Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Mini-Review Article

The Therapeutic Effects of Mesenchymal Stem Cells and their Secretome on Oral Squamous Cell Carcinoma

Author(s): Atefe Ataei, Majid Azizi, Samira Hajisadeghi, Mojan Madani, Mozhgan Khorami, Sahar Hassantash, Sahand Saeidpour Masouleh and Ghasem Barati*

Volume 24, Issue 10, 2024

Published on: 18 October, 2023

Page: [1195 - 1207] Pages: 13

DOI: 10.2174/1566524023666230627151809

Price: $65

Abstract

Oral cancers are prevalent in the human population, particularly in unindustrialized countries. In 90 % of oral cancers, the tumors arise from squamous cells, which is called oral squamous cell carcinoma (OSCC). Despite new treatment strategies, the morbidity and mortality rates are still high. Current treatment options including surgery, chemotherapy, and radiotherapy are not effective in the treatment of the tumor. Cell therapy with mesenchymal stem cells (MSCs) is considered one of the leading strategies in cancer treatment. However, the field of MSC therapy in OSCC is immature and ongoing studies are being conducted in experimental and pre-clinical studies. Here, we reviewed these studies to figure out whether the use of MSCs could be worthwhile in OSCC therapy or not. Both native and engineered MSCs as well as their secretome have been used in the treatment of OSCC. It seems that genetically modified MSCs or their secretome could inhibit the tumorigenesis of OSCC. However, further pre-clinical studies are required to come to a conclusion.

Next »
[1]
Williams HK. Molecular pathogenesis of oral squamous carcinoma. Mol Pathol 2000; 53(4): 165-72.
[http://dx.doi.org/10.1136/mp.53.4.165] [PMID: 11040937]
[2]
Markopoulos AK. Current aspects on oral squamous cell carcinoma. Open Dent J 2012; 6(1): 126-30.
[http://dx.doi.org/10.2174/1874210601206010126] [PMID: 22930665]
[3]
van der Waal I. Potentially malignant disorders of the oral and oropharyngeal mucosa; terminology, classification and present concepts of management. Oral Oncol 2009; 45(4-5): 317-23.
[http://dx.doi.org/10.1016/j.oraloncology.2008.05.016] [PMID: 18674954]
[4]
Seif S, Afra N, Dadgar E, et al. The expression of salivary microRNAs in oral lichen planus: Searching for a prognostic biomarker. Pathol Res Pract 2022; 234: 153923.
[http://dx.doi.org/10.1016/j.prp.2022.153923] [PMID: 35526303]
[5]
Zygogianni AG, Kyrgias G, Karakitsos P, et al. Oral squamous cell cancer: Early detection and the role of alcohol and smoking. Head Neck Oncol 2011; 3(1): 2.
[http://dx.doi.org/10.1186/1758-3284-3-2] [PMID: 21211041]
[6]
Su CC, Yang HF, Huang SJ, Lian IB. Distinctive features of oral cancer in Changhua County: High incidence, buccal mucosa preponderance, and a close relation to betel quid chewing habit. J Formos Med Assoc 2007; 106(3): 225-33.
[http://dx.doi.org/10.1016/S0929-6646(09)60244-8] [PMID: 17389167]
[7]
Mehrotra R, Yadav S. Oral squamous cell carcinoma: Etiology, pathogenesis and prognostic value of genomic alterations. Indian J Cancer 2006; 43(2): 60.
[http://dx.doi.org/10.4103/0019-509X.25886] [PMID: 16790942]
[8]
Popović B, Jekić B, Novaković I, et al. Cancer genes alterations and HPV infection in oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2010; 39(9): 909-15.
[http://dx.doi.org/10.1016/j.ijom.2010.05.007] [PMID: 20579853]
[9]
Patel S, Shah K, Mirza S, Daga A, Rawal R. Epigenetic regulators governing cancer stem cells and epithelial-mesenchymal transition in oral squamous cell carcinoma. Curr Stem Cell Res Ther 2015; 10(2): 140-52.
[http://dx.doi.org/10.2174/1574888X09666141020163700] [PMID: 25330402]
[10]
Scott SE, Grunfeld EA, Main J, McGurk M. Patient delay in oral cancer: A qualitative study of patients’ experiences. Psychooncology 2006; 15(6): 474-85.
[http://dx.doi.org/10.1002/pon.976] [PMID: 16142843]
[11]
Patel SC, Carpenter WR, Tyree S, et al. Increasing incidence of oral tongue squamous cell carcinoma in young white women, age 18 to 44 years. J Clin Oncol 2011; 29(11): 1488-94.
[http://dx.doi.org/10.1200/JCO.2010.31.7883] [PMID: 21383286]
[12]
Friedenstein AJ, Petrakova KV, Kurolesova AI, Frolova GP. Heterotopic of bone marrow. Analysis of precursor cells for osteogenic and hematopoietic tissues. Transplantation 1968; 6(2): 230-47.
[http://dx.doi.org/10.1097/00007890-196803000-00009] [PMID: 5654088]
[13]
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Prolif 1970; 3(4): 393-403.
[http://dx.doi.org/10.1111/j.1365-2184.1970.tb00347.x] [PMID: 5523063]
[14]
Caplan AI. Mesenchymal stem cells. J Orthop Res 1991; 9(5): 641-50.
[http://dx.doi.org/10.1002/jor.1100090504] [PMID: 1870029]
[15]
Galipeau J, Krampera M, Barrett J, et al. International Society for Cellular Therapy perspective on immune functional assays for mesenchymal stromal cells as potency release criterion for advanced phase clinical trials. Cytotherapy 2016; 18(2): 151-9.
[http://dx.doi.org/10.1016/j.jcyt.2015.11.008] [PMID: 26724220]
[16]
Han Y, Li X, Zhang Y, Han Y, Chang F, Ding J. Mesenchymal stem cells for regenerative medicine. Cells 2019; 8(8): 886.
[http://dx.doi.org/10.3390/cells8080886] [PMID: 31412678]
[17]
Andrzejewska A, Lukomska B, Janowski M. Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells 2019; 37(7): 855-64.
[http://dx.doi.org/10.1002/stem.3016] [PMID: 30977255]
[18]
Phinney DG. Biochemical heterogeneity of mesenchymal stem cell populations: Clues to their therapeutic efficacy. Cell Cycle 2007; 6(23): 2884-9.
[http://dx.doi.org/10.4161/cc.6.23.5095] [PMID: 18000405]
[19]
Wilson A, Webster A, Genever P. Nomenclature and heterogeneity: Consequences for the use of mesenchymal stem cells in regenerative medicine. Regen Med 2019; 14(6): 595-611.
[http://dx.doi.org/10.2217/rme-2018-0145] [PMID: 31115266]
[20]
Wang YH, Tao YC, Wu DB, Wang ML, Tang H, Chen EQ. Cell heterogeneity, rather than the cell storage solution, affects the behavior of mesenchymal stem cells in vitro and in vivo. Stem Cell Res Ther 2021; 12(1): 391.
[http://dx.doi.org/10.1186/s13287-021-02450-2] [PMID: 34256842]
[21]
Makridakis M, Roubelakis MG. Stem cells: Insights into the secretome. Biochim Biophys Acta 1834; 1834(11): 2380-4.
[http://dx.doi.org/10.1016/j.bbapap.2013.01.032] [PMID: 23376432]
[22]
Zanotti L, Angioni R, Calì B, et al. Mouse mesenchymal stem cells inhibit high endothelial cell activation and lymphocyte homing to lymph nodes by releasing TIMP-1. Leukemia 2016; 30(5): 1143-54.
[http://dx.doi.org/10.1038/leu.2016.33] [PMID: 26898191]
[23]
Fath MK, Anjomrooz M, Taha SR, et al. The therapeutic effect of exosomes from mesenchymal stem cells on colorectal cancer: Toward cell-free therapy. Pathol Res Pract 2022; 237: 154024.
[24]
Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 1987; 262(19): 9412-20.
[http://dx.doi.org/10.1016/S0021-9258(18)48095-7] [PMID: 3597417]
[25]
Sahu R, Kaushik S, Clement CC, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20(1): 131-9.
[http://dx.doi.org/10.1016/j.devcel.2010.12.003] [PMID: 21238931]
[26]
Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science 2020; 367(6478): eaau6977.
[http://dx.doi.org/10.1126/science.aau6977] [PMID: 32029601]
[27]
Naji A, Eitoku M, Favier B, Deschaseaux F, Rouas-Freiss N, Suganuma N. Biological functions of mesenchymal stem cells and clinical implications. Cell Mol Life Sci 2019; 76(17): 3323-48.
[http://dx.doi.org/10.1007/s00018-019-03125-1] [PMID: 31055643]
[28]
Fath MK, Ebrahimi M, Nourbakhsh E, et al. PI3K/Akt/mTOR signaling pathway in cancer stem cells. Pathol Res Pract 2022; 237: 154010.
[http://dx.doi.org/10.1016/j.prp.2022.154010] [PMID: 35843034]
[29]
Liu S, Ginestier C, Ou SJ, et al. Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 2011; 71(2): 614-24.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-0538] [PMID: 21224357]
[30]
Powell DW, Adegboyega PA, Di Mari JF, Mifflin RC. Epithelial cells and their neighbors I. Role of intestinal myofibroblasts in development, repair, and cancer. Am J Physiol Gastrointest Liver Physiol 2005; 289(1): G2-7.
[http://dx.doi.org/10.1152/ajpgi.00075.2005] [PMID: 15961883]
[31]
Watts TL, Cui R, Szaniszlo P, Resto VA, Powell DW, Pinchuk IV. PDGF-AA mediates mesenchymal stromal cell chemotaxis to the head and neck squamous cell carcinoma tumor microenvironment. J Transl Med 2016; 14(1): 337.
[http://dx.doi.org/10.1186/s12967-016-1091-6] [PMID: 27931212]
[32]
Liotta F, Querci V, Mannelli G, et al. Mesenchymal stem cells are enriched in head neck squamous cell carcinoma, correlates with tumour size and inhibit T-cell proliferation. Br J Cancer 2015; 112(4): 745-54.
[http://dx.doi.org/10.1038/bjc.2015.15] [PMID: 25647013]
[33]
Ponte AL, Marais E, Gallay N, et al. The in vitro migration capacity of human bone marrow mesenchymal stem cells: Comparison of chemokine and growth factor chemotactic activities. Stem Cells 2007; 25(7): 1737-45.
[http://dx.doi.org/10.1634/stemcells.2007-0054] [PMID: 17395768]
[34]
Koontongkaew S, Amornphimoltham P, Yapong B. Tumor–stroma interactions influence cytokine expression and matrix metalloproteinase activities in paired primary and metastatic head and neck cancer cells. Cell Biol Int 2009; 33(2): 165-73.
[http://dx.doi.org/10.1016/j.cellbi.2008.10.009] [PMID: 18996211]
[35]
Gialeli C, Nikitovic D, Kletsas D, Theocharis A, Tzanakakis G, Karamanos N. PDGF/PDGFR signaling and targeting in cancer growth and progression: Focus on tumor microenvironment and cancer-associated fibroblasts. Curr Pharm Des 2014; 20(17): 2843-8.
[http://dx.doi.org/10.2174/13816128113199990592] [PMID: 23944365]
[36]
Gross DJ, Munter G, Bitan M, et al. The role of imatinib mesylate (Glivec) for treatment of patients with malignant endocrine tumors positive for c-kit or PDGF-R. Endocr Relat Cancer 2006; 13(2): 535-40.
[http://dx.doi.org/10.1677/erc.1.01124] [PMID: 16728580]
[37]
Shinagawa K, Kitadai Y, Tanaka M, et al. Stroma-directed imatinib therapy impairs the tumor-promoting effect of bone marrow-derived mesenchymal stem cells in an orthotopic transplantation model of colon cancer. Int J Cancer 2013; 132(4): 813-23.
[http://dx.doi.org/10.1002/ijc.27735] [PMID: 22821812]
[38]
Lozito TP, Kuo CK, Taboas JM, Tuan RS. Human mesenchymal stem cells express vascular cell phenotypes upon interaction with endothelial cell matrix. J Cell Biochem 2009; 107(4): 714-22.
[http://dx.doi.org/10.1002/jcb.22167] [PMID: 19415687]
[39]
De Boeck A, Narine K, De Neve W, Mareel M, Bracke M, De Wever O. Resident and bone marrow-derived mesenchymal stem cells in head and neck squamous cell carcinoma. Oral Oncol 2010; 46(5): 336-42.
[http://dx.doi.org/10.1016/j.oraloncology.2010.01.016] [PMID: 20219413]
[40]
Djouad F, Plence P, Bony C, et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102(10): 3837-44.
[http://dx.doi.org/10.1182/blood-2003-04-1193] [PMID: 12881305]
[41]
Wang J, Cui R, Clement CG, et al. Activation PDGFR-α/AKT mediated signaling pathways in oral squamous cell carcinoma by mesenchymal stem/stromal cells promotes anti-apoptosis and decreased sensitivity to cisplatin. Front Oncol 2020; 10: 552.
[http://dx.doi.org/10.3389/fonc.2020.00552] [PMID: 32411595]
[42]
Liu C, Billet S, Choudhury D, et al. Bone marrow mesenchymal stem cells interact with head and neck squamous cell carcinoma cells to promote cancer progression and drug resistance. Neoplasia 2021; 23(1): 118-28.
[http://dx.doi.org/10.1016/j.neo.2020.11.012] [PMID: 33310208]
[43]
Böhrnsen F, Holzenburg J, Godek F, Kauffmann P, Moser N, Schliephake H. Influence of tumour necrosis factor alpha on epithelial–mesenchymal transition of oral cancer cells in co-culture with mesenchymal stromal cells. Int J Oral Maxillofac Surg 2020; 49(2): 157-65.
[http://dx.doi.org/10.1016/j.ijom.2019.06.001] [PMID: 31345665]
[44]
Ji X, Zhang Z, Han Y, et al. Mesenchymal stem cells derived from normal gingival tissue inhibit the proliferation of oral cancer cells in vitro and in vivo. Int J Oncol 2016; 49(5): 2011-22.
[http://dx.doi.org/10.3892/ijo.2016.3715] [PMID: 27826624]
[45]
Zurmukhtashvili M, Machavariani A, Dugashvili G, et al. Mesenchymal stem cell transplantation attenuates growth of chemotherapy treated oral squamous cell carcinoma in an animal model. J Oral Pathol Med 2020; 49(7): 655-4.
[http://dx.doi.org/10.1111/jop.13006] [PMID: 32107794]
[46]
Bruna F, Arango-Rodríguez M, Plaza A, Espinoza I, Conget P. The administration of multipotent stromal cells at precancerous stage precludes tumor growth and epithelial dedifferentiation of oral squamous cell carcinoma. Stem Cell Res 2017; 18: 5-13.
[http://dx.doi.org/10.1016/j.scr.2016.11.016] [PMID: 27939557]
[47]
Sinha S, Narjus-Sterba M, Tuomainen K, et al. Adipose-derived mesenchymal stem cells do not affect the invasion and migration potential of oral squamous carcinoma cells. Int J Mol Sci 2020; 21(18): 6455.
[http://dx.doi.org/10.3390/ijms21186455] [PMID: 32899628]
[48]
Ward-Kavanagh LK, Lin WW, Šed‎ý JR, Ware CF. The TNF receptor superfamily in co-stimulating and co-inhibitory responses. Immunity 2016; 44(5): 1005-19.
[http://dx.doi.org/10.1016/j.immuni.2016.04.019] [PMID: 27192566]
[49]
Gauthaman K, Yee FC, Cheyyatraivendran S, Biswas A, Choolani M, Bongso A. Human umbilical cord wharton’s jelly stem cell (hWJSC) extracts inhibit cancer cell growth in vitro. J Cell Biochem 2012; 113(6): 2027-39.
[http://dx.doi.org/10.1002/jcb.24073] [PMID: 22275115]
[50]
Heidari R, Gholamian Dehkordi N, Mohseni R, Safaei M. Engineering mesenchymal stem cells: A novel therapeutic approach in breast cancer. J Drug Target 2020; 28(7-8): 732-41.
[http://dx.doi.org/10.1080/1061186X.2020.1775842] [PMID: 32463709]
[51]
Bagheri R, Bitazar R, Talebi S, Alaeddini M, Etemad-Moghadam S, Eini L. Conditioned media derived from mesenchymal stem cells induces apoptosis and decreases cell viability and proliferation in squamous carcinoma cell lines. Gene 2021; 782: 145542.
[http://dx.doi.org/10.1016/j.gene.2021.145542] [PMID: 33675953]
[52]
Del Fattore A, Luciano R, Saracino R, et al. Differential effects of extracellular vesicles secreted by mesenchymal stem cells from different sources on glioblastoma cells. Expert Opin Biol Ther 2015; 15(4): 495-504.
[http://dx.doi.org/10.1517/14712598.2015.997706] [PMID: 25539575]
[53]
Weng Z, Zhang B, Wu C, et al. Therapeutic roles of mesenchymal stem cell-derived extracellular vesicles in cancer. J Hematol Oncol 2021; 14(1): 136.
[http://dx.doi.org/10.1186/s13045-021-01141-y] [PMID: 34479611]
[54]
Eleuteri S, Fierabracci A. Insights into the Secretome of Mesenchymal Stem Cells and Its Potential Applications. Int J Mol Sci 2019; 20(18): 4597.
[http://dx.doi.org/10.3390/ijms20184597] [PMID: 31533317]
[55]
Zhou S, Cecere R, Philip A. CD109 released from human bone marrow mesenchymal stem cells attenuates TGF-β-induced epithelial to mesenchymal transition and stemness of squamous cell carcinoma. Oncotarget 2017; 8(56): 95632-47.
[http://dx.doi.org/10.18632/oncotarget.21067] [PMID: 29221155]
[56]
Bizet AA, Liu K, Tran-Khanh N, Saksena A, Vorstenbosch J, Finnson KW, et al. The TGF-β co-receptor, CD109, promotes internalization and degradation of TGF-β receptors. Biochim Biophys Acta 1813; 1813(5): 742-53.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.028] [PMID: 21295082]
[57]
Rosenberger L, Ezquer M, Lillo-Vera F, et al. Stem cell exosomes inhibit angiogenesis and tumor growth of oral squamous cell carcinoma. Sci Rep 2019; 9(1): 663.
[http://dx.doi.org/10.1038/s41598-018-36855-6] [PMID: 30679544]
[58]
Hanyu S, Sakuma K, Tanaka A. A study on the effect of human dental pulp stem cell conditioned medium on human oral squamous cell carcinoma cell lines. J Hard Tissue Biol 2019; 28(3): 281-8.
[http://dx.doi.org/10.2485/jhtb.28.281]
[59]
Wang J, Yang W, Wang T, et al. Mesenchymal stromal cells-derived β2-microglobulin promotes epithelial–mesenchymal transition of esophageal squamous cell carcinoma cells. Sci Rep 2018; 8(1): 5422.
[http://dx.doi.org/10.1038/s41598-018-23651-5] [PMID: 29615660]
[60]
Wu YL, Li HY, Zhao XP, et al. Mesenchymal stem cell-derived CCN2 promotes the proliferation, migration and invasion of human tongue squamous cell carcinoma cells. Cancer Sci 2017; 108(5): 897-909.
[http://dx.doi.org/10.1111/cas.13202] [PMID: 28208216]
[61]
Pan LH, Beppu T, Kurose A, et al. Neoplastic cells and proliferating endothelial cells express connective tissue growth factor (CTGF) in glioblastoma. Neurol Res 2002; 24(7): 677-83.
[http://dx.doi.org/10.1179/016164102101200573] [PMID: 12392205]
[62]
Chen PS, Wang MY, Wu SN, et al. CTGF enhances the motility of breast cancer cells via an integrin-αvβ3–ERK1/2-dependent S100A4-upregulated pathway. J Cell Sci 2007; 120(12): 2053-65.
[http://dx.doi.org/10.1242/jcs.03460] [PMID: 17550972]
[63]
Chien W, O’Kelly J, Lu D, et al. Expression of connective tissue growth factor (CTGF/CCN2) in breast cancer cells is associated with increased migration and angiogenesis. Int J Oncol 2011; 38(6): 1741-7.
[http://dx.doi.org/10.3892/ijo.2011.985] [PMID: 21455569]
[64]
Meng MY, Li L, Wang WJ, et al. Assessment of tumor promoting effects of amniotic and umbilical cord mesenchymal stem cells in vitro and in vivo. J Cancer Res Clin Oncol 2019; 145(5): 1133-46.
[http://dx.doi.org/10.1007/s00432-019-02859-6] [PMID: 30805774]
[65]
Marofi F, Vahedi G, Biglari A, Esmaeilzadeh A, Athari SS. Mesenchymal stromal/stem cells: A New era in the cell-based targeted gene therapy of cancer. Front Immunol 2017; 8: 1770.
[http://dx.doi.org/10.3389/fimmu.2017.01770] [PMID: 29326689]
[66]
Lundstrom K, Boulikas T. Viral and non-viral vectors in gene therapy: Technology development and clinical trials. Technol Cancer Res Treat 2003; 2(5): 471-85.
[http://dx.doi.org/10.1177/153303460300200513] [PMID: 14529313]
[67]
Loebinger MR, Sage EK, Davies D, Janes SM. TRAIL-expressing mesenchymal stem cells kill the putative cancer stem cell population. Br J Cancer 2010; 103(11): 1692-7.
[http://dx.doi.org/10.1038/sj.bjc.6605952] [PMID: 21063402]
[68]
Xia L, Peng R, Leng W, et al. TRAIL-expressing gingival-derived mesenchymal stem cells inhibit tumorigenesis of tongue squamous cell carcinoma. J Dent Res 2015; 94(1): 219-28.
[http://dx.doi.org/10.1177/0022034514557815] [PMID: 25391621]
[69]
Du L, Liang Q, Ge S, Yang C, Yang P. The growth inhibitory effect of human gingiva-derived mesenchymal stromal cells expressing interferon-β on tongue squamous cell carcinoma cells and xenograft model. Stem Cell Res Ther 2019; 10(1): 224.
[http://dx.doi.org/10.1186/s13287-019-1320-z] [PMID: 31358054]
[70]
Xie C, Du LY, Guo F, Li X, Cheng B. Exosomes derived from microRNA-101-3p-overexpressing human bone marrow mesenchymal stem cells suppress oral cancer cell proliferation, invasion, and migration. Mol Cell Biochem 2019; 458(1-2): 11-26.
[http://dx.doi.org/10.1007/s11010-019-03526-7] [PMID: 31165315]
[71]
Wang L, Yin P, Wang J, et al. Delivery of mesenchymal stem cells-derived extracellular vesicles with enriched miR-185 inhibits progression of OPMD. Artif Cells Nanomed Biotechnol 2019; 47(1): 2481-91.
[http://dx.doi.org/10.1080/21691401.2019.1623232] [PMID: 31219352]
[72]
Amara I, Pramil E, Senamaud-Beaufort C, et al. Engineered mesenchymal stem cells as vectors in a suicide gene therapy against preclinical murine models for solid tumors. J Control Release 2016; 239: 82-91.
[http://dx.doi.org/10.1016/j.jconrel.2016.08.019] [PMID: 27565211]
[73]
Cai Y, Xi Y, Cao Z, et al. Dual targeting and enhanced cytotoxicity to HER2-overexpressing tumors by immunoapoptotin-armored mesenchymal stem cells. Cancer Lett 2016; 381(1): 104-12.
[http://dx.doi.org/10.1016/j.canlet.2016.07.027] [PMID: 27473824]
[74]
Hombach AA, Geumann U, Günther C, Hermann FG, Abken H. IL7-IL12 Engineered Mesenchymal Stem Cells (MSCs) Improve A CAR T Cell Attack Against Colorectal Cancer Cells. Cells 2020; 9(4): 873.
[http://dx.doi.org/10.3390/cells9040873] [PMID: 32260097]
[75]
Zhang J, Hou L, Wu X, et al. Inhibitory effect of genetically engineered mesenchymal stem cells with Apoptin on hepatoma cells in vitro and in vivo. Mol Cell Biochem 2016; 416(1-2): 193-203.
[http://dx.doi.org/10.1007/s11010-016-2707-0] [PMID: 27142531]
[76]
Zischek C, Niess H, Ischenko I, et al. Targeting tumor stroma using engineered mesenchymal stem cells reduces the growth of pancreatic carcinoma. Ann Surg 2009; 250(5): 747-53.
[http://dx.doi.org/10.1097/SLA.0b013e3181bd62d0] [PMID: 19826249]
[77]
Mérino D, Lalaoui N, Morizot A, Solary E, Micheau O. TRAIL in cancer therapy: Present and future challenges. Expert Opin Ther Targets 2007; 11(10): 1299-314.
[http://dx.doi.org/10.1517/14728222.11.10.1299] [PMID: 17907960]
[78]
Cretney E, Takeda K, Yagita H, Glaccum M, Peschon JJ, Smyth MJ. Increased susceptibility to tumor initiation and metastasis in TNF-related apoptosis-inducing ligand-deficient mice. J Immunol 2002; 168(3): 1356-61.
[http://dx.doi.org/10.4049/jimmunol.168.3.1356] [PMID: 11801676]
[79]
Smyth MJ, Takeda K, Hayakawa Y, Peschon JJ, van den Brink MRM, Yagita H. Nature’s TRAIL--on a path to cancer immunotherapy. Immunity 2003; 18(1): 1-6.
[http://dx.doi.org/10.1016/S1074-7613(02)00502-2] [PMID: 12530970]
[80]
Zerafa N, Westwood JA, Cretney E, et al. Cutting edge: TRAIL deficiency accelerates hematological malignancies. J Immunol 2005; 175(9): 5586-90.
[http://dx.doi.org/10.4049/jimmunol.175.9.5586] [PMID: 16237043]
[81]
Salmon P, Le Cotonnec JY, Galazka A, Abdul-Ahad A, Darragh A. Pharmacokinetics and pharmacodynamics of recombinant human interferon-β in healthy male volunteers. J Interferon Cytokine Res 1996; 16(10): 759-64.
[http://dx.doi.org/10.1089/jir.1996.16.759] [PMID: 8910759]
[82]
Mizutani Y, Nakanishi H, Miki T, Mizuno M, Yoshida J. [Gene therapy using cationic multilamellar liposomes containing human interferon-beta gene against renal cell carcinoma]. Hinyokika Kiyo 2005; 51(2): 71-3.
[PMID: 15773356]
[83]
Wilderman MJ, Sun J, Jassar AS, et al. Intrapulmonary IFN-β gene therapy using an adenoviral vector is highly effective in a murine orthotopic model of bronchogenic adenocarcinoma of the lung. Cancer Res 2005; 65(18): 8379-87.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-0920] [PMID: 16166316]
[84]
Chiocca EA, Smith KM, McKinney B, et al. A Phase I Trial of Ad.hIFN-β Gene Therapy for Glioma. Mol Ther 2008; 16(3): 618-26.
[http://dx.doi.org/10.1038/sj.mt.6300396]
[85]
Zhang X, He X, Liu Y, et al. MiR-101-3p inhibits the growth and metastasis of non-small cell lung cancer through blocking PI3K/AKT signal pathway by targeting MALAT-1. Biomed Pharmacother 2017; 93: 1065-73.
[http://dx.doi.org/10.1016/j.biopha.2017.07.005] [PMID: 28738500]
[86]
Harati R, Mohammad MG, Tlili A, El-Awady RA, Hamoudi R. Loss of miR-101-3p Promotes Transmigration of Metastatic Breast Cancer Cells through the Brain Endothelium by Inducing COX-2/MMP1 Signaling. Pharmaceuticals 2020; 13(7): 144.
[http://dx.doi.org/10.3390/ph13070144] [PMID: 32645833]
[87]
Wang H, Guo Y, Mi N, Zhou L. miR-101-3p and miR-199b-5p promote cell apoptosis in oral cancer by targeting BICC1. Mol Cell Probes 2020; 52: 101567.
[http://dx.doi.org/10.1016/j.mcp.2020.101567] [PMID: 32259627]
[88]
Zhang X, Gao D, Fang K, Guo Z, Li L. Med19 is targeted by miR-101–3p/miR-422a and promotes breast cancer progression by regulating the EGFR/MEK/ERK signaling pathway. Cancer Lett 2019; 444: 105-15.
[http://dx.doi.org/10.1016/j.canlet.2018.12.008] [PMID: 30583076]
[89]
Huang H, Li T, Ye G, et al. High expression of COL10A1 is associated with poor prognosis in colorectal cancer. OncoTargets Ther 2018; 11: 1571-81.
[http://dx.doi.org/10.2147/OTT.S160196] [PMID: 29593423]
[90]
Ostadrahimi S, Valugerdi MA, Hassan M, Haddad G, Fayaz S, Parvizhamidi M, et al. miR-1266-5p and miR-185-5p promote cell apoptosis in human prostate cancer cell lines. Asian Pac J Cancer Prev 2018; 19(8): 2305-11.
[http://dx.doi.org/10.22034/APJCP.2018.19.8.2305] [PMID: 30141307]
[91]
Akçakaya P, Ekelund S, Kolosenko I, et al. miR-185 and miR-133b deregulation is associated with overall survival and metastasis in colorectal cancer. Int J Oncol 2011; 39(2): 311-8.
[PMID: 21573504]
[92]
Takahashi Y, Forrest ARR, Maeno E, Hashimoto T, Daub CO, Yasuda J. MiR-107 and MiR-185 can induce cell cycle arrest in human non small cell lung cancer cell lines. PLoS One 2009; 4(8): e6677.
[http://dx.doi.org/10.1371/journal.pone.0006677] [PMID: 19688090]
[93]
Sun CC, Zhang L, Li G, et al. The lncRNA PDIA3P interacts with miR-185-5p to modulate oral squamous cell carcinoma progression by targeting cyclin D2. Mol Ther Nucleic Acids 2017; 9: 100-10.
[http://dx.doi.org/10.1016/j.omtn.2017.08.015] [PMID: 29246288]
[94]
Markopoulos G, Roupakia E, Tokamani M, et al. Roles of NF-κB signaling in the regulation of miRNAs impacting on inflammation in cancer. Biomedicines 2018; 6(2): 40.
[http://dx.doi.org/10.3390/biomedicines6020040] [PMID: 29601548]
[95]
Vasan N, Baselga J, Hyman DM. A view on drug resistance in cancer. Nature 2019; 575(7782): 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[96]
Thu KL, Soria-Bretones I, Mak TW, Cescon DW. Targeting the cell cycle in breast cancer: Towards the next phase. Cell Cycle 2018; 17(15): 1871-85.
[http://dx.doi.org/10.1080/15384101.2018.1502567] [PMID: 30078354]
[97]
Xu C, Feng Q, Yang H, et al. A light-triggered mesenchymal stem cell delivery system for photoacoustic imaging and chemo-photothermal therapy of triple negative breast cancer. Adv Sci 2018; 5(10): 1800382.
[http://dx.doi.org/10.1002/advs.201800382] [PMID: 30356957]
[98]
Saulite L, Pleiko K, Popena I, Dapkute D, Rotomskis R, Riekstina U. Nanoparticle delivery to metastatic breast cancer cells by nanoengineered mesenchymal stem cells. Beilstein J Nanotechnol 2018; 9: 321-32.
[http://dx.doi.org/10.3762/bjnano.9.32] [PMID: 29515946]
[99]
Liang W, Xia H, Li J, Zhao RC. Human adipose tissue derived mesenchymal stem cells are resistant to several chemotherapeutic agents. Cytotechnology 2011; 63(5): 523-30.
[http://dx.doi.org/10.1007/s10616-011-9374-5] [PMID: 21761127]
[100]
Mueller LP, Luetzkendorf J, Mueller T, Reichelt K, Simon H, Schmoll HJ. Presence of mesenchymal stem cells in human bone marrow after exposure to chemotherapy: Evidence of resistance to apoptosis induction. Stem Cells 2006; 24(12): 2753-65.
[http://dx.doi.org/10.1634/stemcells.2006-0108] [PMID: 16931776]
[101]
Nicolay NH, Rühle A, Perez RL, et al. Mesenchymal stem cells exhibit resistance to topoisomerase inhibition. Cancer Lett 2016; 374(1): 75-84.
[http://dx.doi.org/10.1016/j.canlet.2016.02.007] [PMID: 26876302]
[102]
Coccè V, Farronato D, Brini AT, et al. Drug loaded gingival mesenchymal stromal cells (GinPa-MSCs) inhibit in vitro proliferation of oral squamous cell carcinoma. Sci Rep 2017; 7(1): 9376.
[http://dx.doi.org/10.1038/s41598-017-09175-4] [PMID: 28839168]
[103]
Coccè V, Franzè S, Brini A, et al. In vitro anticancer activity of extracellular vesicles (EVs) secreted by gingival mesenchymal stromal cells primed with paclitaxel. Pharmaceutics 2019; 11(2): 61.
[http://dx.doi.org/10.3390/pharmaceutics11020061] [PMID: 30717104]
[104]
Yao S, Li X, Liu J, Sun Y, Wang Z, Jiang Y. Maximized nanodrug-loaded mesenchymal stem cells by a dual drug-loaded mode for the systemic treatment of metastatic lung cancer. Drug Deliv 2017; 24(1): 1372-83.
[http://dx.doi.org/10.1080/10717544.2017.1375580] [PMID: 28920712]
[105]
Zhou D, Chen Y, Bu W, et al. Modification of metal-organic framework nanoparticles using dental pulp mesenchymal stem cell membranes to target oral squamous cell carcinoma. J Colloid Interface Sci 2021; 601: 650-60.
[http://dx.doi.org/10.1016/j.jcis.2021.05.126] [PMID: 34091312]
[106]
Sun L, Xu Y, Zhang X, et al. Mesenchymal stem cells functionalized sonodynamic treatment for improving therapeutic efficacy and compliance of orthotopic oral cancer. Adv Mater 2020; 32(48): 2005295.
[http://dx.doi.org/10.1002/adma.202005295] [PMID: 33118267]
[107]
Koliaraki V, Pallangyo CK, Greten FR, Kollias G. Mesenchymal cells in colon cancer. Gastroenterology 2017; 152(5): 964-79.
[http://dx.doi.org/10.1053/j.gastro.2016.11.049] [PMID: 28111227]
[108]
Oliveira MS, Carvalho JL, Campos ACDA, Gomes DA, de Goes AM, Melo MM. Doxorubicin has in vivo toxicological effects on ex vivo cultured mesenchymal stem cells. Toxicol Lett 2014; 224(3): 380-6.
[http://dx.doi.org/10.1016/j.toxlet.2013.11.023] [PMID: 24291741]
[109]
Bosco DB, Kenworthy R, Zorio DAR, Sang QXA. Human mesenchymal stem cells are resistant to Paclitaxel by adopting a non-proliferative fibroblastic state. PLoS One 2015; 10(6): e0128511.
[http://dx.doi.org/10.1371/journal.pone.0128511] [PMID: 26029917]
[110]
Gao Z, Zhang L, Hu J, Sun Y. Mesenchymal stem cells: A potential targeted-delivery vehicle for anti-cancer drug loaded nanoparticles. Nanomedicine 2013; 9(2): 174-84.
[http://dx.doi.org/10.1016/j.nano.2012.06.003] [PMID: 22772046]
[111]
Sadhukha T, O’Brien TD, Prabha S. Nano-engineered mesenchymal stem cells as targeted therapeutic carriers. J Control Release 2014; 196: 243-51.
[http://dx.doi.org/10.1016/j.jconrel.2014.10.015] [PMID: 25456830]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy