Abstract

Background: Monkeypox is a global public health issue caused by the monkeypox virus (MPXV). As of October 28, 2022, a total of 77,115 laboratoryconfirmed cases and 3,610 probable cases, including 36 deaths, were reported, with 9,070 cases reported in Brazil, the second most affected country. The need to develop national technologies for the rapid diagnosis of emerging diseases for mass testing of the population is evident, as observed in the SARS-CoV-2 pandemic.

Objective: With that in mind, this article provides an overview of current methods, techniques, and their applications in the molecular detection of monkeypox, focusing the search on real-time polymerase chain reaction (qPCR), polymerase chain reaction (PCR), and polymerase chain reaction-enzyme linked immunosorbent assay (PCRELISA).

Methods: The relevant documents or papers covered in this study were selected by a search in international bibliographic databases. The search terms used in the databases were aimed at summarizing existing knowledge on molecular diagnostic methods, such as monkeypox; MPX, MPXV, qPCR, PCR, PCR-ELISA, diagnosis and detection searched separately or together using the Boolean operator “AND” either in the title or abstract. The searches took place in September 2022, and the corresponding articles were selected between 2012 and 2022.

Results: We found 256 documents in total and twelve studies addressing the molecular diagnosis of monkeypox were classified as possible sources for this review.

Conclusion: It is evident there is a pressing need to develop national technologies for rapid diagnosis of emerging diseases for mass testing of the population. It is also extremely important to have national detection kits with greater diagnostic capacity to assist in developing effective public policies in countries affected by this disease.

[1]
Bunge EM, Hoet B, Chen L, et al. The changing epidemiology of human monkeypox—A potential threat? A systematic review. PLoS Negl Trop Dis 2022; 16(2): e0010141.
[http://dx.doi.org/10.1371/journal.pntd.0010141]
[2]
Gong Q, Wang C, Chuai X, Chiu S. Monkeypox virus: A re-emergent threat to humans. Virol Sin 2022; 37(4): 477-82. Available From: https://pubmed.ncbi.nlm.nih.gov/35820590/
[http://dx.doi.org/10.1016/j.virs.2022.07.006] [PMID: 35820590]
[3]
Morand A, Delaigue S, Morand JJ. Review of poxvirus: Emergence of monkeypox. Med Sante Trop 2017; 27(1): 29-39.
[http://dx.doi.org/10.1684/mst.2017.0653] [PMID: 28406414]
[4]
Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW. GenBank. Nucleic Acids Res 2016; 44(D1): D67-72.
[http://dx.doi.org/10.1093/nar/gkv1276] [PMID: 26590407]
[5]
Monkeypox virus (ID 82219) - Genome - NCBI. Available From: https://www.ncbi.nlm.nih.gov/genome/?term=txid10244
[6]
von Magnus P, Andersen EK, Petersen KB, Birch‐Andersen A. A pox-like disease in cynomolgus monkeys. Acta Pathol Microbiol Scand A 1959; 46: 156-76.
[7]
Rizk JG, Lippi G, Henry BM, Forthal DN, Rizk Y. Prevention and treatment of monkeypox. Drugs 2022; 82(9): 957-63.
[http://dx.doi.org/10.1007/s40265-022-01742-y] [PMID: 35763248]
[8]
Altindis M, Puca E, Shapo L. Diagnosis of monkeypox virus – An overview. Travel Med Infect Dis 2022; 50: 102459.
[http://dx.doi.org/10.1016/j.tmaid.2022.102459] [PMID: 36109000]
[9]
Nakazawa Y, Lash RR, Carroll DS, Damon IK, Karem KL, Reynolds MG, et al. Mapping monkeypox transmission risk through time and space in the congo basin. PLoS One 2013; 8: 74816.
[10]
Martín-Delgado MC, Martín-Sánchez FJ, Martínez-Sellés M, Molero García JM, Moreno Guillén S, Rodríguez-Artalejo F, et al. Monkeypox in humans: A new outbreak. Rev Esp Quimioter. Rev Esp Quimioter 2022; 35(6): 509-18.
[11]
McCollum AM, Damon IK, McCollum AM, Damon IK. Human Monkeypox. Clin Infect Dis 2014; 58(2): 260-7.
[http://dx.doi.org/10.1093/cid/cit703]
[12]
Kmiec D, Kirchhoff F. Monkeypox: A new threat? Int J Mol Sci 2022; 23(14): 7866.
[http://dx.doi.org/10.3390/ijms23147866]
[13]
Ladnyj ID, Ziegler P, Kima E. A human infection caused by monkeypox virus in Basankusu Territory, Democratic Republic of the Congo. Bull World Health Organ 1972; 46: 593.
[14]
Reed KD, Melski JW, Graham MB, Regnery RL, Sotir MJ. The detection of monkeypox in humans in the Western Hemisphere. N Engl J Med 2004; 350(4): 342-50.
[15]
Yinka-Ogunleye A, Aruna O, Dalhat M, et al. Outbreak of human monkeypox in Nigeria in 2017–18: A clinical and epidemiological report. Lancet Infect Dis 2019; 19(8): 872-9.
[http://dx.doi.org/10.1016/S1473-3099(19)30294-4] [PMID: 31285143]
[16]
World Health Organization. Monkeypox. 2022. Available From: https://www.who.int/newsroom/factsheets/detail/monkeypox
[17]
Hraib M, Jouni S, Albitar MM, Alaidi S, Alshehabi Z. The outbreak of monkeypox 2022: An overview. Ann Med Surg 2022; 79: 104069.
[18]
Isidro J, Borges V, Pinto M, Sobral D, Santos JD, Nunes A, et al. Phylogenomic characterization and signs of microevolution in the 2022 multi-country outbreak of monkeypox virus. Nat Med 2022; 28: 1569-72.
[http://dx.doi.org/10.1038/s41591-022-01907-y]
[19]
Adler H, Gould S, Hine P, et al. Clinical features and management of human monkeypox: A retrospective observational study in the UK. Lancet Infect Dis 2022; 22(8): 1153-62.
[http://dx.doi.org/10.1016/S1473-3099(22)00228-6] [PMID: 35623380]
[20]
Durski KN, McCollum AM, Nakazawa Y, et al. Emergence of Monkeypox — West and Central Africa, 1970–2017. MMWR Morb Mortal Wkly Rep 2018; 67(10): 306-10.
[http://dx.doi.org/10.15585/mmwr.mm6710a5] [PMID: 29543790]
[21]
Hemati S, Farhadkhani M, Sanami S, Mohammadi-Moghadam F. A review on insights and lessons from COVID-19 to the prevent of monkeypox pandemic. Travel Med Infect Dis 2022; 2022: 50.
[22]
World Health Organization. Monkeypox outbreak: Global trends. 2022. Available From: https://worldhealthorg.shinyapps.io/mpx_global/
[23]
Thornhill JP, Barkati S, Walmsley S, et al. Monkeypox virus infection in humans across 16 countries — April–June 2022. N Engl J Med 2022; 387(8): 679-91.
[http://dx.doi.org/10.1056/NEJMoa2207323] [PMID: 35866746]
[24]
Shaheen N, Diab RA, Meshref M, Shaheen A, Ramadan A, Shoib S. Is there a need to be worried about the new monkeypox virus outbreak? A brief review on the monkeypox outbreak. Ann Med Surg 2022; 81.
[25]
Kumar N, Acharya A, Gendelman HE, Byrareddy SN. The 2022 outbreak and the pathobiology of the monkeypox virus. J Autoimmun 2022; 131: 102855.
[http://dx.doi.org/10.1016/j.jaut.2022.102855]
[26]
Tarín-Vicente EJ, Alemany A, Agud-Dios M, Ubals M, Suñer C, Antón A, et al. Clinical presentation and virological assessment of confirmed human monkeypox virus cases in Spain: A prospective observational cohort study. Lancet 2022; 400(103353): 661-9.
[http://dx.doi.org/10.1016/S0140-6736(22)01436-2]
[27]
Soheili M, Nasseri S, Afraie M, et al. Monkeypox: Virology, pathophysiology, clinical characteristics, epidemiology, vaccines, diagnosis, and treatments. J Pharm Pharm Sci 2022; 25: 297-322.
[http://dx.doi.org/10.18433/jpps33138] [PMID: 36130588]
[28]
Jalali M, Zaborowska J, Jalali M. Chapter 1 - The Polymerase Chain Reaction: PCR, qPCR, and RTPCR. Basic Science Methods for Clinical Researchers. Hoboken, New Jersey: Academic Press 2017; pp. 1-18.
[29]
Tajadini M, Panjehpour M, Javanmard S. Comparison of SYBR Green and TaqMan methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes. Adv Biomed Res 2014; 3(1): 85.
[http://dx.doi.org/10.4103/2277-9175.127998] [PMID: 24761393]
[30]
Pfaffl M. Quantification strategies in real-time polymerase chain reaction. Quantitative Real-time PCR in Applied Microbiology. Hoboken, New Jersey: Aademic Press 2012; pp. 53-62.
[31]
Porzucek AJ, Proctor AM, Klinkhammer KE, Tritsch SR, Robertson MA, Bashor JP, et al. Development of an accessible and scalable quantitative polymerase chain reaction assay for monkeypox virus detection. J Infect Dis 2022; 227(9): 1084-7.
[32]
Paniz-Mondolfi A, Guerra S, Muñoz M, Luna N, Hernandez MM, Patino LH, et al. Evaluation and validation of an RT-PCR assay for specific detection of monkeypox virus (MPXV). J Med Virol 2022; 95(1): e28247.
[33]
Huo S, Chen Y, Lu R, Zhang Z, Zhang G, Zhao L, et al. Development of two multiplex real-time PCR assays for simultaneous detection and differentiation of monkeypox virus IIa, IIb, and I clades and the B.1 lineage. Biosaf Health 2022; 4(6): 392-8.
[34]
Uhteg K, Mostafa HH. Validation and implementation of an orthopoxvirus qualitative real-time PCR for the diagnosis of monkeypox in the clinical laboratory. J Clin Virol 2022; 158: 105327.
[35]
Maksyutov RA. Species-specific differentiation of variola, monkeypox, and varicella-zoster viruses by multiplex real-time PCR assay. J Virol Methods 2016; 236: 215-20.
[36]
Wu F, Oghuan J, Gitter A, Mena KD, Brown EL. Wide mismatches in the sequences of primers and probes for Monkeypox virus diagnostic assays. medRxiv 2022; 2022.08.
[http://dx.doi.org/10.1101/2022.08.10.22278644]
[37]
Wawina-Bokalanga T, Sklenovska N, Vanmechelen B, Bloemen M, Vergote V, Laenen L, et al. An accurate and rapid Real-time PCR approach for human Monkeypox virus diagnosis. medRxiv 2022; 2022.06.23.22276033.
[http://dx.doi.org/10.1101/2022.06.23.22276033]
[38]
Kuo SC, Wang YM. Identification of pan-orthopoxvirus, monkeypox-specific and smallpox-specific DNAs by real-time PCR assay. Journal of Medical Sciences (Taiwan) 2013; 33: 293-303.
[39]
Nörz D, Tang HT, Emmerich P, Giersch K, Fischer N, Schmiedel S, et al. Rapid adaptation of established high-throughput molecular testing infrastructure for monkeypox virus detection. Emerg Infect Dis 2022; 28(9): 1765-9.
[http://dx.doi.org/10.3201/eid2809.220917]
[40]
Menêses MSL, Toralles MBP, Mendes CMC. Evolution of the PCR technique: Its contribution in the diagnosis of HPV infection. Rev Science average Biol 2019; 18(3): 361.
[http://dx.doi.org/10.9771/cmbio.v18i3.34480]
[41]
Exler S, Daiminger A, Grothe M, Schalasta G, Enders G, Enders M. Primary cytomegalovirus (CMV) infection in pregnancy: Diagnostic value of CMV PCR in saliva compared to urine at birth. J Clin Virol 2019; 117: 33-6.
[http://dx.doi.org/10.1016/j.jcv.2019.05.015] [PMID: 31176209]
[42]
Wang J, Cai K, Zhang R, et al. Novel one-step single-tube nested quantitative real-time PCR assay for highly sensitive detection of SARS-CoV-2. Anal Chem 2020; 92(13): 9399-404.
[http://dx.doi.org/10.1021/acs.analchem.0c01884] [PMID: 32438806]
[43]
Li Y, Olson VA, Laue T, Laker MT, Damon IK. Detection of monkeypox virus with real-time PCR assays. J Clin Virol 2006; 36(3): 194-203.
[http://dx.doi.org/10.1016/j.jcv.2006.03.012] [PMID: 16731033]
[44]
Li Y, Zhao H, Wilkins K, Hughes C, Damon IK. Real-time PCR assays for the specific detection of monkeypox virus West African and Congo Basin strain DNA. J Virol Methods 2010; 169(1): 223-7.
[http://dx.doi.org/10.1016/j.jviromet.2010.07.012] [PMID: 20643162]
[45]
Iizuka I, Saijo M, Shiota T, et al. Loop-mediated isothermal amplification-based diagnostic assay for monkeypox virus infections. J Med Virol 2009; 81(6): 1102-8.
[http://dx.doi.org/10.1002/jmv.21494] [PMID: 19382264]
[46]
Erez N, Achdout H, Milrot E, Schwartz Y, Wiener-Well Y, Paran N, et al. Diagnosis of imported monkeypox, Israel, 2018. Emerg Infect Dis 2018; 21(1): 90.
[47]
Kim JW, Lee M, Shin H, et al. Isolation and identification of monkeypox virus MPXV-ROK-P1-2022 from the first case in the Republic of Korea. Osong Public Health Res Perspect 2022; 13(4): 308-11.
[http://dx.doi.org/10.24171/j.phrp.2022.0232] [PMID: 36097753]
[48]
Tumewu J, Wardiana M, Ervianty E. An adult patient with suspected of monkeypox infection differential diagnosed to chickenpox. Infect Dis Rep 2020; 12 (Suppl. 1): 8724.
[49]
Sue MJ, Yeap SK, Omar AR, Tan SW. Application of PCR-ELISA in molecular diagnosis. BioMed Res Int 2014; 21: 653014.
[http://dx.doi.org/10.1155/2014/653014]
[50]
Rami S, Amani J, Saleh T. Detection of specific eae gene from enteropathogenic Escherichia coli by PCR-ELISA. J Mazandaran Univ Med Sci 2019; 28(170): 43-55.
[51]
Hornbeck P. Enzyme-linked immunosorbent assays. Curr Protoc Immunol 2001; Chapter 2: Unit 2.1.
[52]
Aydin S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015; 72: 4-15.
[53]
Muro LFF, Ferreira LL. Gonzaga PAL, Pereira, REP. Relação Antígeno-Anticorpo. Rev Cient Elet Med Vet 2009; 12(4): 1-4.
[54]
Engvall E. The ELISA, enzyme-linked immunosorbent assay. Clin Chem 2010; 56(2): 319-20.
[http://dx.doi.org/10.1373/clinchem.2009.127803] [PMID: 19850633]
[55]
Coutlée F, Bobo L, Mayur K, Yolken RH, Viscidi RP. Immunodetection of DNA with biotinylated RNA probes: A study of reactivity of a monoclonal antibody to DNA-RNA hybrids. Anal Biochem 1989; 181(1): 96-105.
[http://dx.doi.org/10.1016/0003-2697(89)90399-0] [PMID: 2683864]
[56]
Di Pinto A, Terio V, Di Pinto P, Colao V, Tantillo G. Detection of Vibrio parahaemolyticus in shellfish using polymerase chain reaction-enzyme-linked immunosorbent assay. Lett Appl Microbiol 2012; 54(6): 494-8.
[http://dx.doi.org/10.1111/j.1472-765X.2012.03231.x] [PMID: 22380509]
[57]
Samimi A, Talebi B, Koohsar F, et al. Detection of Leishmania major using PCR-ELISA. Med Lab J 2022; 16(3): 24-9.
[58]
Feng J, Xue G, Cui X, et al. Development of a loop-mediated isothermal amplification method for rapid and visual detection of monkeypox virus. Microbiol Spectr 2022; 10(5): e02714-22.
[http://dx.doi.org/10.1128/spectrum.02714-22] [PMID: 36154444]
[59]
Bhadra S, Ellington AD. Portable nucleic acid tests for rapid detection of monkeypox virus. medRxiv 2022.
[http://dx.doi.org/10.1101/2022.08.09.22278605]
[60]
Davi SD, Kissenkötter J, Faye M, et al. Recombinase polymerase amplification assay for rapid detection of Monkeypox virus. Diagn Microbiol Infect Dis 2019; 95(1): 41-5.
[http://dx.doi.org/10.1016/j.diagmicrobio.2019.03.015] [PMID: 31126795]
[61]
Jackson SA, McKenzie RE, Fagerlund RD, Kieper SN, Fineran PC, Brouns SJJ. CRISPR-Cas: Adapting to change. Science 2017; 356(6333): eaal5056.
[http://dx.doi.org/10.1126/science.aal5056] [PMID: 28385959]
[62]
Sui Y, Xu Q, Liu M, Zuo K, Liu X, Liu J. CRISPR-Cas12a-based detection of monkeypox virus. J Infect 2022; 85(6): 702.
[63]
Israeli O, Guedj-Dana Y, Shifman O, et al. Rapid amplicon nanopore sequencing (RANS) for the differential diagnosis of monkeypox virus and other vesicle-forming pathogens. Viruses 2022; 14(8): 1817.
[http://dx.doi.org/10.3390/v14081817] [PMID: 36016439]
[64]
Ejaz H, Junaid K, Younas S, et al. Emergence and dissemination of monkeypox, an intimidating global public health problem. J Infect Public Health 2022; 15(10): 1156-65.
[http://dx.doi.org/10.1016/j.jiph.2022.09.008] [PMID: 36174285]
[65]
Bragazzi NL, Khamisy-Farah R, Tsigalou C, Mahroum N, Converti M. Attaching a stigma to the LGBTQI+ community should be avoided during the monkeypox epidemic. J Med Virol 2023; 95(1): e27913.
[http://dx.doi.org/10.1002/jmv.27913] [PMID: 35655436]
[66]
Harapan H, Ophinni Y, Megawati D, Frediansyah A, Mamada SS, Salampe M, et al. Monkeypox: A comprehensive review. Viruses 2022; 14(10): 2155.
[http://dx.doi.org/10.3390/v14102155]
[67]
Kozlov M. Monkeypox goes global: Why scientists are on alert. Nature 2022; 606(7912): 15-6.
[http://dx.doi.org/10.1038/d41586-022-01421-8] [PMID: 35595996]
[68]
Vivancos R, Anderson C, Blomquist P, Balasegaram S, Bell A, Bishop L, et al. Community transmission of monkeypox in the United Kingdom, April to May 2022. Eurosurveillance 2022; 27(22)
[69]
Luo Q, Han J. Preparedness for a monkeypox outbreak. Infect Med 2022; 1(2): 124-34.
[http://dx.doi.org/10.1016/j.imj.2022.07.001]
[70]
Harapan H, Setiawan AM, Yufika A, et al. Confidence in managing human monkeypox cases in Asia: A cross-sectional survey among general practitioners in Indonesia. Acta Trop 2020; 206: 105450.
[http://dx.doi.org/10.1016/j.actatropica.2020.105450] [PMID: 32194068]
[71]
Harapan H, Setiawan AM, Yufika A, et al. Knowledge of human monkeypox viral infection among general practitioners: A cross-sectional study in Indonesia. Pathog Glob Health 2020; 114(2): 68-75.
[http://dx.doi.org/10.1080/20477724.2020.1743037] [PMID: 32202967]
[72]
Sepehrinezhad A, Ashayeri Ahmadabad R, Sahab-Negah S. Monkeypox virus from neurological complications to neuroinvasive properties: current status and future perspectives. J Neurol 2022; 270(1): 101-8.
[73]
Petersen E, Kantele A, Koopmans M, et al. Human Monkeypox. Infect Dis Clin North Am 2019; 33(4): 1027-43.
[http://dx.doi.org/10.1016/j.idc.2019.03.001] [PMID: 30981594]
[74]
Oliveira M, Watanabe A, Cesar D, et al. Testes diagnósticos para o sars-cov-2: Uma reflexão crítica. Quim Nova 2022; 45(6): 760-6.
[http://dx.doi.org/10.21577/0100-4042.20170895]
[75]
Tompa DR, Immanuel A, Srikanth S, Kadhirvel S. Trends and strategies to combat viral infections: A review on FDA approved antiviral drugs. Int J Biol Macromol 2021; 172: 524-41.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.076] [PMID: 33454328]
[76]
Vouga M, Nielsen-Saines K, Dashraath P, Baud D. The monkeypox outbreak: Risks to children and pregnant women. Lancet Child Adolesc Health 2022; 6(11): 751-3.
[http://dx.doi.org/10.1016/S2352-4642(22)00223-1] [PMID: 35926522]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy