666140912115107] [PMID: 25219658]
[181]
Feng H, Xue M, Deng H, Cheng S, Hu Y, Zhou C. Ginsenoside and its therapeutic potential for cognitive impairment. Biomolecules 2022; 12(9): 1310.
[http://dx.doi.org/10.3390/biom12091310] [PMID: 36139149]
[182]
Zhuang X, Ma J, Xu G, Sun Z. SHP-1 knockdown suppresses mitochondrial biogenesis and aggravates mitochondria-dependent apoptosis induced by all trans retinal through the STING/AMPK pathways. Mol Med 2022; 28(1): 125.
[http://dx.doi.org/10.1186/s10020-022-00554-w] [PMID: 36273174]
[183]
Ali ES, Mitra K, Akter S, et al. Recent advances and limitations of mTOR inhibitors in the treatment of cancer. Cancer Cell Int 2022; 22(1): 284.
[http://dx.doi.org/10.1186/s12935-022-02706-8] [PMID: 36109789]
[184]
Arias C, Salazar LA. Autophagy and polyphenols in osteoarthritis: A focus on epigenetic regulation. Int J Mol Sci 2021; 23(1): 421.
[http://dx.doi.org/10.3390/ijms23010421] [PMID: 35008847]
[185]
Barthels D, Prateeksha P, Nozohouri S, Villalba H, Zhang Y, Sharma S. Dental pulp-derived stem cells preserve astrocyte health during induced gliosis by modulating mitochondrial activity and functions. Cell Mol Neurobiol 2022; 43: 2105-5.
[PMID: 36201091]
[186]
Casciano F, Zauli E, Rimondi E, et al. The role of the mTOR pathway in diabetic retinopathy. Front Med 2022; 9: 973856.
[http://dx.doi.org/10.3389/fmed.2022.973856] [PMID: 36388931]
[187]
Chen G, Zeng L, Yan F, et al. Long-term oral administration of naringenin counteracts aging-related retinal degeneration via regulation of mitochondrial dynamics and autophagy. Front Pharmacol 2022; 13: 919905.
[http://dx.doi.org/10.3389/fphar.2022.919905] [PMID: 35910364]
[188]
Gao J, Xu H, Rong Z, Chen L. Wnt family member 1 (Wnt1) overexpression-induced M2 polarization of microglia alleviates inflammation-sensitized neonatal brain injuries. Bioengineered 2022; 13(5): 12409-20.
[http://dx.doi.org/10.1080/21655979.2022.2074767] [PMID: 35603707]
[189]
Jobst M, Kiss E, Gerner C, Marko D, Del Favero G. Activation of autophagy triggers mitochondrial loss and changes acetylation profile relevant for mechanotransduction in bladder cancer cells. Arch Toxicol 2022; 97(1): 217-33.
[PMID: 36214828]
[190]
Maiese K. Taking aim at Alzheimer’s disease through the mammalian target of rapamycin. Ann Med 2014; 46(8): 587-96.
[http://dx.doi.org/10.3109/07853890.2014.941921] [PMID: 25105207]
[191]
Sakai M, Yu Z, Hirayama R, et al. Deficient autophagy in microglia aggravates repeated social defeat stress-induced social avoidance. Neural Plast 2022; 2022: 1-13.
[http://dx.doi.org/10.1155/2022/7503553] [PMID: 35222638]
[192]
Corti O, Blomgren K, Poletti A, Beart PM. Autophagy in neurodegeneration: New insights underpinning therapy for neurological diseases. J Neurochem 2020; 154(4): 354-71.
[http://dx.doi.org/10.1111/jnc.15002] [PMID: 32149395]
[193]
Maiese K. Warming up to new possibilities with the capsaicin receptor TRPV1: mTOR, AMPK, and erythropoietin. Curr Neurovasc Res 2017; 14(2): 184-9.
[PMID: 28294062]
[194]
Maiese K. Driving neural regeneration through the mammalian target of rapamycin. Neural Regen Res 2014; 9(15): 1413-7.
[http://dx.doi.org/10.4103/1673-5374.139453] [PMID: 25317149]
[195]
Maiese K. Novel Stem Cell Strategies with mTOR Molecules to Medicine with mTOR: Translating Critical Pathways into Novel Therapeutic Strategies. Amsterdam: Elsevier 2016; pp. 3-22.
[http://dx.doi.org/10.1016/B978-0-12-802733-2.00020-7]
[196]
He W, Gao Y, Zhou J, Shi Y, Xia D, Shen HM. Friend or Foe? Implication of the autophagy-lysosome pathway in SARS-CoV-2 infection and COVID-19. Int J Biol Sci 2022; 18(12): 4690-703.
[http://dx.doi.org/10.7150/ijbs.72544] [PMID: 35874956]
[197]
Maiese K. Circadian clock genes: Targeting innate immunity for antiviral strategies against COVID-19. Curr Neurovasc Res 2020; 17(5): 531-3.
[http://dx.doi.org/10.2174/15672026MTEyjMDEf5] [PMID: 33272180]
[198]
Theoharides TC. Could SARS-CoV-2 spike protein be responsible for Long-COVID Syndrome? Mol Neurobiol 2022; 59(3): 1850-61.
[http://dx.doi.org/10.1007/s12035-021-02696-0] [PMID: 35028901]
[199]
You H, Zhao Q, Dong M. The key genes underlying pathophysiology correlation between the acute myocardial infarction and COVID-19. Int J Gen Med 2022; 15: 2479-90.
[http://dx.doi.org/10.2147/IJGM.S354885] [PMID: 35282650]
[200]
Li Q, Zhang T, Wang Y, et al. Qing-Wen-Jie-Re mixture ameliorates poly (i:c)-induced viral pneumonia through regulating the inflammatory response and serum metabolism. Front Pharmacol 2022; 13: 891851.
[http://dx.doi.org/10.3389/fphar.2022.891851] [PMID: 35784698]
[201]
Maiese K. Forkhead transcription factors: new considerations for alzheimer’s disease and dementia. J Transl Sci 2016; 2(4): 241-7.
[http://dx.doi.org/10.15761/JTS.1000146] [PMID: 27390624]
[202]
Movahedpour A, Vakili O, Khalifeh M, et al. Mammalian target of rapamycin (mTOR) signaling pathway and traumatic brain injury: A novel insight into targeted therapy. Cell Biochem Funct 2022; 40(3): 232-47.
[http://dx.doi.org/10.1002/cbf.3692] [PMID: 35258097]
[203]
Cheng J, North BJ, Zhang T, et al. The emerging roles of protein homeostasis-governing pathways in Alzheimer’s disease. Aging Cell 2018; 17(5): e12801.
[http://dx.doi.org/10.1111/acel.12801] [PMID: 29992725]
[204]
Morris G, Berk M, Maes M, Puri BK. Could alzheimer’s disease originate in the periphery and if so how so? Mol Neurobiol 2019; 56(1): 406-34.
[http://dx.doi.org/10.1007/s12035-018-1092-y] [PMID: 29705945]
[205]
Zhang ZH, Wu QY, Zheng R, et al. Selenomethionine mitigates cognitive decline by targeting both tau hyperphosphorylation and autophagic clearance in an Alzheimer’s disease mouse model. J Neurosci 2017; 37(9): 2449-62.
[http://dx.doi.org/10.1523/JNEUROSCI.3229-16.2017] [PMID: 28137967]
[206]
Maiese K. Novel insights for multiple sclerosis and demyelinating disorders with apoptosis, autophagy, FoxO, and mTOR. Curr Neurovasc Res 2021; 18(2): 169-71.
[http://dx.doi.org/10.2174/1567202618999210505124235] [PMID: 33964865]
[207]
Geng K, Ma X, Jiang Z, et al. Innate immunity in diabetic wound healing: Focus on the mastermind hidden in chronic inflammatory. Front Pharmacol 2021; 12: 653940.
[http://dx.doi.org/10.3389/fphar.2021.653940] [PMID: 33967796]
[208]
Ye M, Zhao Y, Wang Y, et al. NAD(H)-loaded nanoparticles for efficient sepsis therapy via modulating immune and vascular homeostasis. Nat Nanotechnol 2022; 17(8): 880-90.
[http://dx.doi.org/10.1038/s41565-022-01137-w] [PMID: 35668170]
[209]
Wu L, Xiong X, Wu X, et al. Targeting oxidative stress and inflammation to prevent ischemia-reperfusion injury. Front Mol Neurosci 2020; 13: 28.
[http://dx.doi.org/10.3389/fnmol.2020.00028] [PMID: 32194375]
[210]
Farahani M, Niknam Z, Mohammadi Amirabad L, et al. Molecular pathways involved in COVID-19 and potential pathway-based therapeutic targets. Biomed Pharmacother 2022; 145: 112420.
[http://dx.doi.org/10.1016/j.biopha.2021.112420] [PMID: 34801852]
[211]
Ponzetti M, Rucci N, Falone S. RNA methylation and cellular response to oxidative stress-promoting anticancer agents. Cell Cycle 2023; 22(8): 870-905.
[http://dx.doi.org/10.1080/15384101.2023.2165632] [PMID: 36648057]
[212]
Chong ZZ, Shang YC, Wang S, Maiese K. SIRT1: New avenues of discovery for disorders of oxidative stress. Expert Opin Ther Targets 2012; 16(2): 167-78.
[http://dx.doi.org/10.1517/14728222.2012.648926] [PMID: 22233091]
[213]
Xiong J, Bonney S, Gonçalves RV, Esposito D. Brassinosteroids control the inflammation, oxidative stress and cell migration through the control of mitochondrial function on skin regeneration. Life Sci 2022; 307: 120887.
[http://dx.doi.org/10.1016/j.lfs.2022.120887] [PMID: 35985505]
[214]
Chong ZZ, Li F, Maiese K. Stress in the brain: Novel cellular mechanisms of injury linked to Alzheimer’s disease. Brain Res Brain Res Rev 2005; 49(1): 1-21.
[http://dx.doi.org/10.1016/j.brainresrev.2004.11.005] [PMID: 15960984]
[215]
Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 2007; 22(11): 1251-67.
[PMID: 17647198]
[216]
Chen G, Li Z, Chen C, et al. The molecular landscape and biological alterations induced by PRAS40-knockout in head and neck squamous cell carcinoma. Front Oncol 2021; 10: 565669.
[http://dx.doi.org/10.3389/fonc.2020.565669] [PMID: 33489877]
[217]
Maiese K, Chong ZZ, Shang YC, Wang S. mTOR: On target for novel therapeutic strategies in the nervous system. Trends Mol Med 2013; 19(1): 51-60.
[http://dx.doi.org/10.1016/j.molmed.2012.11.001] [PMID: 23265840]
[218]
Xue Q, Nagy JA, Manseau EJ, Phung TL, Dvorak HF, Benjamin LE. Rapamycin inhibition of the Akt/mTOR pathway blocks select stages of VEGF-A164-driven angiogenesis, in part by blocking S6Kinase. Arterioscler Thromb Vasc Biol 2009; 29(8): 1172-8.
[http://dx.doi.org/10.1161/ATVBAHA.109.185918] [PMID: 19443844]
[219]
Sergio CM, Rolando CA. Erythropoietin regulates signaling pathways associated with neuroprotective events. Exp Brain Res 2022; 240(5): 1303-15.
[http://dx.doi.org/10.1007/s00221-022-06331-9] [PMID: 35234993]
[220]
Maiese K. Regeneration in the nervous system with erythropoietin. Front Biosci 2016; 21(3): 561-96.
[http://dx.doi.org/10.2741/4408]
[221]
Chong ZZ, Shang YC, Wang S, Maiese K. PRAS40 is an integral regulatory component of erythropoietin mTOR signaling and cytoprotection. PLoS One 2012; 7(9): e45456.
[http://dx.doi.org/10.1371/journal.pone.0045456] [PMID: 23029019]
[222]
Chen Shang Y, Zhong Chong Z, Wang S, Maiese K. Wnt1 inducible signaling pathway protein 1 (WISP1) targets PRAS40 to govern β-amyloid apoptotic injury of microglia. Curr Neurovasc Res 2012; 9(4): 239-49.
[http://dx.doi.org/10.2174/156720212803530618] [PMID: 22873724]
[223]
Wang H, Zhang Q, Wen Q, et al. Proline-rich Akt substrate of 40kDa (PRAS40): A novel downstream target of PI3k/Akt signaling pathway. Cell Signal 2012; 24(1): 17-24.
[http://dx.doi.org/10.1016/j.cellsig.2011.08.010] [PMID: 21906675]
[224]
Saenwongsa W, Nithichanon A, Chittaganpitch M, et al. Metformin-induced suppression of IFN-α via mTORC1 signalling following seasonal vaccination is associated with impaired antibody responses in type 2 diabetes. Sci Rep 2020; 10(1): 3229.
[http://dx.doi.org/10.1038/s41598-020-60213-0] [PMID: 32094377]
[225]
Chakrabarti P, English T, Shi J, Smas CM, Kandror KV. Mammalian target of rapamycin complex 1 suppresses lipolysis, stimulates lipogenesis, and promotes fat storage. Diabetes 2010; 59(4): 775-81.
[http://dx.doi.org/10.2337/db09-1602] [PMID: 20068142]
[226]
Malla R, Wang Y, Chan WK, Tiwari AK, Faridi JS. Genetic ablation of PRAS40 improves glucose homeostasis via linking the AKT and mTOR pathways. Biochem Pharmacol 2015; 96(1): 65-75.
[http://dx.doi.org/10.1016/j.bcp.2015.04.016] [PMID: 25931147]
[227]
Hamada S, Hara K, Hamada T, et al. Upregulation of the mammalian target of rapamycin complex 1 pathway by Ras homolog enriched in brain in pancreatic beta-cells leads to increased beta-cell mass and prevention of hyperglycemia. Diabetes 2009; 58(6): 1321-32.
[http://dx.doi.org/10.2337/db08-0519] [PMID: 19258434]
[228]
Katsianou MA, Papavassiliou KA, Gargalionis AN, et al. Polycystin‐1 regulates cell proliferation and migration through AKT/mTORC2 pathway in a human craniosynostosis cell model. J Cell Mol Med 2022; 26(8): 2428-37.
[http://dx.doi.org/10.1111/jcmm.17266] [PMID: 35285136]
[229]
Gu Y, Lindner J, Kumar A, Yuan W, Magnuson MA. Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes 2011; 60(3): 827-37.
[http://dx.doi.org/10.2337/db10-1194] [PMID: 21266327]
[230]
Wang RH, Kim HS, Xiao C, Xu X, Gavrilova O, Deng CX. Hepatic Sirt1 deficiency in mice impairs mTorc2/Akt signaling and results in hyperglycemia, oxidative damage, and insulin resistance. J Clin Invest 2011; 121(11): 4477-90.
[http://dx.doi.org/10.1172/JCI46243] [PMID: 21965330]
[231]
Treins C, Alliouachene S, Hassouna R, Xie Y, Birnbaum MJ, Pende M. The combined deletion of S6K1 and Akt2 deteriorates glycemic control in a high-fat diet. Mol Cell Biol 2012; 32(19): 4001-11.
[http://dx.doi.org/10.1128/MCB.00514-12] [PMID: 22851690]
[232]
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; 99(2): 128-48.
[http://dx.doi.org/10.1016/j.pneurobio.2012.08.001] [PMID: 22980037]
[233]
Maiese K. Novel treatment strategies for the nervous system: Circadian clock genes, non-coding RNAs, and forkhead transcription factors. Curr Neurovasc Res 2018; 15(1): 81-91.
[http://dx.doi.org/10.2174/1567202615666180319151244] [PMID: 29557749]
[234]
Teotia P, Van Hook MJ, Fischer D, Ahmad I. Human retinal ganglion cell axon regeneration by recapitulating developmental mechanisms: Effects of recruitment of the mTOR pathway. Development 2019; 146(13): dev178012.
[http://dx.doi.org/10.1242/dev.178012] [PMID: 31273087]
[235]
Chen Shang Y, Zhong Chong Z, Wang S, Maiese K. Erythropoietin and Wnt1 govern pathways of mTOR, Apaf-1, and XIAP in inflammatory microglia. Curr Neurovasc Res 2011; 8(4): 270-85.
[http://dx.doi.org/10.2174/156720211798120990] [PMID: 22023617]
[236]
Dong J, Li H, Bai Y, Wu C. Muscone ameliorates diabetic peripheral neuropathy through activating AKT/mTOR signalling pathway. J Pharm Pharmacol 2019; 71(11): 1706-13.
[http://dx.doi.org/10.1111/jphp.13157] [PMID: 31468549]
[237]
Shang YC, Chong ZZ, Wang S, Maiese K. Prevention of β-amyloid degeneration of microglia by erythropoietin depends on Wnt1, the PI 3-K/mTOR pathway, Bad, and Bcl-xL. Aging 2012; 4(3): 187-201.
[http://dx.doi.org/10.18632/aging.100440] [PMID: 22388478]
[238]
Chen Shang Y, Zhong Chong Z, Wang S, Maiese K. Tuberous sclerosis protein 2 (TSC2) modulates CCN4 cytoprotection during apoptotic amyloid toxicity in microglia. Curr Neurovasc Res 2013; 10(1): 29-38.
[http://dx.doi.org/10.2174/156720213804806007] [PMID: 23244622]
[239]
Wang Y, Wang YX, Liu T, et al. μ-Opioid receptor attenuates Aβ oligomers-induced neurotoxicity through mTOR signaling. CNS Neurosci Ther 2015; 21(1): 8-14.
[http://dx.doi.org/10.1111/cns.12316] [PMID: 25146548]
[240]
Park JA, Lee CH. Temporal changes in mammalian target of rapamycin (mTOR) and phosphorylated-mTOR expressions in the hippocampal CA1 region of rat with vascular dementia. J Vet Sci 2017; 18(1): 11-6.
[http://dx.doi.org/10.4142/jvs.2017.18.1.11] [PMID: 27297423]
[241]
Farmer K, Abd-Elrahman KS, Derksen A, et al. mGluR5 allosteric modulation promotes neurorecovery in a 6-OHDA-toxicant model of parkinson’s disease. Mol Neurobiol 2020; 57(3): 1418-31.
[http://dx.doi.org/10.1007/s12035-019-01818-z] [PMID: 31754998]
[242]
Dai C, Tang S, Biao X, Xiao X, Chen C, Li J. Colistin induced peripheral neurotoxicity involves mitochondrial dysfunction and oxidative stress in mice. Mol Biol Rep 2019; 46(2): 1963-72.
[http://dx.doi.org/10.1007/s11033-019-04646-5] [PMID: 30783935]
[243]
Huang D, Shen S, Cai M, et al. Role of mTOR complex in IGF-1 induced neural differentiation of DPSCs. J Mol Histol 2019; 50(3): 273-83.
[http://dx.doi.org/10.1007/s10735-019-09825-z] [PMID: 31049797]
[244]
Xi J, Wang Y, Long X, Ma Y. Mangiferin potentiates neuroprotection by isoflurane in neonatal hypoxic brain injury by reducing oxidative stress and activation of phosphatidylinositol-3-Kinase/Akt/mammalian target of rapamycin (PI3K/Akt/mTOR) signaling. Med Sci Monit 2018; 24: 7459-68.
[http://dx.doi.org/10.12659/MSM.908142] [PMID: 30338764]
[245]
Dong W, Wang R, Ma LN, et al. Influence of age-related learning and memory capacity of mice: different effects of a high and low caloric diet. Aging Clin Exp Res 2016; 28(2): 303-11.
[http://dx.doi.org/10.1007/s40520-015-0398-0] [PMID: 26138818]
[246]
Han K, Jia N, Zhong Y, Shang X. S14G-humanin alleviates insulin resistance and increases autophagy in neurons of APP/PS1 transgenic mouse. J Cell Biochem 2017; 119(4): 3111-7.
[PMID: 29058763]
[247]
Dai C, Ciccotosto GD, Cappai R, et al. Rapamycin confers neuroprotection against colistin-induced oxidative stress, mitochondria dysfunction and apoptosis through the activation of autophagy and mTOR/Akt/CREB signaling pathways. ACS Chem Neurosci 2018; 9(4): 824-37.
[http://dx.doi.org/10.1021/acschemneuro.7b00323] [PMID: 29257864]
[248]
Park A, Koh HC. NF-κB/mTOR-mediated autophagy can regulate diquat-induced apoptosis. Arch Toxicol 2019; 93(5): 1239-53.
[http://dx.doi.org/10.1007/s00204-019-02424-7] [PMID: 30848314]
[249]
Javdan N, Ayatollahi SA, Choudhary MI, et al. Capsaicin protects against testicular torsion injury through mTOR-dependent mechanism. Theriogenology 2018; 113: 247-52.
[http://dx.doi.org/10.1016/j.theriogenology.2018.03.012] [PMID: 29573663]
[250]
Zhao Y, Wang Q, Wang Y, Li J, Lu G, Liu Z. Glutamine protects against oxidative stress injury through inhibiting the activation of PI3K/Akt signaling pathway in parkinsonian cell model. Environ Health Prev Med 2019; 24(1): 4.
[http://dx.doi.org/10.1186/s12199-018-0757-5] [PMID: 30611190]
[251]
Liu P, Yang X, Hei C, et al. Rapamycin reduced ischemic brain damage in diabetic animals is associated with suppressions of mTOR and ERK1/2 signaling. Int J Biol Sci 2016; 12(8): 1032-40.
[http://dx.doi.org/10.7150/ijbs.15624] [PMID: 27489506]
[252]
Thomas SD, Jha NK, Ojha S, Sadek B. mTOR signaling disruption and its association with the development of autism spectrum disorder. Molecules 2023; 28(4): 1889.
[http://dx.doi.org/10.3390/molecules28041889] [PMID: 36838876]
[253]
Lim YM, Lim H, Hur KY, et al. Systemic autophagy insufficiency compromises adaptation to metabolic stress and facilitates progression from obesity to diabetes. Nat Commun 2014; 5(1): 4934.
[http://dx.doi.org/10.1038/ncomms5934] [PMID: 25255859]
[254]
Ma L, Fu R, Duan Z, et al. Sirt1 is essential for resveratrol enhancement of hypoxia-induced autophagy in the type 2 diabetic nephropathy rat. Pathol Res Pract 2016; 212(4): 310-8.
[http://dx.doi.org/10.1016/j.prp.2016.02.001] [PMID: 26872534]
[255]
Liu Z, Stanojevic V, Brindamour LJ, Habener JF. GLP1-derived nonapeptide GLP1(28–36)amide protects pancreatic β-cells from glucolipotoxicity. J Endocrinol 2012; 213(2): 143-54.
[http://dx.doi.org/10.1530/JOE-11-0328] [PMID: 22414687]
[256]
He C, Bassik MC, Moresi V, et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012; 481(7382): 511-5.
[http://dx.doi.org/10.1038/nature10758] [PMID: 22258505]
[257]
Liu Y, Palanivel R, Rai E, et al. Adiponectin stimulates autophagy and reduces oxidative stress to enhance insulin sensitivity during high-fat diet feeding in mice. Diabetes 2015; 64(1): 36-48.
[http://dx.doi.org/10.2337/db14-0267] [PMID: 25071026]
[258]
Radulovic J, Gabbay V. PFC mTOR signaling as a biological signature for cognitive deficits in bipolar disorder without psychosis. Cell Rep Med 2021; 2(5): 100282.
[http://dx.doi.org/10.1016/j.xcrm.2021.100282] [PMID: 34095884]
[259]
Kim KA, Shin YJ, Akram M, et al. High glucose condition induces autophagy in endothelial progenitor cells contributing to angiogenic impairment. Biol Pharm Bull 2014; 37(7): 1248-52.
[http://dx.doi.org/10.1248/bpb.b14-00172] [PMID: 24989016]
[260]
Saleem S, Biswas SC. Tribbles pseudokinase 3 induces both apoptosis and autophagy in amyloid-β-induced neuronal death. J Biol Chem 2017; 292(7): 2571-85.
[http://dx.doi.org/10.1074/jbc.M116.744730] [PMID: 28011637]
[261]
Lee JH, Lee JH, Jin M, et al. Diet control to achieve euglycemia induces significant loss of heart and liver weight via increased autophagy compared with ad libitum diet in diabetic rats. Exp Mol Med 2014; 46(8): e111.
[http://dx.doi.org/10.1038/emm.2014.52] [PMID: 25168310]
[262]
Hu P, Lai D, Lu P, Gao J, He H. ERK and Akt signaling pathways are involved in advanced glycation end product-induced autophagy in rat vascular smooth muscle cells. Int J Mol Med 2012; 29(4): 613-8.
[http://dx.doi.org/10.3892/ijmm.2012.891] [PMID: 22293957]
[263]
Lee Y, Hong Y, Lee SR, Chang KT, Hong Y. Autophagy contributes to retardation of cardiac growth in diabetic rats. Lab Anim Res 2012; 28(2): 99-107.
[http://dx.doi.org/10.5625/lar.2012.28.2.99] [PMID: 22787483]
[264]
Martino L, Masini M, Novelli M, et al. Palmitate activates autophagy in INS-1E β-cells and in isolated rat and human pancreatic islets. PLoS One 2012; 7(5): e36188.
[http://dx.doi.org/10.1371/journal.pone.0036188] [PMID: 22563482]
[265]
Guo T, Chen M, Liu J, et al. Neuropilin-1 promotes mitochondrial structural repair and functional recovery in rats with cerebral ischemia. J Transl Med 2023; 21(1): 297.
[http://dx.doi.org/10.1186/s12967-023-04125-3] [PMID: 37138283]
[266]
Maiese K, Li F, Chong ZZ. New avenues of exploration for erythropoietin. JAMA 2005; 293(1): 90-5.
[http://dx.doi.org/10.1001/jama.293.1.90] [PMID: 15632341]
[267]
Lee HJ, Koh SH, Song KM, Seol IJ, Park HK. The Akt/mTOR/p70S6K Pathway Is involved in the neuroprotective effect of erythropoietin on hypoxic/ischemic brain injury in a neonatal rat model. Neonatology 2016; 110(2): 93-100.
[http://dx.doi.org/10.1159/000444360] [PMID: 27070481]
[268]
Maiese K, Chong ZZ, Shang YC, Wang S. Erythropoietin: New directions for the nervous system. Int J Mol Sci 2012; 13(9): 11102-29.
[http://dx.doi.org/10.3390/ijms130911102] [PMID: 23109841]
[269]
Wang GB, Ni YL, Zhou XP, Zhang WF. The AKT/mTOR pathway mediates neuronal protective effects of erythropoietin in sepsis. Mol Cell Biochem 2014; 385(1-2): 125-32.
[http://dx.doi.org/10.1007/s11010-013-1821-5] [PMID: 24057122]
[270]
Ka M, Smith AL, Kim WY. MTOR controls genesis and autophagy of GABAergic interneurons during brain development. Autophagy 2017; 13(8): 1348-63.
[http://dx.doi.org/10.1080/15548627.2017.1327927]
[271]
Pende M, Kozma SC, Jaquet M, et al. Hypoinsulinaemia, glucose intolerance and diminished β-cell size in S6K1-deficient mice. Nature 2000; 408(6815): 994-7.
[http://dx.doi.org/10.1038/35050135] [PMID: 11140689]
[272]
Pasini E, Flati V, Paiardi S, et al. Intracellular molecular effects of insulin resistance in patients with metabolic syndrome. Cardiovasc Diabetol 2010; 9(1): 46.
[http://dx.doi.org/10.1186/1475-2840-9-46] [PMID: 20809949]
[273]
Zhou J, Wu J, Zheng F, Jin M, Li H. Glucagon-like peptide-1 analog-mediated protection against cholesterol-induced apoptosis via mammalian target of rapamycin activation in pancreatic βTC-6 cells -1mTORβTC-6. J Diabetes 2015; 7(2): 231-9.
[http://dx.doi.org/10.1111/1753-0407.12177] [PMID: 24909811]
[274]
Liu YW, Zhang L, Li Y, et al. Activation of mTOR signaling mediates the increased expression of AChE in high glucose condition: In vitro and in vivo evidences. Mol Neurobiol 2016; 53(7): 4972-80.
[http://dx.doi.org/10.1007/s12035-015-9425-6] [PMID: 26374551]
[275]
Miao XY, Gu ZY, Liu P, et al. The human glucagon-like peptide-1 analogue liraglutide regulates pancreatic beta-cell proliferation and apoptosis via an AMPK/mTOR/P70S6K signaling pathway. Peptides 2013; 39: 71-9.
[http://dx.doi.org/10.1016/j.peptides.2012.10.006] [PMID: 23116613]
[276]
Fraenkel M, Ketzinel-Gilad M, Ariav Y, et al. mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 2008; 57(4): 945-57.
[http://dx.doi.org/10.2337/db07-0922] [PMID: 18174523]
[277]
Sataranatarajan K, Ikeno Y, Bokov A, et al. Rapamycin increases mortality in db/db mice, a mouse model of type 2 diabetes. J Gerontol A Biol Sci Med Sci 2016; 71(7): 850-7.
[http://dx.doi.org/10.1093/gerona/glv170] [PMID: 26442901]
[278]
Deblon N, Bourgoin L, Veyrat-Durebex C, et al. Chronic mTOR inhibition by rapamycin induces muscle insulin resistance despite weight loss in rats. Br J Pharmacol 2012; 165(7): 2325-40.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01716.x] [PMID: 22014210]
[279]
Crespo MC, Tomé-Carneiro J, Pintado C, Dávalos A, Visioli F, Burgos-Ramos E. Hydroxytyrosol restores proper insulin signaling in an astrocytic model of Alzheimer’s disease. Biofactors 2017; 43(4): 540-8.
[http://dx.doi.org/10.1002/biof.1356] [PMID: 28317262]
[280]
Pal PB, Sonowal H, Shukla K, Srivastava SK, Ramana KV. Aldose reductase regulates hyperglycemia-induced HUVEC death via SIRT1/AMPK-α1/mTOR pathway. J Mol Endocrinol 2019; 63(1): 11-25.
[http://dx.doi.org/10.1530/JME-19-0080] [PMID: 30986766]
[281]
Hua K, Li T, He Y, et al. Resistin secreted by porcine alveolar macrophages leads to endothelial cell dysfunction during Haemophilus parasuis infection. Virulence 2023; 14(1): 2171636.
[http://dx.doi.org/10.1080/21505594.2023.2171636] [PMID: 36694280]
[282]
Guimera AM, Clark P, Wordsworth J, Anugula S, Rasmussen LJ, Shanley DP. Systems modelling predicts chronic inflammation and genomic instability prevent effective mitochondrial regulation during biological ageing. Exp Gerontol 2022; 166: 111889.
[http://dx.doi.org/10.1016/j.exger.2022.111889] [PMID: 35811018]
[283]
Sato T, Nakashima A, Guo L, Tamanoi F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 2009; 284(19): 12783-91.
[http://dx.doi.org/10.1074/jbc.M809207200] [PMID: 19299511]
[284]
Balan V, Miller GS, Kaplun L, et al. Life span extension and neuronal cell protection by Drosophila nicotinamidase. J Biol Chem 2008; 283(41): 27810-9.
[http://dx.doi.org/10.1074/jbc.M804681200] [PMID: 18678867]
[285]
Moroz N, Carmona JJ, Anderson E, Hart AC, Sinclair DA, Blackwell TK. Dietary restriction involves NAD+ ‐dependent mechanisms and a shift toward oxidative metabolism. Aging Cell 2014; 13(6): 1075-85.
[http://dx.doi.org/10.1111/acel.12273] [PMID: 25257342]
[286]
Xia W, Zhang F, Xie C, Jiang M, Hou M. Macrophage migration inhibitory factor confers resistance to senescence through CD74-dependent AMPK-FOXO3a signaling in mesenchymal stem cells. Stem Cell Res Ther 2015; 6(1): 82.
[http://dx.doi.org/10.1186/s13287-015-0076-3] [PMID: 25896286]
[287]
Chiu SC, Chao CY, Chiang EPI, Syu JN, Rodriguez RL, Tang FY. N-3 polyunsaturated fatty acids alleviate high glucose-mediated dysfunction of endothelial progenitor cells and prevent ischemic injuries both in vitro and in vivo. J Nutr Biochem 2017; 42: 172-81.
[http://dx.doi.org/10.1016/j.jnutbio.2017.01.009] [PMID: 28189115]
[288]
Maiese K. The implications of telomere length: advanced aging, cell senescence, mri phenotypes, stem cells and alzheimer’s disease. Curr Neurovasc Res 2023; 20(2): 171-4.
[289]
Zhang H, Yang X, Pang X, Zhao Z, Yu H, Zhou H. Genistein protects against ox-LDL-induced senescence through enhancing SIRT1/LKB1/AMPK-mediated autophagy flux in HUVECs. Mol Cell Biochem 2019; 455(1-2): 127-34.
[http://dx.doi.org/10.1007/s11010-018-3476-8] [PMID: 30443855]
[290]
Zhao H, Wang ZC, Wang KF, Chen XY A. Aβ peptide secretion is reduced by radix polygalae-induced autophagy via activation of the AMPK/mTOR pathway. Mol Med Rep 2015; 12(2): 2771-6.
[http://dx.doi.org/10.3892/mmr.2015.3781] [PMID: 25976650]
[291]
Du LL, Chai DM, Zhao LN, et al. AMPK activation ameliorates Alzheimer’s disease-like pathology and spatial memory impairment in a streptozotocin-induced Alzheimer’s disease model in rats. J Alzheimers Dis 2014; 43(3): 775-84.
[http://dx.doi.org/10.3233/JAD-140564] [PMID: 25114075]
[292]
Yu M, Zhang H, Wang B, et al. Key signaling pathways in aging and potential interventions for healthy aging. Cells 2021; 10(3): 660.
[http://dx.doi.org/10.3390/cells10030660] [PMID: 33809718]
[293]
Lin CL, Huang WN, Li HH, et al. Hydrogen-rich water attenuates amyloid β-induced cytotoxicity through upregulation of Sirt1-FoxO3a by stimulation of AMP-activated protein kinase in SK-N-MC cells. Chem Biol Interact 2015; 240: 12-21.
[http://dx.doi.org/10.1016/j.cbi.2015.07.013] [PMID: 26271894]
[294]
Yang J, Suo H, Song J. Protective role of mitoquinone against impaired mitochondrial homeostasis in metabolic syndrome. Crit Rev Food Sci Nutr 2020; 20: 1-19.
[PMID: 32815398]
[295]
Maiese K. The many facets of cell injury: angiogenesis to autophagy. Curr Neurovasc Res 2012; 9(2): 83-4.
[http://dx.doi.org/10.2174/156720212800410911] [PMID: 22515176]
[296]
Shokri Afra H, Zangooei M, Meshkani R, et al. Hesperetin is a potent bioactivator that activates SIRT1-AMPK signaling pathway in HepG2 cells. J Physiol Biochem 2019; 75(2): 125-33.
[http://dx.doi.org/10.1007/s13105-019-00678-4] [PMID: 31093947]
[297]
Zhao D, Sun X, Lv S, et al. Salidroside attenuates oxidized low density lipoprotein induced endothelial cell injury via promotion of the AMPK/SIRT1 pathway. Int J Mol Med 2019; 43(6): 2279-90.
[http://dx.doi.org/10.3892/ijmm.2019.4153] [PMID: 30942428]
[298]
Dong Y, Chen H, Gao J, Liu Y, Li J, Wang J. Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol 2019; 136: 27-41.
[http://dx.doi.org/10.1016/j.yjmcc.2019.09.001] [PMID: 31505198]
[299]
Jang W, Kim HJ, Li H, Jo KD, Lee MK, Yang HO. The neuroprotective effect of erythropoietin on rotenone-induced neurotoxicity in SH-SY5Y Cells through the induction of autophagy. Mol Neurobiol 2016; 53(6): 3812-21.
[http://dx.doi.org/10.1007/s12035-015-9316-x] [PMID: 26156288]
[300]
Tsai CF, Kuo YH, Yeh WL, et al. Regulatory effects of caffeic acid phenethyl ester on neuroinflammation in microglial cells. Int J Mol Sci 2015; 16(12): 5572-89.
[http://dx.doi.org/10.3390/ijms16035572] [PMID: 25768341]
[301]
Maiese K. Erythropoietin and mTOR: A One-Two Punch for aging-related disorders accompanied by enhanced life expectancy. Curr Neurovasc Res 2016; 13(4): 329-40.
[http://dx.doi.org/10.2174/1567202613666160729164900] [PMID: 27488211]
[302]
Wang L, Di L, Noguchi CT. AMPK is involved in mediation of erythropoietin influence on metabolic activity and reactive oxygen species production in white adipocytes. Int J Biochem Cell Biol 2014; 54: 1-9.
[http://dx.doi.org/10.1016/j.biocel.2014.06.008] [PMID: 24953559]
[303]
Andreucci M, Fuiano G, Presta P, et al. Downregulation of cell survival signalling pathways and increased cell damage in hydrogen peroxide-treated human renal proximal tubular cells by alpha-erythropoietin. Cell Prolif 2009; 42(4): 554-61.
[http://dx.doi.org/10.1111/j.1365-2184.2009.00617.x] [PMID: 19508320]
[304]
Nejabati HR, Samadi N, Shahnazi V, et al. Nicotinamide and its metabolite N1-Methylnicotinamide alleviate endocrine and metabolic abnormalities in adipose and ovarian tissues in rat model of Polycystic Ovary Syndrome. Chem Biol Interact 2020; 324: 109093.
[http://dx.doi.org/10.1016/j.cbi.2020.109093] [PMID: 32298659]
[305]
Maiese K. The oversight of circadian clock genes for the detection, prevention, and treatment of COVID-19 infection. Curr Neurovasc Res 2021; 18(5): 471-3.
[http://dx.doi.org/10.2174/1567202619666211223142258] [PMID: 34951379]
[306]
Kalender A, Selvaraj A, Kim SY, et al. Metformin, independent of AMPK, inhibits mTORC1 in a rag GTPase-dependent manner. Cell Metab 2010; 11(5): 390-401.
[http://dx.doi.org/10.1016/j.cmet.2010.03.014] [PMID: 20444419]
[307]
Oda SS. Metformin protects against experimental acrylamide neuropathy in rats. Drug Dev Res 2017; 78(7): 349-59.
[http://dx.doi.org/10.1002/ddr.21400] [PMID: 28771761]
[308]
Sanadgol N, Barati M, Houshmand F, et al. Metformin accelerates myelin recovery and ameliorates behavioral deficits in the animal model of multiple sclerosis via adjustment of AMPK/Nrf2/mTOR signaling and maintenance of endogenous oligodendrogenesis during brain self-repairing period. Pharmacol Rep 2020; 72(3): 641-58.
[http://dx.doi.org/10.1007/s43440-019-00019-8] [PMID: 32048246]
[309]
Ong AN, Tan CC, Cañete MT, Lim BA, Robles J. Association between metformin use and mortality among patients with type 2 diabetes mellitus hospitalized for COVID-19 infection. J ASEAN Fed End Soci 2021; 36(2): 133-41.
[http://dx.doi.org/10.15605/jafes.036.02.20] [PMID: 34966196]
[310]
Shiravandi A, Yari F, Tofigh N, et al. Earlier detection of alzheimer’s disease based on a novel biomarker cis p-tau by a label-free electrochemical immunosensor. Biosensors 2022; 12(10): 879.
[http://dx.doi.org/10.3390/bios12100879] [PMID: 36291017]
[311]
Agarwal D, Kumari R, Ilyas A, Tyagi S, Kumar R, Poddar NK. Crosstalk between epigenetics and mTOR as a gateway to new insights in pathophysiology and treatment of Alzheimer’s disease. Int J Biol Macromol 2021; 192: 895-903.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.10.026] [PMID: 34662652]
[312]
Eshraghi M, Ahmadi M, Afshar S, et al. Enhancing autophagy in Alzheimer’s disease through drug repositioning. Pharmacol Ther 2022; 237: 108171.
[http://dx.doi.org/10.1016/j.pharmthera.2022.108171] [PMID: 35304223]
[313]
Li X, Li K, Chu F, Huang J, Yang Z. Graphene oxide enhances β-amyloid clearance by inducing autophagy of microglia and neurons. Chem Biol Interact 2020; 325: 109126.
[http://dx.doi.org/10.1016/j.cbi.2020.109126] [PMID: 32430275]
[314]
Maiese K, Holloway HH, Larson DM, Soncrant TT. Effect of acute and chronic arecoline treatment on cerebral metabolism and blood flow in the conscious rat. Brain Res 1994; 641(1): 65-75.
[http://dx.doi.org/10.1016/0006-8993(94)91816-3] [PMID: 8019853]
[315]
Naseri A, Baghernezhad K, Seyedi-Sahebari S, et al. The association of apolipoprotein E (ApoE) genotype and cognitive outcomes in multiple sclerosis; a systematic review and meta-analysis. Mult Scler Relat Disord 2022; 65: 104011.
[http://dx.doi.org/10.1016/j.msard.2022.104011] [PMID: 35803087]
[316]
Pontifex MG, Martinsen A, Saleh RNM, et al. APOE4 genotype exacerbates the impact of menopause on cognition and synaptic plasticity in APOE‐TR mice. FASEB J 2021; 35(5): e21583.
[http://dx.doi.org/10.1096/fj.202002621RR] [PMID: 33891334]
[317]
Roccaro I, Smirni D. Fiat Lux: The light became therapy. an overview on the bright light therapy in alzheimer’s disease sleep disorders. J Alzheimers Dis 2020; 77(1): 113-25.
[http://dx.doi.org/10.3233/JAD-200478] [PMID: 32804145]
[318]
Margrett JA, Schofield T, Martin P, Poon LW, Masaki K, Donlon TA. Novel functional, health, and genetic determinants of cognitive terminal decline: Kuakini honolulu heart program/honolulu-asia aging study. J Gerontol A Biol Sci Med Sci 2021; 77(8): 1525-33.
[PMID: 34918073]
[319]
Safdari Lord J, Soltani Rezaiezadeh J, Yekaninejad MS, Izadi P. The association of APOE genotype with COVID-19 disease severity. Sci Rep 2022; 12(1): 13483.
[http://dx.doi.org/10.1038/s41598-022-17262-4] [PMID: 35931737]
[320]
Maiese K. Late onset alzheimer’s disease: Novel clinical prospects for the future. Curr Neurovasc Res 2017; 14(2): 89.
[PMID: 28330334]
[321]
Maiese K, Chong ZZ, Hou J, Shang YC. New strategies for Alzheimer’s disease and cognitive impairment. Oxid Med Cell Longev 2009; 2(5): 279-89.
[http://dx.doi.org/10.4161/oxim.2.5.9990] [PMID: 20716915]
[322]
Cacabelos R, Carril J, Cacabelos N, et al. Sirtuins in alzheimer’s disease: SIRT2-related genophenotypes and implications for pharmacoepigenetics. Int J Mol Sci 2019; 20(5): 1249.
[http://dx.doi.org/10.3390/ijms20051249] [PMID: 30871086]
[323]
Chong ZZ, Shang YC, Hou J, Maiese K. Wnt1 neuroprotection translates into improved neurological function during oxidant stress and cerebral ischemia through AKT1 and mitochondrial apoptotic pathways. Oxid Med Cell Longev 2010; 3(2): 153-65.
[http://dx.doi.org/10.4161/oxim.3.2.11758] [PMID: 20716939]
[324]
Maiese K, Chong ZZ. Nicotinamide: necessary nutrient emerges as a novel cytoprotectant for the brain. Trends Pharmacol Sci 2003; 24(5): 228-32.
[http://dx.doi.org/10.1016/S0165-6147(03)00078-6] [PMID: 12767721]
[325]
Maiese K, Chong Z, Hou J, Shang Y. The vitamin nicotinamide: Translating nutrition into clinical care. Molecules 2009; 14(9): 3446-85.
[http://dx.doi.org/10.3390/molecules14093446] [PMID: 19783937]
[326]
Maiese K, Vincent AM. Membrane asymmetry and DNA degradation: functionally distinct determinants of neuronal programmed cell death. J Neurosci Res 2000; 59(4): 568-80.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000215)59:4<568:AID-JNR13>3.0.CO;2-R] [PMID: 10679797]
[327]
Lee G, Pollard HB, Arispe N. Annexin 5 and apolipoprotein E2 protect against Alzheimer’s amyloid-β-peptide cytotoxicity by competitive inhibition at a common phosphatidylserine interaction site. Peptides 2002; 23(7): 1249-63.
[http://dx.doi.org/10.1016/S0196-9781(02)00060-8] [PMID: 12128082]
[328]
Li W, Su D, Zhai Q, et al. Proteomes analysis reveals the involvement of autophagy in AD-like neuropathology induced by noise exposure and ApoE4. Environ Res 2019; 176: 108537.
[http://dx.doi.org/10.1016/j.envres.2019.108537] [PMID: 31228807]
[329]
Ojo JO, Reed JM, Crynen G, et al. APOE genotype dependent molecular abnormalities in the cerebrovasculature of Alzheimer’s disease and age-matched non-demented brains. Mol Brain 2021; 14(1): 110.
[http://dx.doi.org/10.1186/s13041-021-00803-9] [PMID: 34238312]
[330]
Levine KS, Leonard HL, Blauwendraat C, et al. Virus exposure and neurodegenerative disease risk across national biobanks. Neuron 2023; 111(7): 1086-1093.e2.
[http://dx.doi.org/10.1016/j.neuron.2022.12.029] [PMID: 36669485]
[331]
Kurki SN, Kantonen J, Kaivola K, et al. APOE ε4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: A Finnish biobank, autopsy and clinical study. Acta Neuropathol Commun 2021; 9(1): 199.
[http://dx.doi.org/10.1186/s40478-021-01302-7] [PMID: 34949230]
[332]
Al-kuraishy HM, Al-Buhadily AK, Al-Gareeb AI, et al. Citicoline and COVID-19: Vis-à-vis conjectured. Naunyn Schmiedebergs Arch Pharmacol 2022; 395(12): 1463-75.
[http://dx.doi.org/10.1007/s00210-022-02284-6] [PMID: 36063198]
[333]
Lally MA, Tsoukas P, Halladay CW, O’Neill E, Gravenstein S, Rudolph JL. Metformin is associated with decreased 30-day mortality among nursing home residents infected with SARS-CoV2. J Am Med Dir Assoc 2021; 22(1): 193-8.
[http://dx.doi.org/10.1016/j.jamda.2020.10.031] [PMID: 33232684]
[334]
Benotmane I, Perrin P, Vargas GG, et al. Biomarkers of cytokine release syndrome predict disease severity and mortality from COVID-19 in kidney transplant recipients. Transplantation 2021; 105(1): 158-69.
[http://dx.doi.org/10.1097/TP.0000000000003480] [PMID: 33009284]
[335]
Abu-Eid R, Ward FJ. Targeting the PI3K/Akt/mTOR pathway: A therapeutic strategy in COVID-19 patients. Immunol Lett 2021; 240: 1-8.
[http://dx.doi.org/10.1016/j.imlet.2021.09.005] [PMID: 34562551]
[336]
Jansen van Vuren E, Steyn SF, Brink CB, Möller M, Viljoen FP, Harvey BH. The neuropsychiatric manifestations of COVID-19: Interactions with psychiatric illness and pharmacological treatment. Biomed Pharmacother 2021; 135: 111200.
[http://dx.doi.org/10.1016/j.biopha.2020.111200] [PMID: 33421734]
[337]
Hardeland R. Redox biology of melatonin: Discriminating between circadian and noncircadian functions. Antioxid Redox Signal 2022; 37(10-12): 704-25.
[http://dx.doi.org/10.1089/ars.2021.0275] [PMID: 35018802]
[338]
Zuo J, Zhang Z, Luo M, Zhou L, Nice EC, Zhang W. Redox signaling at the crossroads of human health and disease. MedComm 2022; 3(2): e127.
[http://dx.doi.org/10.1002/mco2.127]
[339]
Maiese K, Li F, Chong ZZ, Shang YC. The Wnt signaling pathway: Aging gracefully as a protectionist? Pharmacol Ther 2008; 118(1): 58-81.
[http://dx.doi.org/10.1016/j.pharmthera.2008.01.004] [PMID: 18313758]
[340]
Tang Y, Chen Y, Liu R, Li W, Hua B, Bao Y. Wnt signaling pathways: A role in pain processing. Neuromolecular Med 2022; 24(3): 233-49.
[http://dx.doi.org/10.1007/s12017-021-08700-z] [PMID: 35067780]
[341]
Maiese K. The challenges for drug development: Cytokines, genes, and stem cells. Curr Neurovasc Res 2012; 9(4): 231-2.
[http://dx.doi.org/10.2174/156720212803530690] [PMID: 23030554]
[342]
Vallée A, Vallée JN, Lecarpentier Y. Parkinson’s Disease: Potential actions of lithium by targeting the WNT/β-catenin pathway, oxidative stress, inflammation and glutamatergic pathway. Cells 2021; 10(2): 230.
[http://dx.doi.org/10.3390/cells10020230] [PMID: 33503974]
[343]
Zhou Q, Liu C, Liu W, et al. Rotenone induction of hydrogen peroxide inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, leading to neuronal apoptosis. Toxicol Sci 2015; 143(1): 81-96.
[http://dx.doi.org/10.1093/toxsci/kfu211] [PMID: 25304210]
[344]
Wu J, Zhu D, Zhang J, Li G, Liu Z, Sun J. Lithium protects against methamphetamine-induced neurotoxicity in PC12 cells via Akt/GSK3β/mTOR pathway. Biochem Biophys Res Commun 2015; 465(3): 368-73.
[http://dx.doi.org/10.1016/j.bbrc.2015.08.005] [PMID: 26271595]
[345]
Xu Y, Liu C, Chen S, et al. Activation of AMPK and inactivation of Akt result in suppression of mTOR-mediated S6K1 and 4E-BP1 pathways leading to neuronal cell death in in vitro models of Parkinson’s disease. Cell Signal 2014; 26(8): 1680-9.
[http://dx.doi.org/10.1016/j.cellsig.2014.04.009] [PMID: 24726895]
[346]
Bonam SR, Tranchant C, Muller S. Autophagy-lysosomal pathway as potential therapeutic target in parkinson’s disease. Cells 2021; 10(12): 3547.
[http://dx.doi.org/10.3390/cells10123547] [PMID: 34944054]
[347]
Holling T, Bhavani GS, Elsner L, et al. A homozygous hypomorphic BNIP1 variant causes an increase in autophagosomes and reduced autophagic flux and results in a spondylo‐epiphyseal dysplasia. Hum Mutat 2022; 43(5): 625-42.
[http://dx.doi.org/10.1002/humu.24368] [PMID: 35266227]
[348]
McCoin CS, Franczak E, Deng F, Pei D, Ding WX, Thyfault JP. Acute exercise rapidly activates hepatic mitophagic flux. J Appl Physiol 1985; 2022-873.132(3): 862-73.
[PMID: 35142562]
[349]
Jeong JK, Moon MH, Bae BC, et al. Autophagy induced by resveratrol prevents human prion protein-mediated neurotoxicity. Neurosci Res 2012; 73(2): 99-105.
[http://dx.doi.org/10.1016/j.neures.2012.03.005] [PMID: 22465415]
[350]
Williams AC, Hill LJ, Ramsden DB. Nicotinamide, NAD(P)(H), and methyl-group homeostasis evolved and became a determinant of ageing diseases: Hypotheses and lessons from pellagra. Curr Gerontol Geriatr Res 2012; 2012: 1-24.
[http://dx.doi.org/10.1155/2012/302875] [PMID: 22536229]
[351]
Fan X, Zhao Z, Wang D, Xiao J. Glycogen synthase kinase-3 as a key regulator of cognitive function. Acta Biochim Biophys Sin 2020; 52(3): 219-30.
[http://dx.doi.org/10.1093/abbs/gmz156] [PMID: 32147679]
[352]
Das F, Dey N, Venkatesan B, Kasinath BS, Ghosh-Choudhury N, Choudhury GG. High glucose upregulation of early-onset Parkinson’s disease protein DJ-1 integrates the PRAS40/TORC1 axis to mesangial cell hypertrophy. Cell Signal 2011; 23(8): 1311-9.
[http://dx.doi.org/10.1016/j.cellsig.2011.03.012] [PMID: 21426932]
[353]
Choi KC, Kim SH, Ha JY, Kim ST, Son JH. A novel mTOR activating protein protects dopamine neurons against oxidative stress by repressing autophagy related cell death. J Neurochem 2010; 112(2): 366-76.
[http://dx.doi.org/10.1111/j.1471-4159.2009.06463.x] [PMID: 19878437]
[354]
Lei Q, Wu T, Wu J, et al. Roles of α synuclein in gastrointestinal microbiome dysbiosis related Parkinson’s disease progression (Review). Mol Med Rep 2021; 24(4): 734.
[http://dx.doi.org/10.3892/mmr.2021.12374] [PMID: 34414447]
[355]
Sayed NH, Fathy N, Kortam MA, Rabie MA, Mohamed AF, Kamel AS. Vildagliptin attenuates huntington’s disease through activation of GLP-1 Receptor/PI3K/Akt/BDNF pathway in 3-nitropropionic acid rat model. Neurotherapeutics 2020; 17(1): 252-68.
[http://dx.doi.org/10.1007/s13311-019-00805-5] [PMID: 31728850]
[356]
Maiese K. MicroRNAs and SIRT1: A strategy for stem cell renewal and clinical development? J Transl Sci 2015; 1(3): 55-7.
[PMID: 26561536]
[357]
Shi X, Yan C, Liu B, et al. miR-381 regulates neural stem cell proliferation and differentiation via regulating Hes1 expression. PLoS One 2015; 10(10): e0138973.
[http://dx.doi.org/10.1371/journal.pone.0138973] [PMID: 26431046]
[358]
Wen Z, Zhang J, Tang P, Tu N, Wang K, Wu G. Overexpression of miR 185 inhibits autophagy and apoptosis of dopaminergic neurons by regulating the AMPK/mTOR signaling pathway in Parkinson’s disease. Mol Med Rep 2018; 17(1): 131-7.
[PMID: 29115479]
[359]
Maiese K. Editor’s Perspective: A sweeping role for micrornas in neuronal disease, vascular disorders, and as prognostic indicators. Curr Neurovasc Res 2018; 15(1): 1-2.
[http://dx.doi.org/10.2174/1567202615666180327143121] [PMID: 29589545]
[360]
Guo PW, Huang HT, Ma J, et al. Circular RNA-0007059 protects cell viability and reduces inflammation in a nephritis cell model by inhibiting microRNA-1278/SHP-1/STAT3 signaling. Mol Med 2021; 27(1): 113.
[http://dx.doi.org/10.1186/s10020-021-00372-6] [PMID: 34535085]
[361]
He Z, Zhao Y, Zhu Y, Wang W, Liu X, Lu F. Interfering TUG1 attenuates cerebrovascular endothelial apoptosis and inflammatory injury after cerebral ischemia/reperfusion via TUG1/miR-410/FOXO3 ceRNA Axis. Neurotox Res 2021; 40(1): 1-13.
[PMID: 34851489]
[362]
Zhang Z, Zhang HJ. Glycometabolic rearrangements–aerobic glycolysis in pancreatic ductal adenocarcinoma (PDAC): Roles, regulatory networks, and therapeutic potential. Expert Opin Ther Targets 2021; 25(12): 1077-93.
[http://dx.doi.org/10.1080/14728222.2021.2015321] [PMID: 34874212]
[363]
Ren L. Circular RNA PIP5K1A act as microRNA-552-3p sponge to regulates inflammation, oxidative damage in glucolipotoxicity-induced pancreatic INS-1 β-cells via Janus kinase 1. Bioengineered 2022; 13(3): 5724-36.
[http://dx.doi.org/10.1080/21655979.2021.2022076] [PMID: 35184688]
[364]
Lu Y, Tan L, Wang X. Circular HDAC9/microRNA-138/Sirtuin-1 pathway mediates synaptic and amyloid precursor protein processing deficits in alzheimer’s disease. Neurosci Bull 2019; 35(5): 877-88.
[http://dx.doi.org/10.1007/s12264-019-00361-0] [PMID: 30887246]
[365]
Hyrskyluoto A, Reijonen S, Kivinen J, Lindholm D, Korhonen L. GADD34 mediates cytoprotective autophagy in mutant huntingtin expressing cells via the mTOR pathway. Exp Cell Res 2012; 318(1): 33-42.
[http://dx.doi.org/10.1016/j.yexcr.2011.08.020] [PMID: 21925170]
[366]
Lee JH, Tecedor L, Chen YH, et al. Reinstating aberrant mTORC1 activity in Huntington’s disease mice improves disease phenotypes. Neuron 2015; 85(2): 303-15.
[http://dx.doi.org/10.1016/j.neuron.2014.12.019] [PMID: 25556834]
[367]
Oli V, Gupta R, Kumar P. FOXO and related transcription factors binding elements in the regulation of neurodegenerative disorders. J Chem Neuroanat 2021; 116: 102012.
[http://dx.doi.org/10.1016/j.jchemneu.2021.102012] [PMID: 34400291]
[368]
Czubowicz K. Jęśko H, Wencel P, Lukiw WJ, Strosznajder RP. The role of ceramide and sphingosine-1-phosphate in alzheimer’s disease and other neurodegenerative disorders. Mol Neurobiol 2019; 56(8): 5436-55.
[http://dx.doi.org/10.1007/s12035-018-1448-3] [PMID: 30612333]
[369]
Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary polyphenols: A multifactorial strategy to target alzheimer’s disease. Int J Mol Sci 2019; 20(20): 5090.
[http://dx.doi.org/10.3390/ijms20205090] [PMID: 31615073]
[370]
Naia L, Rosenstock TR, Oliveira AM, et al. Comparative mitochondrial-based protective effects of resveratrol and nicotinamide in huntington’s disease models. Mol Neurobiol 2017; 54(7): 5385-99.
[http://dx.doi.org/10.1007/s12035-016-0048-3] [PMID: 27590140]
[371]
Pradhan SS, Rao KR, Manjunath M, Saiswaroop R, Patnana DP, Phalguna KS. Vitamin B(6,) B(12) and folate modulate deregulated pathways and protein aggregation in yeast model of Huntington disease. 3 Biotech 2023; 13(3): 96.
[372]
Tourette C, Li B, Bell R, et al. A large scale Huntingtin protein interaction network implicates Rho GTPase signaling pathways in Huntington disease. J Biol Chem 2014; 289(10): 6709-26.
[http://dx.doi.org/10.1074/jbc.M113.523696] [PMID: 24407293]
[373]
Berger Z, Ravikumar B, Menzies FM, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 2006; 15(3): 433-42.
[http://dx.doi.org/10.1093/hmg/ddi458] [PMID: 16368705]
[374]
Li L, Sun Y, Zhang Y, Wang W, Ye C. Mutant huntingtin impairs pancreatic β-cells by recruiting IRS-2 and disturbing the PI3K/AKT/FoxO1 signaling pathway in huntington’s disease. J Mol Neurosci 2021; 71(12): 2646-58.
[http://dx.doi.org/10.1007/s12031-021-01869-9] [PMID: 34331233]
[375]
Pryor WM, Biagioli M, Shahani N, et al. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington’s disease. Sci Signal 2014; 7(349): ra103.
[http://dx.doi.org/10.1126/scisignal.2005633] [PMID: 25351248]
[376]
Roscic A, Baldo B, Crochemore C, Marcellin D, Paganetti P. Induction of autophagy with catalytic mTOR inhibitors reduces huntingtin aggregates in a neuronal cell model. J Neurochem 2011; 119(2): 398-407.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07435.x] [PMID: 21854390]
[377]
Fox JH, Connor T, Chopra V, et al. The mTOR kinase inhibitor Everolimus decreases S6 kinase phosphorylation but fails to reduce mutant huntingtin levels in brain and is not neuroprotective in the R6/2 mouse model of Huntington’s disease. Mol Neurodegener 2010; 5(1): 26.
[http://dx.doi.org/10.1186/1750-1326-5-26] [PMID: 20569486]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy