Generic placeholder image

Current Neurovascular Research

Editor-in-Chief

ISSN (Print): 1567-2026
ISSN (Online): 1875-5739

Review Article

Major Targets Involved in Clinical Management of Migraine

Author(s): Rapuru Rushendran, Vellapandian Chitra* and Kaliappan Ilango*

Volume 20, Issue 3, 2023

Published on: 24 August, 2023

Page: [296 - 313] Pages: 18

DOI: 10.2174/1567202620666230721111144

Price: $65

Abstract

Background: There has been a protracted effort to identify reliable targets for migraine. It is believed that each year, hundreds of millions of individuals worldwide suffer from migraines, making this widespread neurological ailment the second leading cause of years of disability worldwide. The rationale of this study is to identify the major targets involved in migraine attacks.

Methods: For this review, specialized databases were searched, such as PubMed, EMBASE, DynaMed Plus, and Science Direct databases that included the pathophysiological mechanisms of migraine, focusing on in vitro and in vivo studies in the clinical management of migraine.

Results: Calcitonin gene-related peptide, Pituitary adenylate cyclase-activating polypeptide (PACAP), NOD-like receptor Protein (NLRP3), Serotonin, and some other neuroinflammatory biomarkers are collectively responsible for the cerebral blood vessel dilation and involved in the nociceptive pain which leads to migraine attack.

Conclusion: Migraine biomarkers such as CGRP, PACAP, NLRP3, Nitric oxide synthase, MMP9, and Serotonin could be targets for developing drugs. Present marketed medications temporarily reduce symptoms and pain and have serious cardiovascular side effects. It is suggested that herbal treatment may help prevent migraine attacks without adverse effects. Natural biomolecules that may give better treatment than the present marketed medication and full fledge research should be carried out with natural biomarkers by the Network Pharmacological approach.

[1]
Feigin VL, Nichols E, Alam T, et al. Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol 2019; 18(5): 459-80.
[http://dx.doi.org/10.1016/S1474-4422(18)30499-X] [PMID: 30879893]
[2]
Messoud A. Migraine. N Engl J Med 2020; 383(19): 1866-76.
[http://dx.doi.org/10.1056/NEJMra1915327] [PMID: 33211930]
[3]
Ashina M, Hansen JM, Do TP, Melo-Carrillo A, Burstein R, Moskowitz MA. Migraine and the trigeminovascular system-40 years and counting. Lancet Neurol 2019; 18(8): 795-804.
[http://dx.doi.org/10.1016/S1474-4422(19)30185-1] [PMID: 31160203]
[4]
Steiner TJ, Stovner LJ, Jensen R, Uluduz D, Katsarava Z. Migraine remains second among the world’s causes of disability, and first among young women: Findings from GBD2019. J Headache Pain 2020; 21(1): 137.
[http://dx.doi.org/10.1186/s10194-020-01208-0] [PMID: 33267788]
[5]
Stovner LJ, Hagen K, Linde M, Steiner TJ. The global prevalence of headache: An update, with analysis of the influences of methodological factors on prevalence estimates. J Headache Pain 2022; 23(1): 34.
[http://dx.doi.org/10.1186/s10194-022-01402-2] [PMID: 35410119]
[6]
Kursun O, Yemisci M, van den Maagdenberg AMJM, Karatas H. Migraine and neuroinflammation: The inflammasome perspective. J Headache Pain 2021; 22(1): 55.
[http://dx.doi.org/10.1186/s10194-021-01271-1] [PMID: 34112082]
[7]
Iyengar S, Johnson KW, Ossipov MH, Aurora SK. CGRP and the trigeminal system in migraine. Headache 2019; 59(5): 659-81.
[http://dx.doi.org/10.1111/head.13529] [PMID: 30982963]
[8]
Mungoven TJ, Henderson LA, Meylakh N. Chronic migraine pathophysiology and treatment: A review of current perspectives. Front Pain Res 2021; 2: 705276.
[http://dx.doi.org/10.3389/fpain.2021.705276] [PMID: 35295486]
[9]
Ramachandran R, Wang Z, Saavedra C, et al. Role of Toll-like receptor 4 signaling in mast cell-mediated migraine pain pathway. Mol Pain 2019; 15: 1744806919867842.
[http://dx.doi.org/10.1177/1744806919867842] [PMID: 31342858]
[10]
Auffenberg E, Hedrich UBS, Barbieri R, et al. Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. J Clin Invest 2021; 131(21): e142202.
[http://dx.doi.org/10.1172/JCI142202] [PMID: 34546973]
[11]
Carneiro-Nascimento S, Levy D. Cortical spreading depression and meningeal nociception. Neurobiol Pain 2022; 11: 100091.
[http://dx.doi.org/10.1016/j.ynpai.2022.100091] [PMID: 35518782]
[12]
Vuralli D, Karatas H, Yemisci M, Bolay H. Updated review on the link between cortical spreading depression and headache disorders. Expert Rev Neurother 2021; 21(10): 1069-84.
[http://dx.doi.org/10.1080/14737175.2021.1947797] [PMID: 34162288]
[13]
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of migraine: A disorder of sensory processing. Physiol Rev 2017; 97(2): 553-622.
[http://dx.doi.org/10.1152/physrev.00034.2015] [PMID: 28179394]
[14]
Akerman S, Romero-Reyes M. Insights into the pharmacological targeting of the trigeminocervical complex in the context of treatments of migraine. Expert Rev Neurother 2013; 13(9): 1041-59.
[http://dx.doi.org/10.1586/14737175.2013.827472] [PMID: 23952299]
[15]
Zhang LM, Dong Z, Yu SY. Migraine in the era of precision medicine. Ann Transl Med 2016; 4(6): 105.
[http://dx.doi.org/10.21037/atm.2016.03.13] [PMID: 27127758]
[16]
Paucar M, Granberg T, Lagerstedt-Robinson K, et al. SLC1A3 variant associated with hemiplegic migraine and acetazolamide-responsive MRS changes. Neurol Genet 2020; 6(4): e474.
[http://dx.doi.org/10.1212/NXG.0000000000000474] [PMID: 32754645]
[17]
Andres-Bilbe A, Castellanos A, Pujol-Coma A, Callejo G, Comes N, Gasull X. The background K+ channel TRESK in sensory physiology and pain. Int J Mol Sci 2020; 21(15): 5206.
[http://dx.doi.org/10.3390/ijms21155206] [PMID: 32717813]
[18]
Carlsson A, Forsgren L, Nylander PO, et al. Identification of a susceptibility locus for migraine with and without aura on 6p12.2-p21.1. Neurology 2002; 59(11): 1804-7.
[http://dx.doi.org/10.1212/01.WNL.0000036617.04943.96] [PMID: 12473779]
[19]
Oterino A, Toriello M, Castillo J, et al. Family-based association study of chromosome 6p12.2-p21.1 migraine locus. Headache 2012; 52(3): 393-9.
[http://dx.doi.org/10.1111/j.1526-4610.2011.02040.x] [PMID: 22103661]
[20]
Chen H, Ji CX, Zhao LL, Kong XJ, Zeng XT. Association between polymorphisms of DRD2, COMT, DBH, and MAO-A genes and migraine susceptibility. Medicine 2015; 94(47): e2012.
[http://dx.doi.org/10.1097/MD.0000000000002012] [PMID: 26632697]
[21]
Van Tol HHM, Bunzow JR, Guan HC, et al. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 1991; 350(6319): 610-4.
[http://dx.doi.org/10.1038/350610a0] [PMID: 1840645]
[22]
Mochi M, Cevoli S, Cortelli P, et al. A genetic association study of migraine with dopamine receptor 4, dopamine transporter and dopamine-beta-hydroxylase genes. Neurol Sci 2003; 23(6): 301-5.
[http://dx.doi.org/10.1007/s100720300005] [PMID: 12624717]
[23]
Cevoli S, Mochi M, Scapoli C, et al. A genetic association study of dopamine metabolism-related genes and chronic headache with drug abuse. Eur J Neurol 2006; 13(9): 1009-13.
[http://dx.doi.org/10.1111/j.1468-1331.2006.01415.x] [PMID: 16930369]
[24]
Kowalska M, Prendecki M, Kozubski W, Lianeri M, Dorszewska J. Molecular factors in migraine. Oncotarget 2016; 7(31): 50708-18.
[http://dx.doi.org/10.18632/oncotarget.9367] [PMID: 27191890]
[25]
Yılmaz M, Erdal ME, Herken H, Çataloluk O, Barlas Ö, Bayazıt YA. Significance of serotonin transporter gene polymorphism in migraine. J Neurol Sci 2001; 186(1-2): 27-30.
[http://dx.doi.org/10.1016/S0022-510X(01)00491-9] [PMID: 11412868]
[26]
Liu H, Liu M, Wang Y, et al. Association of 5-HTT gene polymorphisms with migraine: A systematic review and meta-analysis. J Neurol Sci 2011; 305(1-2): 57-66.
[http://dx.doi.org/10.1016/j.jns.2011.03.016] [PMID: 21450309]
[27]
Schürks M, Rist PM, Kurth T. 5-HTTLPR polymorphism in the serotonin transporter gene and migraine: A systematic review and meta-analysis. Cephalalgia 2010; 30(11): 1296-305.
[http://dx.doi.org/10.1177/0333102410362929] [PMID: 20959425]
[28]
Schürks M, Rist PM, Kurth T. MTHFR 677C>T and ACE D/I polymorphisms in migraine: A systematic review and meta-analysis. Headache 2010; 50(4): 588-99.
[http://dx.doi.org/10.1111/j.1526-4610.2009.01570.x] [PMID: 19925624]
[29]
Essmeister R, Kress HG, Zierz S, Griffith L, Lea R, Wieser T. MTHFR and ACE polymorphisms do not increase susceptibility to migraine neither alone nor in combination. Headache 2016; 56(8): 1267-73.
[http://dx.doi.org/10.1111/head.12893] [PMID: 27483173]
[30]
Shahid M, Rehman K, Akash MSH, et al. Genetic polymorphism in angiotensinogen and its association with cardiometabolic diseases. Metabolites 2022; 12(12): 1291.
[http://dx.doi.org/10.3390/metabo12121291] [PMID: 36557328]
[31]
Brennan KC, Bates EA, Shapiro RE, et al. Casein kinase iδ mutations in familial migraine and advanced sleep phase. Sci Transl Med 2013; 5((183):183ra56): 1-11.
[http://dx.doi.org/10.1126/scitranslmed.3005784]
[32]
Chen SP, Ayata C. Novel therapeutic targets against spreading depression. Headache 2017; 57(9): 1340-58.
[http://dx.doi.org/10.1111/head.13154] [PMID: 28842982]
[33]
Zanger UM, Schwab M. Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacol Ther 2013; 138(1): 103-41.
[http://dx.doi.org/10.1016/j.pharmthera.2012.12.007] [PMID: 23333322]
[34]
Millson DS, Tepper SJ, Rapoport AM. Migraine pharmacotherapy with oral triptans: A rational approach to clinical management. Expert Opin Pharmacother 2000; 1(3): 391-404.
[http://dx.doi.org/10.1517/14656566.1.3.391] [PMID: 11249525]
[35]
Mattsson P, Bjelfman C, Lundberg PO, Rane A. Cytochrome P450 2D6 and glutathione S-transferase M1 genotypes and migraine. Eur J Clin Invest 2000; 30(4): 367-71.
[http://dx.doi.org/10.1046/j.1365-2362.2000.00633.x] [PMID: 10759887]
[36]
Kusumi M, Ishizaki K, Kowa H, et al. Glutathione S-transferase polymorphisms: Susceptibility to migraine without aura. Eur Neurol 2003; 49(4): 218-22.
[http://dx.doi.org/10.1159/000070187] [PMID: 12736537]
[37]
Guo J, Zhu X, Badawy S, et al. Metabolism and mechanism of human cytochrome P450 enzyme 1A2. Curr Drug Metab 2021; 22(1): 40-9.
[http://dx.doi.org/10.2174/18755453MTEyCOTgcx] [PMID: 33397254]
[38]
Gentile G, Missori S, Borro M, Sebastianelli A, Simmaco M, Martelletti P. Frequencies of genetic polymorphisms related to triptans metabolism in chronic migraine. J Headache Pain 2010; 11(2): 151-6.
[http://dx.doi.org/10.1007/s10194-010-0202-7] [PMID: 20213484]
[39]
Chai NC, Scher AI, Moghekar A, Bond DS, Peterlin BL. Obesity and headache: Part I--a systematic review of the epidemiology of obesity and headache. Headache 2014; 54(2): 219-34.
[http://dx.doi.org/10.1111/head.12296] [PMID: 24512574]
[40]
Chai NC, Bond DS, Moghekar A, Scher AI, Peterlin BL. Obesity and headache: Part II--potential mechanism and treatment considerations. Headache 2014; 54(3): 459-71.
[http://dx.doi.org/10.1111/head.12297] [PMID: 24511882]
[41]
Kusminski CM, McTernan PG, Schraw T, et al. Adiponectin complexes in human cerebrospinal fluid: Distinct complex distribution from serum. Diabetologia 2007; 50(3): 634-42.
[http://dx.doi.org/10.1007/s00125-006-0577-9] [PMID: 17242917]
[42]
Peterlin BL, Sacco S, Bernecker C, Scher AI. Adipokines and migraine: A systematic review. Headache 2016; 56(4): 622-44.
[http://dx.doi.org/10.1111/head.12788] [PMID: 27012149]
[43]
Domínguez C, Vieites-Prado A, Pérez-Mato M, et al. Role of adipocytokines in the pathophysiology of migraine: A cross-sectional study. Cephalalgia 2018; 38(5): 904-11.
[http://dx.doi.org/10.1177/0333102417720213] [PMID: 28677995]
[44]
Lassen LH, Haderslev PA, Jacobsen VB, Iversen HK, Sperling B, Olesen J. CGRP may play a causative role in migraine. Cephalalgia 2002; 22(1): 54-61.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00310.x] [PMID: 11993614]
[45]
Iyengar S, Ossipov MH, Johnson KW. The role of calcitonin gene–related peptide in peripheral and central pain mechanisms including migraine. Pain 2017; 158(4): 543-59.
[http://dx.doi.org/10.1097/j.pain.0000000000000831] [PMID: 28301400]
[46]
Russo AF. Calcitonin gene-related peptide (CGRP): A new target for migraine. Annu Rev Pharmacol Toxicol 2015; 55(1): 533-52.
[http://dx.doi.org/10.1146/annurev-pharmtox-010814-124701] [PMID: 25340934]
[47]
De Matteis E, Guglielmetti M, Ornello R, Spuntarelli V, Martelletti P, Sacco S. Targeting CGRP for migraine treatment: Mechanisms, antibodies, small molecules, perspectives. Expert Rev Neurother 2020; 20(6): 627-41.
[http://dx.doi.org/10.1080/14737175.2020.1772758] [PMID: 32434430]
[48]
Ferreira KS, Dhillon H, Velly AM. The role of a potential biomarker in patients with migraine: Review and new insights. Expert Rev Neurother 2021; 21(7): 817-31.
[http://dx.doi.org/10.1080/14737175.2021.1951236] [PMID: 34210227]
[49]
Scuteri D, Tonin P, Nicotera P, Bagetta G, Corasaniti MT. Real world considerations for newly approved CGRP receptor antagonists in migraine care. Expert Rev Neurother 2022; 22(3): 221-30.
[http://dx.doi.org/10.1080/14737175.2022.2049758] [PMID: 35240905]
[50]
Waschek JA. VIP and PACAP: Neuropeptide modulators of CNS inflammation, injury, and repair. Br J Pharmacol 2013; 169(3): 512-23.
[http://dx.doi.org/10.1111/bph.12181] [PMID: 23517078]
[51]
Holland PR, Barloese M, Fahrenkrug J. PACAP in hypothalamic regulation of sleep and circadian rhythm: Importance for headache. J Headache Pain 2018; 19(1): 20.
[http://dx.doi.org/10.1186/s10194-018-0844-4] [PMID: 29508090]
[52]
Lindberg PT, Mitchell JW, Burgoon PW, et al. Pituitary Adenylate Cyclase-Activating Peptide (PACAP)-Glutamate co-transmission drives circadian phase-advancing responses to intrinsically photosensitive retinal ganglion cell projections by suprachiasmatic nucleus. Front Neurosci 2019; 13: 1281.
[http://dx.doi.org/10.3389/fnins.2019.01281] [PMID: 31866806]
[53]
Terajima H, Yoshitane H, Yoshikawa T, Shigeyoshi Y, Fukada Y. A-to-I RNA editing enzyme ADAR2 regulates light-induced circadian phase-shift. Sci Rep 2018; 8(1): 14848.
[http://dx.doi.org/10.1038/s41598-018-33114-6] [PMID: 30287844]
[54]
Rivnyak A, Kiss P, Tamas A, Balogh D, Reglodi D. Review on PACAP-induced transcriptomic and proteomic changes in neuronal development and repair. Int J Mol Sci 2018; 19(4): 1020.
[http://dx.doi.org/10.3390/ijms19041020] [PMID: 29596316]
[55]
Pöstyéni E, Kovács-Valasek A, Dénes V, Mester A, Sétáló G Jr, Gábriel R. PACAP for retinal health: Model for cellular aging and rescue. Int J Mol Sci 2021; 22(1): 444.
[http://dx.doi.org/10.3390/ijms22010444] [PMID: 33466261]
[56]
Poujol de Molliens M, Létourneau M, Devost D, Hébert TE, Fournier A, Chatenet D. New insights about the peculiar role of the 28–38 C-terminal segment and some selected residues in PACAP for signaling and neuroprotection. Biochem Pharmacol 2018; 154: 193-202.
[http://dx.doi.org/10.1016/j.bcp.2018.04.024] [PMID: 29704474]
[57]
Toth D, Tamas A, Reglodi D. The neuroprotective and biomarker potential of PACAP in human traumatic brain injury. Int J Mol Sci 2020; 21(3): 827.
[http://dx.doi.org/10.3390/ijms21030827] [PMID: 32012887]
[58]
Broome ST, Musumeci G, Castorina A. PACAP and VIP mitigate rotenone-induced inflammation in BV-2 microglial cells. J Mol Neurosci 2022; 72(11): 2163-75.
[http://dx.doi.org/10.1007/s12031-022-01968-1]
[59]
Horvath G, Opper B, Reglodi D. The Neuropeptide Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) is protective in inflammation and oxidative stress-induced damage in the kidney. Int J Mol Sci 2019; 20(19): 4944.
[http://dx.doi.org/10.3390/ijms20194944] [PMID: 31591326]
[60]
Mandwie M, Karunia J, Niaz A, et al. Metformin treatment attenuates brain inflammation and rescues PACAP/VIP neuropeptide alterations in mice fed a high-fat diet. Int J Mol Sci 2021; 22(24): 13660.
[http://dx.doi.org/10.3390/ijms222413660] [PMID: 34948457]
[61]
Girard BM, Tooke K, Vizzard MA. PACAP/Receptor system in urinary bladder dysfunction and pelvic pain following urinary bladder inflammation or stress. Front Syst Neurosci 2017; 11: 90.
[http://dx.doi.org/10.3389/fnsys.2017.00090] [PMID: 29255407]
[62]
Anapindi KDB, Yang N, Romanova EV, et al. PACAP and other neuropeptide targets link chronic migraine and opioid-induced hyperalgesin mouse models. Mol Cell Proteomics 2019; 18(12): 2447-58.
[http://dx.doi.org/10.1074/mcp.RA119.001767] [PMID: 31649062]
[63]
Pérez-Pereda S, Toriello-Suárez M, Ocejo-Vinyals G, et al. Serum CGRP, VIP, and PACAP usefulness in migraine: A case-control study in chronic migraine patients in real clinical practice. Mol Biol Rep 2020; 47(9): 7125-38.
[http://dx.doi.org/10.1007/s11033-020-05781-0] [PMID: 32951099]
[64]
Jansen-Olesen I, Hougaard Pedersen S. PACAP and its receptors in cranial arteries and mast cells. J Headache Pain 2018; 19(1): 16.
[http://dx.doi.org/10.1186/s10194-017-0822-2] [PMID: 29460121]
[65]
Ashina H, Schytz HW. CGRP in human models of migraine. Handb Exp Pharmacol 2019; 255: 109-20.
[http://dx.doi.org/10.1007/164_2018_128] [PMID: 29896653]
[66]
Vollesen ALH, Amin FM, Ashina M. Targeted pituitary adenylate cyclase-activating peptide therapies for migraine. Neurotherapeutics 2018; 15(2): 371-6.
[http://dx.doi.org/10.1007/s13311-017-0596-x] [PMID: 29464574]
[67]
Edvinsson L, Tajti J, Szalárdy L, Vécsei L. PACAP and its role in primary headaches. J Headache Pain 2018; 19(1): 21.
[http://dx.doi.org/10.1186/s10194-018-0852-4] [PMID: 29523978]
[68]
Kaiser EA, Russo AF. CGRP and migraine: Could PACAP play a role too? Neuropeptides 2013; 47(6): 451-61.
[http://dx.doi.org/10.1016/j.npep.2013.10.010] [PMID: 24210136]
[69]
Onaga T. Tachykinin: Recent developments and novel roles in health and disease. Biomol Concepts 2014; 5(3): 225-43.
[http://dx.doi.org/10.1515/bmc-2014-0008] [PMID: 25372755]
[70]
Frederiksen SD, Bekker-Nielsen Dunbar M, Snoer AH, Deen M, Edvinsson L. Serotonin and neuropeptides in blood from episodic and chronic migraine and cluster headache patients in case‐control and case‐crossover settings: A systematic review and meta‐analysis. Headache 2020; 60(6): 1132-64.
[http://dx.doi.org/10.1111/head.13802] [PMID: 32293721]
[71]
Lakhan SE, Avramut M. Matrix metalloproteinases in neuropathic pain and migraine: Friends, enemies, and therapeutic targets. Pain Res Treat 2012; 2012: 1-10.
[http://dx.doi.org/10.1155/2012/952906] [PMID: 22970361]
[72]
Gupta VK. CSD, BBB and MMP-9 elevations: Animal experiments versus clinical phenomena in migraine. Expert Rev Neurother 2009; 9(11): 1595-614.
[http://dx.doi.org/10.1586/ern.09.103] [PMID: 19903020]
[73]
Cunningham LA, Wetzel M, Rosenberg GA. Multiple roles for MMPs and TIMPs in cerebral ischemia. Glia 2005; 50(4): 329-39.
[http://dx.doi.org/10.1002/glia.20169] [PMID: 15846802]
[74]
O’Brien WT, Pham L, Symons GF, Monif M, Shultz SR, McDonald SJ. The NLRP3 inflammasome in traumatic brain injury: Potential as a biomarker and therapeutic target. J Neuroinflammation 2020; 17(1): 104.
[http://dx.doi.org/10.1186/s12974-020-01778-5] [PMID: 32252777]
[75]
Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 2018; 19(10): 610-21.
[http://dx.doi.org/10.1038/s41583-018-0055-7] [PMID: 30206330]
[76]
Ising C, Venegas C, Zhang S, et al. NLRP3 inflammasome activation drives tau pathology. Nature 2019; 575(7784): 669-73.
[http://dx.doi.org/10.1038/s41586-019-1769-z] [PMID: 31748742]
[77]
Kodali M, Madhu LN, Reger RL, et al. Intranasally administered human MSC-derived extracellular vesicles inhibit NLRP3-p38/MAPK signaling after TBI and prevent chronic brain dysfunction. Brain Behav Immun 2022; 108: 118-34.
[PMID: 36427808]
[78]
Rex DAB, Agarwal N, Prasad TSK, Kandasamy RK, Subbannayya Y, Pinto SM. A comprehensive pathway map of IL-18-mediated signalling. J Cell Commun Signal 2020; 14(2): 257-66.
[http://dx.doi.org/10.1007/s12079-019-00544-4] [PMID: 31863285]
[79]
Casili G, Lanza M, Filippone A, et al. Dimethyl fumarate alleviates the nitroglycerin (NTG)-induced migraine in mice. J Neuroinflammation 2020; 17(1): 59.
[http://dx.doi.org/10.1186/s12974-020-01736-1] [PMID: 32066464]
[80]
Taheri P, Mohammadi F, Nazeri M, et al. Nitric oxide role in anxiety-like behavior, memory and cognitive impairments in animal model of chronic migraine. Heliyon 2020; 6(12): e05654.
[http://dx.doi.org/10.1016/j.heliyon.2020.e05654] [PMID: 33319104]
[81]
Bandara SMR, Samita S, Kiridana AM, Herath HMMTB. Elevated nitric oxide and carbon monoxide concentration in nasal-paranasal sinus air as a diagnostic tool of migraine: A case - control study. BMC Neurol 2021; 21(1): 407.
[http://dx.doi.org/10.1186/s12883-021-02434-y] [PMID: 33390161]
[82]
Pasmanter N, Iheanacho F, Hashmi MF. Biochemistry, Cyclic GMP. Treasure Island, (FL): StatPearls 2023.
[83]
Jing F, Zhang Y, Long T, et al. P2Y12 receptor mediates microglial activation via RhoA/ROCK pathway in the trigeminal nucleus caudalis in a mouse model of chronic migraine. J Neuroinflammation 2019; 16(1): 217.
[http://dx.doi.org/10.1186/s12974-019-1603-4] [PMID: 31722730]
[84]
D’Amico D, Ferraris A, Leone M, et al. Increased plasma nitrites in migraine and cluster headache patients in interictal period: Basal hyperactivity of L-arginine-NO pathway? Cephalalgia 2002; 22(1): 33-6.
[http://dx.doi.org/10.1046/j.1468-2982.2002.00304.x] [PMID: 11993611]
[85]
Borkum JM. Migraine triggers and oxidative stress: A narrative review and synthesis. Headache 2016; 56(1): 12-35.
[http://dx.doi.org/10.1111/head.12725] [PMID: 26639834]
[86]
Khan FA, McIntyre C, Khan AM, Maslov A. Headache and methemoglobinemia. Headache 2020; 60(1): 291-7.
[http://dx.doi.org/10.1111/head.13696] [PMID: 31724752]
[87]
Gentile G, Negro A, D’Alonzo L, et al. Lack of association between oxidative stress-related gene polymorphisms and chronic migraine in an Italian population. Expert Rev Neurother 2015; 15(2): 215-25.
[http://dx.doi.org/10.1586/14737175.2015.1001748] [PMID: 25585507]
[88]
Musubire AK, Cheema S, Ray JC, Hutton EJ, Matharu M. Cytokines in primary headache disorders: A systematic review and meta-analysis. J Headache Pain 2023; 24(1): 36.
[http://dx.doi.org/10.1186/s10194-023-01572-7] [PMID: 37016284]
[89]
Khan J, Noboru N, Young A, Thomas D. Pro and anti-inflammatory cytokine levels (TNF-α IL-1β IL-6 and IL-10) in rat model of neuroma. Pathophysiology 2017; 24(3): 155-9.
[http://dx.doi.org/10.1016/j.pathophys.2017.04.001] [PMID: 28462800]
[90]
Jang Y, Kim M, Hwang SW. Molecular mechanisms underlying the actions of arachidonic acid-derived prostaglandins on peripheral nociception. J Neuroinflammation 2020; 17(1): 30.
[http://dx.doi.org/10.1186/s12974-020-1703-1] [PMID: 31969159]
[91]
Neeb L, Hellen P, Boehnke C, et al. IL-1β stimulates COX-2 dependent PGE₂ synthesis and CGRP release in rat trigeminal ganglia cells. PLoS One 2011; 6(3): e17360.
[http://dx.doi.org/10.1371/journal.pone.0017360] [PMID: 21394197]
[92]
Zhou YQ, Liu Z, Liu ZH, et al. Interleukin-6: An emerging regulator of pathological pain. J Neuroinflammation 2016; 13(1): 141.
[http://dx.doi.org/10.1186/s12974-016-0607-6] [PMID: 27267059]
[93]
Kessler B, Rinchai D, Kewcharoenwong C, et al. Interleukin 10 inhibits pro-inflammatory cytokine responses and killing of Burkholderia pseudomallei. Sci Rep 2017; 7(1): 42791.
[http://dx.doi.org/10.1038/srep42791] [PMID: 28216665]
[94]
Schürks M, Rist PM, Zee RYL, Chasman DI, Kurth T. Tumour necrosis factor gene polymorphisms and migraine: A systematic review and meta-analysis. Cephalalgia 2011; 31(13): 1381-404.
[http://dx.doi.org/10.1177/0333102411419022] [PMID: 22001640]
[95]
Martami F, Razeghi Jahromi S, Togha M, Ghorbani Z, Seifishahpar M, Saidpour A. The serum level of inflammatory markers in chronic and episodic migraine: A case-control study. Neurol Sci 2018; 39(10): 1741-9.
[http://dx.doi.org/10.1007/s10072-018-3493-0]
[96]
Han D. Association of serum levels of calcitonin gene-related peptide and cytokines during migraine attacks. Ann Indian Acad Neurol 2019; 22(3): 277-81.
[http://dx.doi.org/10.4103/aian.AIAN_371_18] [PMID: 31359937]
[97]
van Dongen RM, Zielman R, Noga M, et al. Migraine biomarkers in cerebrospinal fluid: A systematic review and meta-analysis. Cephalalgia 2017; 37(1): 49-63.
[http://dx.doi.org/10.1177/0333102415625614] [PMID: 26888294]
[98]
Rothrock JF, Mar KR, Yaksh TL, Golbeck A, Moore AC. Cerebrospinal fluid analyses in migraine patients and controls. Cephalalgia 1995; 15(6): 489-93.
[http://dx.doi.org/10.1046/j.1468-2982.1995.1506489.x] [PMID: 8706112]
[99]
Vécsei L, Widerlöv E, Ekman R, et al. Suboccipital cerebrospinal fluid and plasma concentrations of somatostatin, neuropeptide Y and beta-endorphin in patients with common migraine. Neuropeptides 1992; 22(2): 111-6.
[http://dx.doi.org/10.1016/0143-4179(92)90065-5] [PMID: 1357579]
[100]
Meyer MM, Schmidt A, Benrath J, et al. Cerebral sodium (23Na) magnetic resonance imaging in patients with migraine - a case-control study. Eur Radiol 2019; 29(12): 7055-62.
[http://dx.doi.org/10.1007/s00330-019-06299-1] [PMID: 31264011]
[101]
Rozen T, Swidan SZ. Elevation of CSF tumor necrosis factor alpha levels in new daily persistent headache and treatment refractory chronic migraine. Headache 2007; 47(7): 1050-5.
[http://dx.doi.org/10.1111/j.1526-4610.2006.00722.x] [PMID: 17635596]
[102]
Dolati S, Rikhtegar R, Mehdizadeh A, Yousefi M. The role of magnesium in pathophysiology and migraine treatment. Biol Trace Elem Res 2020; 196(2): 375-83.
[http://dx.doi.org/10.1007/s12011-019-01931-z] [PMID: 31691193]
[103]
Fonteh AN, Chung R, Sharma TL, et al. Cerebrospinal fluid phospholipase C activity increases in migraine. Cephalalgia 2011; 31(4): 456-62.
[http://dx.doi.org/10.1177/0333102410383589] [PMID: 20937607]
[104]
Sprenger T, Borsook D. Migraine changes the brain. Curr Opin Neurol 2012; 25(3): 252-62.
[http://dx.doi.org/10.1097/WCO.0b013e3283532ca3] [PMID: 22487570]
[105]
Gomez-Pilar J, Martínez-Cagigal V, García-Azorín D, Gómez C, Guerrero Á, Hornero R. Headache-related circuits and high frequencies evaluated by EEG, MRI, PET as potential biomarkers to differentiate chronic and episodic migraine: Evidence from a systematic review. J Headache Pain 2022; 23(1): 95.
[http://dx.doi.org/10.1186/s10194-022-01465-1] [PMID: 35927625]
[106]
Domínguez C, López A, Ramos-Cabrer P, et al. Iron deposition in periaqueductal gray matter as a potential biomarker for chronic migraine. Neurology 2019; 92(10): e1076-85.
[http://dx.doi.org/10.1212/WNL.0000000000007047] [PMID: 30709968]
[107]
Messina R, Gollion C, Christensen RH, Amin FM. Functional MRI in migraine. Curr Opin Neurol 2022; 35(3): 328-35.
[http://dx.doi.org/10.1097/WCO.0000000000001060] [PMID: 35674076]
[108]
Domínguez Vivero C, Leira Y, Saavedra Piñeiro M, et al. Iron deposits in periaqueductal gray matter are associated with poor response to onabotulinumtoxina in chronic migraine. Toxins 2020; 12(8): 479.
[http://dx.doi.org/10.3390/toxins12080479] [PMID: 32731573]
[109]
Shubhakaran K. Reader response: Iron deposition in periaqueductal gray matter as a potential biomarker for chronic migraine. Neurology 2020; 94(5): 233.2-4.
[http://dx.doi.org/10.1212/WNL.0000000000008889] [PMID: 32019841]
[110]
Fong CY, Law WHC, Braithwaite JJ, Mazaheri A. Differences in early and late pattern-onset visual-evoked potentials between self- reported migraineurs and controls. Neuroimage Clin 2020; 25: 102122.
[http://dx.doi.org/10.1016/j.nicl.2019.102122] [PMID: 31931401]
[111]
Tu Y, Zeng F, Lan L, et al. An fMRI-based neural marker for migraine without aura. Neurology 2020; 94(7): e741-51.
[http://dx.doi.org/10.1212/WNL.0000000000008962] [PMID: 31964691]
[112]
Cady RK, Vause CV, Ho TW, Bigal ME, Durham PL. Elevated saliva calcitonin gene-related peptide levels during acute migraine predict therapeutic response to rizatriptan. Headache 2009; 49(9): 1258-66.
[http://dx.doi.org/10.1111/j.1526-4610.2009.01523.x] [PMID: 19788468]
[113]
Durham PL, Vause CV. Calcitonin gene-related peptide (CGRP) receptor antagonists in the treatment of migraine. CNS Drugs 2010; 24(7): 539-48.
[http://dx.doi.org/10.2165/11534920-000000000-00000] [PMID: 20433208]
[114]
Durham PL, Vause CV, Derosier F, McDonald S, Cady R, Martin V. Changes in salivary prostaglandin levels during menstrual migraine with associated dysmenorrhea. Headache 2010; 50(5): 844-51.
[http://dx.doi.org/10.1111/j.1526-4610.2010.01657.x] [PMID: 20353434]
[115]
Andersen HH, Duroux M, Gazerani P. Serum MicroRNA signatures in migraineurs during attacks and in pain-free periods. Mol Neurobiol 2016; 53(3): 1494-500.
[http://dx.doi.org/10.1007/s12035-015-9106-5] [PMID: 25636687]
[116]
Tafuri E, Santovito D, de Nardis V, et al. MicroRNA profiling in migraine without aura: Pilot study. Ann Med 2015; 47(6): 468-73.
[http://dx.doi.org/10.3109/07853890.2015.1071871] [PMID: 26333279]
[117]
Ashina H, Guo S, Vollesen ALH, Ashina M. PACAP38 in human models of primary headaches. J Headache Pain 2017; 18(1): 110.
[http://dx.doi.org/10.1186/s10194-017-0821-3] [PMID: 29453754]
[118]
Zagami AS, Edvinsson L, Goadsby PJ. Pituitary adenylate cyclase activating polypeptide and migraine. Ann Clin Transl Neurol 2014; 1(12): 1036-40.
[http://dx.doi.org/10.1002/acn3.113] [PMID: 25574477]
[119]
Ghanizada H, Al-Karagholi MAM, Arngrim N, et al. Investigation of sumatriptan and ketorolac trometamol in the human experimental model of headache. J Headache Pain 2020; 21(1): 19.
[http://dx.doi.org/10.1186/s10194-020-01089-3] [PMID: 32093617]
[120]
Ashina M, Goadsby PJ, Reuter U, et al. Long‐term efficacy and safety of erenumab in migraine prevention: Results from a 5‐year, open‐label treatment phase of a randomized clinical trial. Eur J Neurol 2021; 28(5): 1716-25.
[http://dx.doi.org/10.1111/ene.14715] [PMID: 33400330]
[121]
Nedd M, Garland S, Falk N, Wilk A. Ubrogepant: An oral Calcitonin Gene-Related Peptide (CGRP) receptor antagonist for abortive migraine treatment. Ann Pharmacother 2022; 56(3): 346-51.
[http://dx.doi.org/10.1177/10600280211023810] [PMID: 34109839]
[122]
Görür K, Gür H. İsmi O, Özcan C, Vayisoğlu Y. The effectiveness of propranolol, flunarizine, amitriptyline and botulinum toxin in vestibular migraine complaints and prophylaxis: A non-randomized controlled study. Rev Bras Otorrinolaringol 2022; 88(6): 975-81.
[PMID: 33722518]
[123]
Ashina M, Lanteri-Minet M, Pozo-Rosich P, et al. Safety and efficacy of eptinezumab for migraine prevention in patients with two-to-four previous preventive treatment failures (DELIVER): A multi-arm, randomised, double-blind, placebo-controlled, phase 3b trial. Lancet Neurol 2022; 21(7): 597-607.
[http://dx.doi.org/10.1016/S1474-4422(22)00185-5] [PMID: 35716692]
[124]
Reuter U, Ehrlich M, Gendolla A, et al. Erenumab versus topiramate for the prevention of migraine - a randomised, double-blind, active-controlled phase 4 trial. Cephalalgia 2022; 42(2): 108-18.
[http://dx.doi.org/10.1177/03331024211053571] [PMID: 34743579]
[125]
Driessen MT, Cohen JM, Thompson SF, et al. Real-world effectiveness after initiating fremanezumab treatment in US patients with episodic and chronic migraine or difficult-to-treat migraine. J Headache Pain 2022; 23(1): 56.
[http://dx.doi.org/10.1186/s10194-022-01415-x] [PMID: 35578182]
[126]
Takeshima T, Nakai M, Shibasaki Y, et al. Early onset of efficacy with fremanezumab in patients with episodic and chronic migraine: Subanalysis of two phase 2b/3 trials in Japanese and Korean patients. J Headache Pain 2022; 23(1): 24.
[http://dx.doi.org/10.1186/s10194-022-01393-0] [PMID: 35139816]
[127]
Lipton RB, Lombard L, Ruff DD, et al. Trajectory of migraine-related disability following long-term treatment with lasmiditan: Results of the GLADIATOR study. J Headache Pain 2020; 21(1): 20.
[http://dx.doi.org/10.1186/s10194-020-01088-4] [PMID: 32093628]
[128]
Reuter U, Krege JH, Lombard L, et al. Lasmiditan efficacy in the acute treatment of migraine was independent of prior response to triptans: Findings from the CENTURION study. Cephalalgia 2022; 42(1): 20-30.
[http://dx.doi.org/10.1177/03331024211048507] [PMID: 34644189]
[129]
Johnston K, Harris L, Powell L, et al. Monthly migraine days, tablet utilization, and quality of life associated with Rimegepant - post hoc results from an open label safety study (BHV3000–201). J Headache Pain 2022; 23(1): 10.
[http://dx.doi.org/10.1186/s10194-021-01378-5] [PMID: 34979902]
[130]
Yonker ME, McVige J, Zeitlin L, Visser H. A multicenter, randomized, double‐blind, placebo‐controlled, crossover trial to evaluate the efficacy and safety of zolmitriptan nasal spray for the acute treatment of migraine in patients aged 6 to 11 years, with an open‐label extension. Headache 2022; 62(9): 1207-17.
[http://dx.doi.org/10.1111/head.14391] [PMID: 36286602]
[131]
Geppetti P, De Cesaris F, Benemei S, et al. Self-administered subcutaneous diclofenac sodium in acute migraine attack: A randomized, double-blind, placebo-controlled dose-finding pilot study. Cephalalgia 2022; 42(10): 1058-70.
[http://dx.doi.org/10.1177/03331024221093712] [PMID: 35469478]
[132]
Hedayat M, Nazarbaghi S, Heidari M, Sharifi H. Venlafaxine can reduce the migraine attacks as well as amitriptyline: A noninferiority randomized trial. Clin Neurol Neurosurg 2022; 214: 107151.
[http://dx.doi.org/10.1016/j.clineuro.2022.107151] [PMID: 35151971]
[133]
Najib U, Smith T, Hindiyeh N, et al. Non-invasive vagus nerve stimulation for prevention of migraine: The multicenter, randomized, double-blind, sham-controlled PREMIUM II trial. Cephalalgia 2022; 42(7): 560-9.
[http://dx.doi.org/10.1177/03331024211068813] [PMID: 35001643]
[134]
Sherafat A, Sahebnasagh A, Rahmany R, Mohammadi F, Saghafi F. The preventive effect of the combination of atorvastatin and nortriptyline in migraine-type headache: A randomized, triple-blind, placebo-controlled trial. Neurol Res 2022; 44(4): 311-7.
[http://dx.doi.org/10.1080/01616412.2021.1981105] [PMID: 35037597]
[135]
Matin H, Taghian F, Chitsaz A. Artificial intelligence analysis to explore synchronize exercise, cobalamin, and magnesium as new actors to therapeutic of migraine symptoms: A randomized, placebo-controlled trial. Neurol Sci 2022; 43(7): 4413-24.
[http://dx.doi.org/10.1007/s10072-021-05843-6]
[136]
Peng KP, Jürgens T, Basedau H, Ortlieb L, May A. Sumatriptan prevents central sensitization specifically in the trigeminal dermatome in humans. Eur J Pain 2022; 26(10): 2152-61.
[http://dx.doi.org/10.1002/ejp.2027] [PMID: 36001070]
[137]
Zai FL, Ji LX, Cheng JH, Chen YR, Liu H. Acupuncture at sphenopalatine ganglion combined with conventional acupuncture for episodic cluster headache: A randomized controlled trial. Zhongguo Zhenjiu 2022; 42(6): 603-7.
[PMID: 35712941]
[138]
Cai YW, Pei J, Fu QH, et al. Electroacupuncture at Siguan points for migraine of liver yang hyperactivity: A randomized controlled trial. Zhongguo Zhenjiu 2022; 42(5): 498-502.
[PMID: 35543939]
[139]
Schoonman GG, van der Grond J, Kortmann C, van der Geest RJ, Terwindt GM, Ferrari MD. Migraine headache is not associated with cerebral or meningeal vasodilatation-a 3T magnetic resonance angiography study. Brain 2008; 131(8): 2192-200.
[http://dx.doi.org/10.1093/brain/awn094] [PMID: 18502781]
[140]
Edvinsson L. Role of CGRP in migraine. Handb Exp Pharmacol 2019; 255: 121-30.
[http://dx.doi.org/10.1007/164_2018_201] [PMID: 30725283]
[141]
Edvinsson L. CGRP and migraine: From bench to bedside. Rev Neurol 2021; 177(7): 785-90.
[http://dx.doi.org/10.1016/j.neurol.2021.06.003] [PMID: 34275653]
[142]
Yuan H, Lu B, Ji Y, et al. Role of P2X4/NLRP3 pathway-mediated neuroinflammation in perioperative neurocognitive disorders. Mediators Inflamm 2022; 2022: 1-9.
[http://dx.doi.org/10.1155/2022/6355805] [PMID: 35153623]
[143]
Liu J, Wang G, Dan Y, Liu X. CGRP and PACAP-38 play an important role in diagnosing pediatric migraine. J Headache Pain 2022; 23(1): 68.
[http://dx.doi.org/10.1186/s10194-022-01435-7] [PMID: 35698032]
[144]
Tajti J, Szok D, Nagy-Grocz G, et al. Kynurenines and PACAP in Migraine: Medicinal chemistry and pathogenetic aspects. Curr Med Chem 2017; 24(13): 1332-49.
[PMID: 28245765]
[145]
Karademir F, Ozturk M, Altunkaynak Y, et al. Assessment of serum MMP-9, TIMP-1 levels and MMP-9/TIMP-1 ratio in migraine patients with and without aura. Ideggyogy Sz 2022; 75(9-10): 341-9.
[http://dx.doi.org/10.18071/isz.75.0341] [PMID: 36218114]
[146]
Arab HH, Abd El Aal HA, Alsufyani SE, et al. Topiramate reprofiling for the attenuation of cadmium-induced testicular impairment in rats: Role of NLRP3 inflammasome and AMPK/mTOR-linked autophagy. Pharmaceuticals 2022; 15(11): 1402.
[http://dx.doi.org/10.3390/ph15111402] [PMID: 36422532]
[147]
Wang Y, Shan Z, Zhang L, et al. P2X7R/NLRP3 signaling pathway-mediated pyroptosis and neuroinflammation contributed to cognitive impairment in a mouse model of migraine. J Headache Pain 2022; 23(1): 75.
[http://dx.doi.org/10.1186/s10194-022-01442-8] [PMID: 35780081]
[148]
García-Martín E, Navarro-Muñoz S, Rodriguez C, et al. Association between endothelial nitric oxide synthase (NOS3) rs2070744 and the risk for migraine. Pharmacogenomics J 2020; 20(3): 426-32.
[http://dx.doi.org/10.1038/s41397-019-0133-x] [PMID: 31792366]
[149]
Li X, Wei S, Niu S, et al. Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput Biol Med 2022; 144: 105389.
[http://dx.doi.org/10.1016/j.compbiomed.2022.105389] [PMID: 35303581]
[150]
Yu S, Fan C, Li Y, et al. Network pharmacology and experimental verification to explore the anti-migraine mechanism of Yufeng Ningxin Tablet. J Ethnopharmacol 2023; 310: 116384.
[http://dx.doi.org/10.1016/j.jep.2023.116384] [PMID: 36924863]
[151]
Guilbot A, Bangratz M, Ait Abdellah S, Lucas C. A combination of coenzyme Q10, feverfew and magnesium for migraine prophylaxis: A prospective observational study. BMC Complement Altern Med 2017; 17(1): 433.
[http://dx.doi.org/10.1186/s12906-017-1933-7] [PMID: 28854909]
[152]
Anderson N, Borlak J. Hepatobiliary events in migraine therapy with herbs-the case of petadolex, A petasites hybridus extract. J Clin Med 2019; 8(5): 652.
[http://dx.doi.org/10.3390/jcm8050652] [PMID: 31083451]
[153]
Delavar Kasmaei H, Ghorbanifar Z, Zayeri F, et al. Effects of coriandrum sativum syrup on migraine: A randomized, triple-blind, placebo-controlled trial. Iran Red Crescent Med J 2016; 18(1): e20759.
[http://dx.doi.org/10.5812/ircmj.20759] [PMID: 26889386]
[154]
Martin BR. Multimodal care for headaches, lumbopelvic pain, and dysmenorrhea in a woman with endometriosis: A case report. J Chiropr Med 2021; 20(3): 148-57.
[http://dx.doi.org/10.1016/j.jcm.2021.10.002] [PMID: 35463839]
[155]
Vuralli D, Arslan B, Topa E, et al. Migraine susceptibility is modulated by food triggers and analgesic overuse via sulfotransferase inhibition. J Headache Pain 2022; 23(1): 36.
[http://dx.doi.org/10.1186/s10194-022-01405-z] [PMID: 35282834]
[156]
Kamali M, Seifadini R, Kamali H, Mehrabani M, Jahani Y, Tajadini H. Efficacy of combination of Viola odorata, Rosa damascena and Coriandrum sativum in prevention of migraine attacks: A randomized, double blind, placebo- controlled clinical trial. Electron Physician 2018; 10(3): 6430-8.
[http://dx.doi.org/10.19082/6430] [PMID: 29765566]
[157]
Faridzadeh A, Salimi Y, Ghasemirad H, et al. Neuroprotective potential of aromatic herbs: Rosemary, sage, and lavender. Front Neurosci 2022; 16: 909833.
[http://dx.doi.org/10.3389/fnins.2022.909833] [PMID: 35873824]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy