Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Small Molecule Inhibitors of Human Papillomavirus: A Review of Research from 1997 to 2021

Author(s): Caitlin L. Duncan, Hendra Gunosewoyo, Mauro Mocerino* and Alan D. Payne

Volume 31, Issue 33, 2024

Published on: 18 September, 2023

Page: [5308 - 5350] Pages: 43

DOI: 10.2174/0929867331666230713165407

Price: $65

Abstract

Human papillomavirus (HPV) infections are the cause of warts, lesions and cancer, with different types of HPV causing different symptoms. HPV infections are the primary cause of cervical cancer. There are over 220 different types of HPV, and only nine of these can currently be vaccinated. There is a need to treat these viral infections without just treating the symptoms of the infection, as is currently the main method. There is a wide range of small molecules that have been used to inhibit various stages of the HPV infectious cycle. This review examined 132 small molecules from 121 studies that specifically target aspects of HPV infections. HPV DNA encodes for six early genes (E1 to E7, skipping E3) and two late genes (L1 and L2). According to the results, these targets for small molecule inhibitors fall into three categories: those targeting E1 and E2, targeting E6 and E7 and, finally, targeting L1 and L2. Inhibitors of E6 and E7 are the most widely studied targets, with the majority of HPV inhibition in this area. While compounds targeting both E1/E2 and E6/E7 have made it to clinical trials, there has been no significant advancement on the topic.

[1]
Van Doorslaer, K.; Tan, Q.; Xirasagar, S.; Bandaru, S.; Gopalan, V.; Mohamoud, Y.; Huyen, Y.; McBride, A.A. The Papillomavirus Episteme: a central resource for papillomavirus sequence data and analysis. Nucleic Acids Res., 2013, 41(Database issue), D571-D578.
[PMID: 23093593]
[2]
Arroyo, L.S. Utrotning av HPV och livmoderhalscancer. , 2021. Available from: https://www.hpvcenter.se/=
[3]
Van Doorslaer, K. Evolution of the papillomaviridae. Virology, 2013, 445(1-2), 11-20.
[http://dx.doi.org/10.1016/j.virol.2013.05.012] [PMID: 23769415]
[4]
Smith, L.; Angarone, M.P. Sexually transmitted infections. Urol. Clin. North Am., 2015, 42(4), 507-518.
[http://dx.doi.org/10.1016/j.ucl.2015.06.004] [PMID: 26475947]
[5]
Koutsky, L. Epidemiology of genital human papillomavirus infection. Am. J. Med., 1997, 102(5A), 3-8.
[http://dx.doi.org/10.1016/S0002-9343(97)00177-0] [PMID: 9217656]
[6]
Chesson, H.W.; Dunne, E.F.; Hariri, S.; Markowitz, L.E. The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex. Transm. Dis., 2014, 41(11), 660-664.
[http://dx.doi.org/10.1097/OLQ.0000000000000193] [PMID: 25299412]
[7]
Koshiol, J.; Lindsay, L.; Pimenta, J.M.; Poole, C.; Jenkins, D.; Smith, J.S. Persistent human papillomavirus infection and cervical neoplasia: a systematic review and meta-analysis. Am. J. Epidemiol., 2008, 168(2), 123-137.
[http://dx.doi.org/10.1093/aje/kwn036] [PMID: 18483125]
[8]
Schiffman, M. Integration of human papillomavirus vaccination, cytology, and human papillomavirus testing. Cancer, 2007, 111(3), 145-153.
[http://dx.doi.org/10.1002/cncr.22751] [PMID: 17487850]
[9]
Gheit, T. Mucosal and cutaneous human papillomavirus infections and cancer biology. Front. Oncol., 2019, 9(355)
[http://dx.doi.org/10.3389/fonc.2019.00355] [PMID: 31134154]
[10]
Bouvard, V.; Baan, R.; Straif, K.; Grosse, Y.; Secretan, B.; Ghissassi, F.E.; Benbrahim-Tallaa, L.; Guha, N.; Freeman, C.; Galichet, L.; Cogliano, V. A review of human carcinogens—Part B: biological agents. Lancet Oncol., 2009, 10(4), 321-322.
[http://dx.doi.org/10.1016/S1470-2045(09)70096-8] [PMID: 19350698]
[11]
Saraiya, M.; Unger, E.R.; Thompson, T.D.; Lynch, C.F.; Hernandez, B.Y.; Lyu, C.W.; Steinau, M.; Watson, M.; Wilkinson, E.J.; Hopenhayn, C.; Copeland, G.; Cozen, W.; Peters, E.S.; Huang, Y.; Saber, M.S.; Altekruse, S.; Goodman, M.T. US assessment of HPV types in cancers: implications for current and 9-valent HPV vaccines. J. Natl. Cancer Inst., 2015, 107(6), djv086.
[http://dx.doi.org/10.1093/jnci/djv086] [PMID: 25925419]
[12]
Harper, D.M.; DeMars, L.R. HPV vaccines – A review of the first decade. Gynecol. Oncol., 2017, 146(1), 196-204.
[http://dx.doi.org/10.1016/j.ygyno.2017.04.004] [PMID: 28442134]
[13]
Stanley, M.A. Genital human papillomavirus infections: current and prospective therapies. J. Gen. Virol., 2012, 93(4), 681-691.
[http://dx.doi.org/10.1099/vir.0.039677-0] [PMID: 22323530]
[14]
Stanley, M.A. Epithelial cell responses to infection with human papillomavirus. Clin. Microbiol. Rev., 2012, 25(2), 215-222.
[http://dx.doi.org/10.1128/CMR.05028-11] [PMID: 22491770]
[15]
Graham, S.V. The human papillomavirus replication cycle, and its links to cancer progression: a comprehensive review. Clin. Sci. (Lond.), 2017, 131(17), 2201-2221.
[http://dx.doi.org/10.1042/CS20160786] [PMID: 28798073]
[16]
Graham, S.V. Human papillomavirus: gene expression, regulation and prospects for novel diagnostic methods and antiviral therapies. Future Microbiol., 2010, 5(10), 1493-1506.
[http://dx.doi.org/10.2217/fmb.10.107] [PMID: 21073310]
[17]
Bernard, H.U.; Burk, R.D.; Chen, Z.; van Doorslaer, K.; Hausen, H.; de Villiers, E.M. Classification of papillomaviruses (PVs) based on 189 PV types and proposal of taxonomic amendments. Virology, 2010, 401(1), 70-79.
[http://dx.doi.org/10.1016/j.virol.2010.02.002] [PMID: 20206957]
[18]
Reference Clones, H.P.V. HPV reference clones. International Human Papillomavirus Reference Center. , 2022. Available from:https://www.hpvcenter.se/human_ reference_clones/
[19]
Lowy, D.R.; Solomon, D.; Hildesheim, A.; Schiller, J.T.; Schiffman, M. Human papillomavirus infection and the primary and secondary prevention of cervical cancer. Cancer, 2008, 113(S7)(Suppl.), 1980-1993.
[http://dx.doi.org/10.1002/cncr.23704] [PMID: 18798536]
[20]
Kavanagh, K.; Pollock, K.G.; Cuschieri, K.; Palmer, T.; Cameron, R.L.; Watt, C.; Bhatia, R.; Moore, C.; Cubie, H.; Cruickshank, M.; Robertson, C. Changes in the prevalence of human papillomavirus following a national bivalent human papillomavirus vaccination programme in Scotland: a 7-year cross-sectional study. Lancet Infect. Dis., 2017, 17(12), 1293-1302.
[http://dx.doi.org/10.1016/S1473-3099(17)30468-1] [PMID: 28965955]
[21]
Arbyn, M.; Tommasino, M.; Depuydt, C.; Dillner, J. Are 20 human papillomavirus types causing cervical cancer? J. Pathol., 2014, 234(4), 431-435.
[http://dx.doi.org/10.1002/path.4424] [PMID: 25124771]
[22]
Fradet-Turcotte, A.; Archambault, J. Recent advances in the search for antiviral agents against human papillomaviruses. Antivir. Ther., 2007, 12(4), 431-451.
[http://dx.doi.org/10.1177/135965350701200417] [PMID: 17668552]
[23]
D’Abramo, C.M.; Archambault, J. Small molecule inhibitors of human papillomavirus protein - protein interactions. Open Virol. J., 2011, 5(1), 80-95.
[http://dx.doi.org/10.2174/1874357901105010080] [PMID: 21769307]
[24]
Messa, L.; Loregian, A. HPV-induced cancers: preclinical therapeutic advancements. Expert Opin. Investig. Drugs, 2022, 31(1), 79-93.
[http://dx.doi.org/10.1080/13543784.2021.2010703] [PMID: 34927502]
[25]
Bergvall, M.; Melendy, T.; Archambault, J. The E1 proteins. Virology, 2013, 445(1-2), 35-56.
[http://dx.doi.org/10.1016/j.virol.2013.07.020] [PMID: 24029589]
[26]
McBride, A.A. The papillomavirus E2 proteins. Virology, 2013, 445(1-2), 57-79.
[http://dx.doi.org/10.1016/j.virol.2013.06.006] [PMID: 23849793]
[27]
White, P.W.; Faucher, A-M.; Goudreau, N. Small Molecule Inhibitors of the Human Papillomavirus E1-E2 Interaction. In: Small-Molecule Inhibitors of Protein-Protein Interactions; Vassilev, L.; Fry, D., Eds.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2010; pp. 61-88.
[http://dx.doi.org/10.1007/82_2010_92]
[28]
Faucher, A.M.; White, P.W.; Brochu, C.; Grand-Maître, C.; Rancourt, J.; Fazal, G. Discovery of small-molecule inhibitors of the ATPase activity of human papillomavirus E1 helicase. J. Med. Chem., 2004, 47(1), 18-21.
[http://dx.doi.org/10.1021/jm034206x] [PMID: 14695816]
[29]
White, P.W.; Faucher, A.M.; Massariol, M.J.; Welchner, E.; Rancourt, J.; Cartier, M.; Archambault, J. Biphenylsulfonacetic acid inhibitors of the human papillomavirus type 6 E1 helicase inhibit ATP hydrolysis by an allosteric mechanism involving tyrosine 486. Antimicrob. Agents Chemother., 2005, 49(12), 4834-4842.
[http://dx.doi.org/10.1128/AAC.49.12.4834-4842.2005] [PMID: 16304143]
[30]
Lu, X.; Zhang, Y.; Chen, S.; Li, Y.; Jia, D.; Wang, W.; Gao, B.; Liu, H. Molecular dynamics simulation study on the mechanism of the inhibition of ATP hydrolysis with inhibitors in human papillomavirus type 18 E1 helicase. 2013, 44-47.
[http://dx.doi.org/10.2991/iccnce.2013.12]
[31]
Iryani, I.; Amelia, F.; Iswendi, I. Active sites prediction and binding analysis E1-E2 protein human papillomavirus with biphenylsulfonacetic acid. IOP Conf. Series Mater. Sci. Eng., 2018, 335, 012031.
[http://dx.doi.org/10.1088/1757-899X/335/1/012031]
[32]
White, P.W.; Titolo, S.; Brault, K.; Thauvette, L.; Pelletier, A.; Welchner, E.; Bourgon, L.; Doyon, L.; Ogilvie, W.W.; Yoakim, C.; Cordingley, M.G.; Archambault, J. Inhibition of human papillomavirus DNA replication by small molecule antagonists of the E1-E2 protein interaction. J. Biol. Chem., 2003, 278(29), 26765-26772.
[http://dx.doi.org/10.1074/jbc.M303608200] [PMID: 12730224]
[33]
Berg, M.; Stenlund, A. Functional interactions between papillomavirus E1 and E2 proteins. J. Virol., 1997, 71(5), 3853-3863.
[http://dx.doi.org/10.1128/jvi.71.5.3853-3863.1997] [PMID: 9094661]
[34]
Yoakim, C.; Ogilvie, W.W.; Goudreau, N.; Naud, J.; Haché, B.; O’Meara, J.A.; Cordingley, M.G.; Archambault, J.; White, P.W. Discovery of the first series of inhibitors of human papillomavirus type 11: inhibition of the assembly of the E1–E2–Origin DNA complex. Bioorg. Med. Chem. Lett., 2003, 13(15), 2539-2541.
[http://dx.doi.org/10.1016/S0960-894X(03)00510-9] [PMID: 12852961]
[35]
Davidson, W.; McGibbon, G.A.; White, P.W.; Yoakim, C.; Hopkins, J.L.; Guse, I.; Hambly, D.M.; Frego, L.; Ogilvie, W.W.; Lavallée, P.; Archambault, J. Characterization of the binding site for inhibitors of the HPV11 E1-E2 protein interaction on the E2 transactivation domain by photoaffinity labeling and mass spectrometry. Anal. Chem., 2004, 76(7), 2095-2102.
[http://dx.doi.org/10.1021/ac035335o] [PMID: 15053675]
[36]
Goudreau, N.; Cameron, D.R.; Déziel, R.; Haché, B.; Jakalian, A.; Malenfant, E.; Naud, J.; Ogilvie, W.W.; O’Meara, J.; White, P.W.; Yoakim, C. Optimization and determination of the absolute configuration of a series of potent inhibitors of human papillomavirus type-11 E1–E2 protein–protein interaction: A combined medicinal chemistry, NMR and computational chemistry approach. Bioorg. Med. Chem., 2007, 15(7), 2690-2700.
[http://dx.doi.org/10.1016/j.bmc.2007.01.036] [PMID: 17306550]
[37]
Wang, Y.; Coulombe, R.; Cameron, D.R.; Thauvette, L.; Massariol, M.J.; Amon, L.M.; Fink, D.; Titolo, S.; Welchner, E.; Yoakim, C.; Archambault, J.; White, P.W. Crystal structure of the E2 transactivation domain of human papillomavirus type 11 bound to a protein interaction inhibitor. J. Biol. Chem., 2004, 279(8), 6976-6985.
[http://dx.doi.org/10.1074/jbc.M311376200] [PMID: 14634007]
[38]
Moggio, Y.; Legnani, L.; Bovio, B.; Memeo, M.G.; Quadrelli, P. Synthesis of novel anthracene derivatives of isoxazolino-carbocyclic nucleoside analogues. Tetrahedron, 2012, 68(5), 1384-1392.
[http://dx.doi.org/10.1016/j.tet.2011.12.047]
[39]
Memeo, M.G.; Lapolla, F.; Maga, G.; Quadrelli, P. Synthesis and antiviral activity of anthracene derivatives of isoxazolino-carbocyclic nucleoside analogues. Tetrahedron Lett., 2015, 56(15), 1986-1990.
[http://dx.doi.org/10.1016/j.tetlet.2015.02.114]
[40]
Al-Saad, D.; Memeo, M.G.; Quadrelli, P. Pericyclic reactions for anti-HPV antivirals: Unconventional nucleoside analogue synthesis via nitrosocarbonyl chemistry. ChemistrySelect, 2017, 2(32), 10340-10346.
[http://dx.doi.org/10.1002/slct.201702059]
[41]
Dalya, A-S.; Misal, G.M.; Paolo, Q. Pericyclic reactions for antivirals: Synthesis of 4-bromo-N-[(1R*,4S*)-4-hydroxy-2-cyclohexen-1-yl]-2-thiazolecarboxamide. Lett. Org. Chem., 2016, 13(10), 757-763.
[42]
Hajduk, P.J.; Dinges, J.; Miknis, G.F.; Merlock, M.; Middleton, T.; Kempf, D.J.; Egan, D.A.; Walter, K.A.; Robins, T.S.; Shuker, S.B.; Holzman, T.F.; Fesik, S.W. NMR-based discovery of lead inhibitors that block DNA binding of the human papillomavirus E2 protein. J. Med. Chem., 1997, 40(20), 3144-3150.
[http://dx.doi.org/10.1021/jm9703404] [PMID: 9379433]
[43]
Yanofsky, V.R.; Patel, R.V.; Goldenberg, G. Genital warts: a comprehensive review. J. Clin. Aesthet. Dermatol., 2012, 5(6), 25-36.
[PMID: 22768354]
[44]
Saitoh, T.; Kuramochi, K.; Imai, T.; Takata, K.; Takehara, M.; Kobayashi, S.; Sakaguchi, K.; Sugawara, F. Podophyllotoxin directly binds a hinge domain in E2 of HPV and inhibits an E2/E7 interaction in vitro. Bioorg. Med. Chem., 2008, 16(10), 5815-5825.
[http://dx.doi.org/10.1016/j.bmc.2008.03.053] [PMID: 18396405]
[45]
de Planell-Mas, E.; Martínez-Garriga, B.; Zalacain, A.J.; Vinuesa, T.; Viñas, M. Human papillomaviruses genotyping in plantar warts. J. Med. Virol., 2017, 89(5), 902-907.
[http://dx.doi.org/10.1002/jmv.24713] [PMID: 27736001]
[46]
Gammoh, N.; Isaacson, E.; Tomaić, V.; Jackson, D.J.; Doorbar, J.; Banks, L. Inhibition of HPV-16 E7 oncogenic activity by HPV-16 E2. Oncogene, 2009, 28(23), 2299-2304.
[http://dx.doi.org/10.1038/onc.2009.78] [PMID: 19421149]
[47]
Wang, X.; Helfer, C.M.; Pancholi, N.; Bradner, J.E.; You, J. Recruitment of Brd4 to the human papillomavirus type 16 DNA replication complex is essential for replication of viral DNA. J. Virol., 2013, 87(7), 3871-3884.
[http://dx.doi.org/10.1128/JVI.03068-12] [PMID: 23365439]
[48]
Helfer, C.M.; Wang, R.; You, J. Analysis of the papillomavirus E2 and bromodomain protein Brd4 interaction using bimolecular fluorescence complementation. PLoS One, 2013, 8(10), e77994.
[http://dx.doi.org/10.1371/journal.pone.0077994] [PMID: 24205059]
[49]
Helfer, C.; Yan, J.; You, J. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation. Viruses, 2014, 6(8), 3228-3249.
[http://dx.doi.org/10.3390/v6083228] [PMID: 25140737]
[50]
Morse, M.A.; Balogh, K.K.; Brendle, S.A.; Campbell, C.A.; Chen, M.X.; Furze, R.C.; Harada, I.L.; Holyer, I.D.; Kumar, U.; Lee, K.; Prinjha, R.K.; Rüdiger, M.; Seal, J.T.; Taylor, S.; Witherington, J.; Christensen, N.D. BET bromodomain inhibitors show anti-papillomavirus activity in vitro and block CRPV wart growth in vivo. Antiviral Res., 2018, 154, 158-165.
[http://dx.doi.org/10.1016/j.antiviral.2018.03.012] [PMID: 29653131]
[51]
Doorbar, J. The E4 protein; structure, function and patterns of expression. Virology, 2013, 445(1-2), 80-98.
[http://dx.doi.org/10.1016/j.virol.2013.07.008] [PMID: 24016539]
[52]
Davy, C.E.; Jackson, D.J.; Wang, Q.; Raj, K.; Masterson, P.J.; Fenner, N.F.; Southern, S.; Cuthill, S.; Millar, J.B.A.; Doorbar, J. Identification of a G(2) arrest domain in the E1 wedge E4 protein of human papillomavirus type 16. J. Virol., 2002, 76(19), 9806-9818.
[http://dx.doi.org/10.1128/JVI.76.19.9806-9818.2002] [PMID: 12208959]
[53]
Piirsoo, A.; Piirsoo, M.; Kala, M.; Sankovski, E.; Lototskaja, E.; Levin, V.; Salvi, M.; Ustav, M. Activity of CK2α protein kinase is required for efficient replication of some HPV types. PLoS Pathog., 2019, 15(5), e1007788.
[http://dx.doi.org/10.1371/journal.ppat.1007788] [PMID: 31091289]
[54]
Wolfgang, G.H.I.; Shibata, R.; Wang, J.; Ray, A.S.; Wu, S.; Doerrfler, E.; Reiser, H.; Lee, W.A.; Birkus, G.; Christensen, N.D.; Andrei, G.; Snoeck, R. GS-9191 is a novel topical prodrug of the nucleotide analog 9-(2-phosphonylmethoxyethyl)guanine with antiproliferative activity and possible utility in the treatment of human papillomavirus lesions. Antimicrob. Agents Chemother., 2009, 53(7), 2777-2784.
[http://dx.doi.org/10.1128/AAC.00103-09] [PMID: 19398642]
[55]
Safety and Effectiveness Study of an Experimental Topical Ointment (GS-9191) for the Treatment of Genital Warts. NCT00499967, 2009.
[56]
Valiaeva, N.; Trahan, J.; Aldern, K.A.; Beadle, J.R.; Hostetler, K.Y. Antiproliferative effects of octadecyloxyethyl 9-[2-(phosphonomethoxy)ethyl]guanine against Me-180 human cervical cancer cells in vitro and in vivo. Chemotherapy, 2010, 56(1), 54-59.
[http://dx.doi.org/10.1159/000292582] [PMID: 20215748]
[57]
Beadle, J.R.; Valiaeva, N.; Yang, G.; Yu, J.H.; Broker, T.R.; Aldern, K.A.; Harden, E.A.; Keith, K.A.; Prichard, M.N.; Hartman, T.; Buckheit, R.W., Jr; Chow, L.T.; Hostetler, K.Y. Synthesis and antiviral evaluation of octadecyloxyethyl benzyl 9-[(2-phosphonomethoxy)ethyl] guanine (ODE-Bn-PMEG), a potent inhibitor of transient HPV DNA amplification. J. Med. Chem., 2016, 59(23), 10470-10478.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00659] [PMID: 27933957]
[58]
Banerjee, N.S.; Wang, H.K.; Beadle, J.R.; Hostetler, K.Y.; Chow, L.T. Evaluation of ODE-Bn-PMEG, an acyclic nucleoside phosphonate prodrug, as an antiviral against productive HPV infection in 3D organotypic epithelial cultures. Antiviral Res., 2018, 150, 164-173.
[http://dx.doi.org/10.1016/j.antiviral.2017.12.013] [PMID: 29287913]
[59]
Study of Topical ABI-1968 in Subjects with Precancerous Anal Lesions Resulting from Human Papillomavirus (HPV) Infection NCT03202992 2017.
[60]
Study of Topical ABI-1968 in Subjects with Precancerous Cervical Lesions from Human Papillomavirus (HPV) Infection. NCT03697226, 2018.
[61]
Study of Topical ABI-1968 in Subjects with Precancerous Cervical Lesions from Human Papillomavirus (HPV) Infection NCT03239223 2017.
[62]
Study of Topical ABI-1968 in Subjects with Precancerous Anal Lesions Resulting from Human Papillomavirus (HPV) Infection NCT03677960 2018.
[63]
Toots, M.; Ustav, M., Jr; Männik, A.; Mumm, K.; Tämm, K.; Tamm, T.; Ustav, E.; Ustav, M. Identification of several high-risk HPV inhibitors and drug targets with a novel high-throughput screening assay. PLoS Pathog., 2017, 13(2), e1006168.
[http://dx.doi.org/10.1371/journal.ppat.1006168] [PMID: 28182794]
[64]
Estêvão, D.; Costa, N.R.; Gil da Costa, R.M.; Medeiros, R. Hallmarks of HPV carcinogenesis: The role of E6, E7 and E5 oncoproteins in cellular malignancy. Gene Regulatory Mechanisms., 2019, 1862(2), 153-162.
[PMID: 30707946]
[65]
Buitrago-Pérez, A.; Garaulet, G.; Vázquez-Carballo, A.; Paramio, J.; García-Escudero, R. Molecular signature of HPV-induced carcinogenesis: pRb, p53 and gene expression profiling. Curr. Genomics, 2009, 10(1), 26-34.
[http://dx.doi.org/10.2174/138920209787581235] [PMID: 19721808]
[66]
Giacinti, C.; Giordano, A. RB and cell cycle progression. Oncogene, 2006, 25(38), 5220-5227.
[http://dx.doi.org/10.1038/sj.onc.1209615] [PMID: 16936740]
[67]
Tommasino, M.; Crawford, L. Human papillomavirus E6 and E7: Proteins which deregulate the cell cycle. BioEssays, 1995, 17(6), 509-518.
[http://dx.doi.org/10.1002/bies.950170607] [PMID: 7575492]
[68]
Sak, K. Characteristic features of cytotoxic activity of flavonoids on human cervical cancer cells. Asian Pac. J. Cancer Prev., 2014, 15(19), 8007-8018.
[http://dx.doi.org/10.7314/APJCP.2014.15.19.8007] [PMID: 25338977]
[69]
Moga, M.; Dimienescu, O.; Arvatescu, C.; Mironescu, A.; Dracea, L.; Ples, L. The role of natural polyphenols in the prevention and treatment of cervical cancer—An overview. Molecules, 2016, 21(8), 1055.
[http://dx.doi.org/10.3390/molecules21081055] [PMID: 27548122]
[70]
Yuan, C.H.; Filippova, M.; Tungteakkhun, S.S.; Duerksen-Hughes, P.J.; Krstenansky, J.L. Small molecule inhibitors of the HPV16-E6 interaction with caspase 8. Bioorg. Med. Chem. Lett., 2012, 22(5), 2125-2129.
[http://dx.doi.org/10.1016/j.bmcl.2011.12.145] [PMID: 22300659]
[71]
Cherry, J.J.; Rietz, A.; Malinkevich, A.; Liu, Y.; Xie, M.; Bartolowits, M.; Davisson, V.J.; Baleja, J.D.; Androphy, E.J. Structure based identification and characterization of flavonoids that disrupt human papillomavirus-16 E6 function. PLoS One, 2013, 8(12), e84506.
[http://dx.doi.org/10.1371/journal.pone.0084506] [PMID: 24376816]
[72]
Huibregtse, J.M.; Scheffner, M.; Howley, P.M. A cellular protein mediates association of p53 with the E6 oncoprotein of human papillomavirus types 16 or 18. EMBO J., 1991, 10(13), 4129-4135.
[http://dx.doi.org/10.1002/j.1460-2075.1991.tb04990.x] [PMID: 1661671]
[73]
Rietz, A.; Petrov, D.P.; Bartolowits, M.; DeSmet, M.; Davisson, V.J.; Androphy, E.J. Molecular probing of the HPV-16 E6 protein alpha helix binding groove with small molecule inhibitors. PLoS One, 2016, 11(2), e0149845.
[http://dx.doi.org/10.1371/journal.pone.0149845] [PMID: 26915086]
[74]
Clemente-Soto, A.F.; Salas-Vidal, E.; Milan-Pacheco, C.; Sánchez-Carranza, J.N.; Peralta-Zaragoza, O.; González-Maya, L. Quercetin induces G2 phase arrest and apoptosis with the activation of p53 in an E6 expression independent manner in HPV positive human cervical cancer derived cells. Mol. Med. Rep., 2019, 19(3), 2097-2106.
[http://dx.doi.org/10.3892/mmr.2019.9850] [PMID: 30664221]
[75]
Yuan, C-H.; Filippova, M.; Krstenansky, J.L.; Duerksen-Hughes, P.J. Flavonol and imidazole derivatives block HPV16 E6 activities and reactivate apoptotic pathways in HPV+ cells. Cell Death Dis., 2016, 7(1), e2060.
[http://dx.doi.org/10.1038/cddis.2015.391] [PMID: 26794656]
[76]
Malecka, K.A.; Fera, D.; Schultz, D.C.; Hodawadekar, S.; Reichman, M.; Donover, P.S.; Murphy, M.E.; Marmorstein, R. Identification and characterization of small molecule human papillomavirus E6 inhibitors. ACS Chem. Biol., 2014, 9(7), 1603-1612.
[http://dx.doi.org/10.1021/cb500229d] [PMID: 24854633]
[77]
Bisol, Â.; Campos, P.S.; Lamers, M.L. Flavonoids as anticancer therapies: A systematic review of clinical trials. Phytother. Res., 2020, 34(3), 568-582.
[http://dx.doi.org/10.1002/ptr.6551] [PMID: 31752046]
[78]
Ahn, W-S.; Yoo, J.; Huh, S-W.; Kim, C-K.; Lee, J-M.; Namkoong, S-E.; Bae, S-M.; Lee, I.P. Protective effects of green tea extracts (polyphenon E and EGCG) on human cervical lesions. Eur. J. Cancer Prev., 2003, 12(5), 383-390.
[http://dx.doi.org/10.1097/00008469-200310000-00007] [PMID: 14512803]
[79]
Ahn, W.S.; Huh, S.W.; Bae, S.M.; Lee, I.P.; Lee, J.M.; Namkoong, S.E.; Kim, C.K.; Sin, J.I. A major constituent of green tea, EGCG, inhibits the growth of a human cervical cancer cell line, CaSki cells, through apoptosis, G(1) arrest, and regulation of gene expression. DNA Cell Biol., 2003, 22(3), 217-224.
[http://dx.doi.org/10.1089/104454903321655846] [PMID: 12804120]
[80]
Qiao, Y.; Cao, J.; Xie, L.; Shi, X. Cell growth inhibition and gene expression regulation by (-)-epigallocatechin-3-gallate in human cervical cancer cells. Arch. Pharm. Res., 2009, 32(9), 1309-1315.
[http://dx.doi.org/10.1007/s12272-009-1917-3] [PMID: 19784588]
[81]
Wang, Y.Q.; Lu, J.L.; Liang, Y.R.; Li, Q.S. Suppressive effects of EGCG on cervical cancer. Molecules, 2018, 23(9), 2334.
[http://dx.doi.org/10.3390/molecules23092334] [PMID: 30213130]
[82]
He, L.; Zhang, E.; Shi, J.; Li, X.; Zhou, K.; Zhang, Q.; Le, A.D.; Tang, X. (−)-Epigallocatechin-3-gallate inhibits human papillomavirus (HPV)-16 oncoprotein-induced angiogenesis in non-small cell lung cancer cells by targeting HIF-1α. Cancer Chemother. Pharmacol., 2013, 71(3), 713-725.
[http://dx.doi.org/10.1007/s00280-012-2063-z] [PMID: 23292117]
[83]
Jun, J.C.; Rathore, A.; Younas, H.; Gilkes, D.; Polotsky, V.Y. Hypoxia-inducible factors and cancer. Curr. Sleep Med. Rep., 2017, 3(1), 1-10.
[http://dx.doi.org/10.1007/s40675-017-0062-7] [PMID: 28944164]
[84]
Tang, X.; Zhang, Q.; Nishitani, J.; Brown, J.; Shi, S.; Le, A.D. Overexpression of human papillomavirus type 16 oncoproteins enhances hypoxia-inducible factor 1 α protein accumulation and vascular endothelial growth factor expression in human cervical carcinoma cells. Clin. Cancer Res., 2007, 13(9), 2568-2576.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2704] [PMID: 17473185]
[85]
Natarajan, T.; Anandhi, M.; Aiswarya, D.; Ramkumar, R.; Kumar, S.; Perumal, P. Idaein chloride induced p53 dependent apoptosis in cervical cancer cells through inhibition of viral oncoproteins. Biochimie, 2016, 121, 13-20.
[http://dx.doi.org/10.1016/j.biochi.2015.11.008] [PMID: 26586108]
[86]
Elbendary, A.A.; Cirisano, F.D.; Evans, A.C., Jr; Davis, P.L.; Iglehart, J.D.; Marks, J.R.; Berchuck, A. Relationship between p21 expression and mutation of the p53 tumor suppressor gene in normal and malignant ovarian epithelial cells. Clin. Cancer Res., 1996, 2(9), 1571-1575.
[PMID: 9816335]
[87]
Chatterjee, K.; AlSharif, D.; Mazza, C.; Syar, P.; Al Sharif, M.; Fata, J. Resveratrol and pterostilbene exhibit anticancer properties involving the downregulation of HPV oncoprotein E6 in cervical cancer cells. Nutrients, 2018, 10(2), 243.
[http://dx.doi.org/10.3390/nu10020243] [PMID: 29485619]
[88]
Chatterjee, K.; Mukherjee, S.; Vanmanen, J.; Banerjee, P.; Fata, J.E. Dietary polyphenols, resveratrol and pterostilbene exhibit antitumor activity on an HPV E6-positive cervical cancer model: An in vitro and in vivo analysis. Front. Oncol., 2019, 9, 352.
[http://dx.doi.org/10.3389/fonc.2019.00352] [PMID: 31143704]
[89]
Sun, X.; Fu, P.; Xie, L.; Chai, S.; Xu, Q.; Zeng, L.; Wang, X.; Jiang, N.; Sang, M. Resveratrol inhibits the progression of cervical cancer by suppressing the transcription and expression of HPV E6 and E7 genes. Int. J. Mol. Med., 2020, 47(1), 335-345.
[http://dx.doi.org/10.3892/ijmm.2020.4789] [PMID: 33236130]
[90]
Flowers, L. Topical Curcumin for Precancer Cervical Lesions. NCT02944578, 2016. https://clinicaltrials.gov/ct2/show/NCT02944578
[91]
Flowers, L. Topical Curcumin for HPV Related Cervical Disease. NCT04266275, 2020. https://clinicaltrials.gov/ct2/show/NCT04266275
[92]
Teymouri, M.; Pirro, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a multifaceted compound against human papilloma virus infection and cervical cancers: A review of chemistry, cellular, molecular, and preclinical features. Biofactors, 2017, 43(3), 331-346.
[http://dx.doi.org/10.1002/biof.1344] [PMID: 27896883]
[93]
Divya, C.S.; Pillai, M.R. Antitumor action of curcumin in human papillomavirus associated cells involves downregulation of viral oncogenes, prevention of NFkB and AP-1 translocation, and modulation of apoptosis. Mol. Carcinog., 2006, 45(5), 320-332.
[http://dx.doi.org/10.1002/mc.20170] [PMID: 16526022]
[94]
Nelson, K.M.; Dahlin, J.L.; Bisson, J.; Graham, J.; Pauli, G.F.; Walters, M.A. The essential medicinal chemistry of curcumin. J. Med. Chem., 2017, 60(5), 1620-1637.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00975] [PMID: 28074653]
[95]
Rastogi, N.; Duggal, S.; Singh, S.K.; Porwal, K.; Srivastava, V.K.; Maurya, R.; Bhatt, M.L.B.; Mishra, D.P. Proteasome inhibition mediates p53 reactivation and anti-cancer activity of 6-Gingerol in cervical cancer cells. Oncotarget, 2015, 6(41), 43310-43325.
[http://dx.doi.org/10.18632/oncotarget.6383] [PMID: 26621832]
[96]
Zivarpour, P.; Nikkhah, E.; Maleki Dana, P.; Asemi, Z.; Hallajzadeh, J. Molecular and biological functions of gingerol as a natural effective therapeutic drug for cervical cancer. J. Ovarian Res., 2021, 14(1), 43.
[http://dx.doi.org/10.1186/s13048-021-00789-x] [PMID: 33706784]
[97]
Kashyap, V.K.; Dan, N.; Chauhan, N.; Wang, Q.; Setua, S.; Nagesh, P.K.B.; Malik, S.; Batra, V.; Yallapu, M.M.; Miller, D.D.; Li, W.; Hafeez, B.B.; Jaggi, M.; Chauhan, S.C. VERU-111 suppresses tumor growth and metastatic phenotypes of cervical cancer cells through the activation of p53 signaling pathway. Cancer Lett., 2020, 470, 64-74.
[http://dx.doi.org/10.1016/j.canlet.2019.11.035] [PMID: 31809801]
[98]
Hassan, A.Y.; El-Sebaey, S.A.; El Deeb, M.A.; Elzoghbi, M.S. Potential antiviral and anticancer effect of imidazoles and bridgehead imidazoles generated by HPV-Induced cervical carcinomas via reactivating the P53/pRb pathway and inhibition of CA IX. J. Mol. Struct., 2021, 1230, 129865.
[http://dx.doi.org/10.1016/j.molstruc.2020.129865]
[99]
Delgado, G.; Sulbaran, M.E.; Mora, A.J. Synthesis, crystal structure and hydrogen-bonding patterns in rac-N-acetyl-2-thiohydantoin-leucine. Int. J. Mat. Chem., 2013, 3(1), 1-4.
[100]
Yim, E.K.; Lee, M.J.; Lee, K.H.; Um, S.J.; Park, J.S. Antiproliferative and antiviral mechanisms of ursolic acid and dexamethasone in cervical carcinoma cell lines. Int. J. Gynecol. Cancer, 2006, 16(6), 2023-2031.
[http://dx.doi.org/10.1111/j.1525-1438.2006.00726.x] [PMID: 17177841]
[101]
Paul, P.; Rajendran, S.K.; Peuhu, E.; Alshatwi, A.A.; Akbarsha, M.A.; Hietanen, S.; Eriksson, J.E. Novel action modality of the diterpenoid anisomelic acid causes depletion of E6 and E7 viral oncoproteins in HPV-transformed cervical carcinoma cells. Biochem. Pharmacol., 2014, 89(2), 171-184.
[http://dx.doi.org/10.1016/j.bcp.2014.02.011] [PMID: 24565908]
[102]
Kuida, K. Caspase-9. Int. J. Biochem. Cell Biol., 2000, 32(2), 121-124.
[http://dx.doi.org/10.1016/S1357-2725(99)00024-2] [PMID: 10687948]
[103]
Senthilkumar, R.; Brusentsev, Y.; Paul, P.; Marimuthu, P.; Cheng, F.; Eklund, P.C.; Eriksson, J.E. Synthesis and evaluation of anisomelic acid-like compounds for the treatment of HPV-mediated carcinomas. Sci. Rep., 2019, 9(1), 20295.
[http://dx.doi.org/10.1038/s41598-019-56410-1] [PMID: 31889069]
[104]
Rocha, S.M.M.; Cardoso, P.C.S.; Bahia, M.O.; Pessoa, C.Ó.; Soares, P.C.; Rocha, S.M.; Burbano, R.M.R.; Rocha, C.A.M. Effect of the kaurenoic acid on genotoxicity and cell cycle progression in cervical cancer cells lines. Toxicol. In Vitro, 2019, 57, 126-131.
[http://dx.doi.org/10.1016/j.tiv.2019.02.022] [PMID: 30822460]
[105]
Chitsike, L.; Yuan, C.H.; Roy, A.; Boyle, K.; Duerksen-Hughes, P.J. A high-content AlphaScreen™ identifies E6-specific small molecule inhibitors as potential therapeutics for HPV+ head and neck squamous cell carcinomas. Oncotarget, 2021, 12(6), 549-561.
[http://dx.doi.org/10.18632/oncotarget.27908] [PMID: 33796223]
[106]
Han, Q.B.; Yang, L.; Wang, Y.L.; Qiao, C.F.; Song, J.Z.; Sun, H.D.; Xu, H.X. A pair of novel cytotoxic polyprenylated xanthone epimers from gamboges. Chem. Biodivers., 2006, 3(1), 101-105.
[http://dx.doi.org/10.1002/cbdv.200690000] [PMID: 17193222]
[107]
Munagala, R.; Kausar, H.; Munjal, C.; Gupta, R.C. Withaferin A induces p53-dependent apoptosis by repression of HPV oncogenes and upregulation of tumor suppressor proteins in human cervical cancer cells. Carcinogenesis, 2011, 32(11), 1697-1705.
[http://dx.doi.org/10.1093/carcin/bgr192] [PMID: 21859835]
[108]
Caicedo-Granados, E.; Lin, R.; Fujisawa, C.; Yueh, B.; Sangwan, V.; Saluja, A. Wild-type p53 reactivation by small-molecule Minnelide™ in human papillomavirus (HPV)-positive head and neck squamous cell carcinoma. Oral Oncol., 2014, 50(12), 1149-1156.
[http://dx.doi.org/10.1016/j.oraloncology.2014.09.013] [PMID: 25311433]
[109]
Fang, Zy.; Zhang, M. Liu J-n, Zhao X, Zhang Y-q, Fang L. Tanshinone IIA: A review of its anticancer effects. Front. Pharmacol., 2021, 11(2189)
[110]
Munagala, R.; Aqil, F.; Jeyabalan, J.; Gupta, R.C. Tanshinone IIA inhibits viral oncogene expression leading to apoptosis and inhibition of cervical cancer. Cancer Lett., 2015, 356(2)(2, Part B), 536-546.
[http://dx.doi.org/10.1016/j.canlet.2014.09.037] [PMID: 25304375]
[111]
Li, M.; Wang, G.; Zhang, R.; Duan, S.; Chen, J. Tanshinone IIA inhibits proliferation and activates apoptosis in C4-1 cervical carcinoma cells in vitro. Biotechnol. Biotechnol. Equip., 2019, 33(1), 1599-1607.
[http://dx.doi.org/10.1080/13102818.2019.1677175]
[112]
Mahata, S.; Bharti, A.C.; Shukla, S.; Tyagi, A.; Husain, S.A.; Das, B.C. Berberine modulates AP-1 activity to suppress HPV transcription and downstream signaling to induce growth arrest and apoptosis in cervical cancer cells. Mol. Cancer, 2011, 10(1), 39.
[http://dx.doi.org/10.1186/1476-4598-10-39] [PMID: 21496227]
[113]
Shaulian, E.; Karin, M. AP-1 in cell proliferation and survival. Oncogene, 2001, 20(19), 2390-2400.
[http://dx.doi.org/10.1038/sj.onc.1204383] [PMID: 11402335]
[114]
Saha, S.K.; Khuda-Bukhsh, A.R. Berberine alters epigenetic modifications, disrupts microtubule network, and modulates HPV-18 E6–E7 oncoproteins by targeting p53 in cervical cancer cell HeLa: A mechanistic study including molecular docking. Eur. J. Pharmacol., 2014, 744, 132-146.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.048] [PMID: 25448308]
[115]
Wang, Y.; Li, X.; Song, S.; Wu, J. Development of basal-like HaCaT keratinocytes containing the genome of human papillomavirus (HPV) type 11 for screening of anti-HPV effects. SLAS Discov., 2014, 19(8), 1154-1163.
[http://dx.doi.org/10.1177/1087057114536987] [PMID: 24874507]
[116]
Mortazavi, H.; Nikfar, B.; Esmaeili, S.A.; Rafieenia, F.; Saburi, E.; Chaichian, S.; Heidari Gorji, M.A.; Momtazi-Borojeni, A.A. Potential cytotoxic and anti-metastatic effects of berberine on gynaecological cancers with drug-associated resistance. Eur. J. Med. Chem., 2020, 187, 111951.
[http://dx.doi.org/10.1016/j.ejmech.2019.111951] [PMID: 31821990]
[117]
Dasari, S.; Bakthavachalam, V.; Chinnapaka, S.; Venkatesan, R.; Samy, A.L.P.A.; Munirathinam, G. Neferine, an alkaloid from lotus seed embryo targets HELA and SIHA cervical cancer cells via pro‐oxidant anticancer mechanism. Phytother. Res., 2020, 34(9), 2366-2384.
[http://dx.doi.org/10.1002/ptr.6687] [PMID: 32364634]
[118]
Beerheide, W.; Bernard, H.U.; Tan, Y.J.; Ganesan, A.; Rice, W.G.; Ting, A.E. Potential drugs against cervical cancer: zinc-ejecting inhibitors of the human papillomavirus type 16 E6 oncoprotein. J. Natl. Cancer Inst., 1999, 91(14), 1211-1220.
[http://dx.doi.org/10.1093/jnci/91.14.1211] [PMID: 10413422]
[119]
Beerheide, W.; Sim, M.M.; Tan, Y.J.; Bernard, H.U.; Ting, A.E. Inactivation of the human papillomavirus-16 e6 oncoprotein by organic disulfides. Bioorg. Med. Chem., 2000, 8(11), 2549-2560.
[http://dx.doi.org/10.1016/S0968-0896(00)00193-0] [PMID: 11092540]
[120]
Fera, D.; Schultz, D.C.; Hodawadekar, S.; Reichman, M.; Donover, P.S.; Melvin, J.; Troutman, S.; Kissil, J.L.; Huryn, D.M.; Marmorstein, R. Identification and characterization of small molecule antagonists of pRb inactivation by viral oncoproteins. Chem. Biol., 2012, 19(4), 518-528.
[http://dx.doi.org/10.1016/j.chembiol.2012.03.007] [PMID: 22520758]
[121]
Zhao, C.Y.; Szekely, L.; Bao, W.; Selivanova, G. Rescue of p53 function by small-molecule RITA in cervical carcinoma by blocking E6-mediated degradation. Cancer Res., 2010, 70(8), 3372-3381.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-2787] [PMID: 20395210]
[122]
Singh, M.; Modi, A.; Narayan, G.; Singh, S.K. Benzothiazole derivatives bearing amide moiety. Anticancer Drugs, 2016, 27(6), 519-532.
[http://dx.doi.org/10.1097/CAD.0000000000000357] [PMID: 26945135]
[123]
Modi, A.; Singh, M.; Gutti, G.; Shanker, O.R.; Singh, V.K.; Singh, S.; Singh, S.K.; Pradhan, S.; Narayan, G. Benzothiazole derivative bearing amide moiety induces p53-mediated apoptosis in HPV16 positive cervical cancer cells. Invest. New Drugs, 2020, 38(4), 934-945.
[http://dx.doi.org/10.1007/s10637-019-00848-7] [PMID: 31432292]
[124]
Celegato, M.; Messa, L.; Goracci, L.; Mercorelli, B.; Bertagnin, C.; Spyrakis, F.; Suarez, I.; Cousido-Siah, A.; Travé, G.; Banks, L.; Cruciani, G.; Palù, G.; Loregian, A. A novel small-molecule inhibitor of the human papillomavirus E6-p53 interaction that reactivates p53 function and blocks cancer cells growth. Cancer Lett., 2020, 470, 115-125.
[http://dx.doi.org/10.1016/j.canlet.2019.10.046] [PMID: 31693922]
[125]
Hietanen, S.; Lain, S.; Krausz, E.; Blattner, C.; Lane, D.P. Activation of p53 in cervical carcinoma cells by small molecules. Proc. Natl. Acad. Sci. USA, 2000, 97(15), 8501-8506.
[http://dx.doi.org/10.1073/pnas.97.15.8501] [PMID: 10900010]
[126]
Zhang, W.; Che, Q.; Tan, H.; Qi, X.; Li, J.; Li, D.; Gu, Q.; Zhu, T.; Liu, M. Marine Streptomyces sp. derived antimycin analogues suppress HeLa cells via depletion HPV E6/E7 mediated by ROS-dependent ubiquitin–proteasome system. Sci. Rep., 2017, 7(1), 42180.
[http://dx.doi.org/10.1038/srep42180] [PMID: 28176847]
[127]
Omura, S.; Iwai, Y.; Hirano, A.; Nakagawa, A.; Awaya, J.; Tsuchiya, H.; Takahashi, Y.; Asuma, R. A new alkaloid AM-2282 of Streptomyces origin taxonomy, fermentation, isolation and preliminary characterization. J. Antibiot. (Tokyo), 1977, 30(4), 275-282.
[http://dx.doi.org/10.7164/antibiotics.30.275] [PMID: 863788]
[128]
Funato, N.; Takayanagi, H.; Konda, Y.; Toda, Y.; Harigaya, Y.; Iwai, Y.; Ōmura, S. Absolute configuration of staurosporine by X-Ray analysis. Tetrahedron Lett., 1994, 35(8), 1251-1254.
[http://dx.doi.org/10.1016/0040-4039(94)88036-0]
[129]
Bernard, B.; Fest, T.; Prétet, J-L.; Mougin, C. Staurosporine-induced apoptosis of HPV positive and negative human cervical cancer cells from different points in the cell cycle. Cell Death Differ., 2001, 8(3), 234-244.
[http://dx.doi.org/10.1038/sj.cdd.4400796] [PMID: 11319606]
[130]
Bernard, B.; Prétet, J.L.; Charlot, J.F.; Mougin, C. Human papillomaviruses type 16+ and 18+ cervical carcinoma cells are sensitive to staurosporine-mediated apoptosis. Biol. Cell, 2003, 95(1), 17-26.
[http://dx.doi.org/10.1016/S0248-4900(02)01220-0] [PMID: 12753950]
[131]
Decrion-Barthod, A-Z.; Bosset, M.; Plissonnier, M-L.; Marchini, A.; Nicolier, M.; Launay, S.; Prétet, J.L.; Rommelaere, J.; Mougin, C. Sodium butyrate with UCN-01 has marked antitumour activity against cervical cancer cells. Anticancer Res., 2010, 30(10), 4049-4061.
[PMID: 21036719]
[132]
Singh, S.B.; Zink, D.L.; Polishook, J.D.; Dombrowski, A.W.; Darkin-Rattray, S.J.; Schmatz, D.M.; Goetz, M.A. Apicidins: Novel cyclic tetrapeptides as coccidiostats and antimalarial agents from Fusarium pallidoroseum. Tetrahedron Lett., 1996, 37(45), 8077-8080.
[http://dx.doi.org/10.1016/0040-4039(96)01844-8]
[133]
Łuczak, M.W.; Jagodzinski, P.P. Apicidin down-regulates human papillomavirus type 16 E6 and E7 transcripts and proteins in SiHa cervical cancer cells. Cancer Lett., 2008, 272(1), 53-60.
[http://dx.doi.org/10.1016/j.canlet.2008.06.030] [PMID: 18687520]
[134]
Baleja, J.D.; Cherry, J.J.; Liu, Z.; Gao, H.; Nicklaus, M.C.; Voigt, J.H.; Chen, J.J.; Androphy, E.J. Identification of inhibitors to papillomavirus type 16 E6 protein based on three-dimensional structures of interacting proteins. Antiviral Res., 2006, 72(1), 49-59.
[http://dx.doi.org/10.1016/j.antiviral.2006.03.014] [PMID: 16690141]
[135]
Baylin, S.B. DNA methylation and gene silencing in cancer. Nat. Clin. Pract. Oncol., 2005, 2(S1)(Suppl. 1), S4-S11.
[http://dx.doi.org/10.1038/ncponc0354] [PMID: 16341240]
[136]
Kalantari, M.; Lee, D.; Calleja-Macias, I.E.; Lambert, P.F.; Bernard, H.U. Effects of cellular differentiation, chromosomal integration and 5-aza-2′-deoxycytidine treatment on human papillomavirus-16 DNA methylation in cultured cell lines. Virology, 2008, 374(2), 292-303.
[http://dx.doi.org/10.1016/j.virol.2007.12.016] [PMID: 18242658]
[137]
Zhang, C.; Deng, Z.; Pan, X.; Uehara, T.; Suzuki, M.; Xie, M. Effects of methylation status of CpG sites within the HPV16 long control region on HPV16-positive head and neck cancer cells. PLoS One, 2015, 10(10), e0141245.
[http://dx.doi.org/10.1371/journal.pone.0141245] [PMID: 26509736]
[138]
Stich, M.; Ganss, L.; Puschhof, J.; Prigge, E.S.; Reuschenbach, M.; Guiterrez, A.; Vinokurova, S.; von Knebel Doeberitz, M. 5-aza-2′-deoxycytidine (DAC) treatment downregulates the HPV E6 and E7 oncogene expression and blocks neoplastic growth of HPV-associated cancer cells. Oncotarget, 2017, 8(32), 52104-52117.
[http://dx.doi.org/10.18632/oncotarget.10631] [PMID: 28881717]
[139]
Jung, H.M.; Phillips, B.L.; Chan, E.K.L. miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3ζ. Mol. Cancer, 2014, 13(1), 80.
[http://dx.doi.org/10.1186/1476-4598-13-80] [PMID: 24708873]
[140]
Morel, A.; Baguet, A.; Perrard, J.; Demeret, C.; Jacquin, E.; Guenat, D.; Mougin, C.; Prétet, J.L. 5azadC treatment upregulates miR-375 level and represses HPV16 E6 expression. Oncotarget, 2017, 8(28), 46163-46176.
[http://dx.doi.org/10.18632/oncotarget.17575] [PMID: 28521287]
[141]
Perrard, J.; Morel, A.; Meznad, K.; Paget-Bailly, P.; Dalstein, V.; Guenat, D.; Mourareau, C.; Clavel, C.; Fauconnet, S.; Baguet, A.; Mougin, C.; Pretet, J.L. DNA demethylation agent 5azadC downregulates HPV16 E6 expression in cervical cancer cell lines independently of TBX2 expression. Oncol. Lett., 2020, 19(1), 1074-1081.
[PMID: 31897221]
[142]
Debus, J. Decitabine Treatment in HPV-Induced Anogenital and Head and Neck Cancer Patients after Radiotherapy or as Novel Late Salvage (DERANO). NCT04252248, 2020.
[143]
Burtness, B. 5-Azacytidine and/or Nivolumab in Resectable HPV-Associated HNSCC. NCT05317000, 2022.
[144]
He, H.; Liu, X.; Wang, D.; Wang, Y.; Liu, L.; Zhou, H.; Luo, X.; Wang, N.; Ji, B.; Luo, Y.; Zhang, T. SAHA inhibits the transcription initiation of HPV18 E6/E7 genes in HeLa cervical cancer cells. Gene, 2014, 553(2), 98-104.
[http://dx.doi.org/10.1016/j.gene.2014.10.007] [PMID: 25300249]
[145]
Finzer, P.; Krueger, A.; Stöhr, M.; Brenner, D.; Soto, U.; Kuntzen, C.; Krammer, P.H.; Rösl, F. HDAC inhibitors trigger apoptosis in HPV-positive cells by inducing the E2F–p73 pathway. Oncogene, 2004, 23(28), 4807-4817.
[http://dx.doi.org/10.1038/sj.onc.1207620] [PMID: 15077164]
[146]
Messa, L.; Celegato, M.; Bertagnin, C.; Mercorelli, B.; Nannetti, G.; Palù, G.; Loregian, A. A quantitative LumiFluo assay to test inhibitory compounds blocking p53 degradation induced by human papillomavirus oncoprotein E6 in living cells. Sci. Rep., 2018, 8(1), 6020.
[http://dx.doi.org/10.1038/s41598-018-24470-4] [PMID: 29662081]
[147]
Sheaffer, A.K.; Lee, M.S.; Qi, H.; Chaniewski, S.; Zheng, X.; Farr, G.A. A small molecule inhibitor selectively induces apoptosis in cells transformed by high risk human papilloma viruses. PloS one, 2016, 11(6), e0155909.
[http://dx.doi.org/10.1371/journal.pone.0155909]
[148]
Han, F.; Li, Y.; Lu, Q.; Ma, L.; Wang, H.; Jiang, J.; Li, Z.; Li, Y. 3-(2-Chloropropyl amide)-4-methoxy-N-phenylbenzamide inhibits expression of HPV oncogenes in human cervical cancer cell. Virol. J., 2017, 14(1), 145.
[http://dx.doi.org/10.1186/s12985-017-0806-5] [PMID: 28754129]
[149]
Willems, E.; Dedobbeleer, M.; Digregorio, M.; Lombard, A.; Lumapat, P.N.; Rogister, B. The functional diversity of Aurora kinases: a comprehensive review. Cell Div., 2018, 13(1), 7.
[http://dx.doi.org/10.1186/s13008-018-0040-6] [PMID: 30250494]
[150]
Vader, G.; Lens, S.M.A. The Aurora kinase family in cell division and cancer. Biochimica et Biophysica Acta (BBA). Rev. Can., 2008, 1786(1), 60-72.
[151]
Gabrielli, B.; Bokhari, F.; Ranall, M.V.; Oo, Z.Y.; Stevenson, A.J.; Wang, W.; Murrell, M.; Shaikh, M.; Fallaha, S.; Clarke, D.; Kelly, M.; Sedelies, K.; Christensen, M.; McKee, S.; Leggatt, G.; Leo, P.; Skalamera, D.; Soyer, H.P.; Gonda, T.J.; McMillan, N.A.J. Aurora A is critical for survival in HPV-transformed cervical cancer. Mol. Cancer Ther., 2015, 14(12), 2753-2761.
[http://dx.doi.org/10.1158/1535-7163.MCT-15-0506] [PMID: 26516156]
[152]
Alisertib and TAK-228 in Participants with Human Papilloma Virus (HPV) Associated Malignancies NCT02812056, 2016.
[153]
Martin, D.; Fallaha, S.; Proctor, M.; Stevenson, A.; Perrin, L.; McMillan, N.; Gabrielli, B. Inhibition of aurora A and aurora B is required for the sensitivity of HPV-driven cervical cancers to aurora kinase inhibitors. Mol. Cancer Ther., 2017, 16(9), 1934-1941.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0159] [PMID: 28522591]
[154]
Shaikh, M.H.; Idris, A.; Johnson, N.W.; Fallaha, S.; Clarke, D.T.W.; Martin, D.; Morgan, I.M.; Gabrielli, B.; McMillan, N.A.J. Aurora kinases are a novel therapeutic target for HPV-positive head and neck cancers. Oral Oncol., 2018, 86, 105-112.
[http://dx.doi.org/10.1016/j.oraloncology.2018.09.006] [PMID: 30409290]
[155]
Yumol, J.; Gabrielli, B.; Tayyar, Y.; McMillan, N.A.; Idris, A. Smart drug combinations for cervical cancer: dual targeting of Bcl-2 family of proteins and aurora kinases. Am. J. Cancer Res., 2020, 10(10), 3406-3414.
[PMID: 33163279]
[156]
Banerjee, N.S.; Moore, D.; Parker, C.J.; Broker, T.R.; Chow, L.T. Targeting DNA damage response as a strategy to treat HPV infections. Int. J. Mol. Sci., 2019, 20(21), 5455.
[http://dx.doi.org/10.3390/ijms20215455] [PMID: 31683862]
[157]
Bazzaro, M.; Anchoori, R.K.; Mudiam, M.K.R.; Issaenko, O.; Kumar, S.; Karanam, B.; Lin, Z.; Isaksson Vogel, R.; Gavioli, R.; Destro, F.; Ferretti, V.; Roden, R.B.S.; Khan, S.R. α,β-Unsaturated carbonyl system of chalcone-based derivatives is responsible for broad inhibition of proteasomal activity and preferential killing of human papilloma virus (HPV) positive cervical cancer cells. J. Med. Chem., 2011, 54(2), 449-456.
[http://dx.doi.org/10.1021/jm100589p] [PMID: 21186794]
[158]
Anchoori, R.K.; Karanam, B.; Peng, S.; Wang, J.W.; Jiang, R.; Tanno, T.; Orlowski, R.Z.; Matsui, W.; Zhao, M.; Rudek, M.A.; Hung, C.; Chen, X.; Walters, K.J.; Roden, R.B.S. A bis-benzylidine piperidone targeting proteasome ubiquitin receptor RPN13/ADRM1 as a therapy for cancer. Cancer Cell, 2013, 24(6), 791-805.
[http://dx.doi.org/10.1016/j.ccr.2013.11.001] [PMID: 24332045]
[159]
Ren, B.; Ablise, M.; Yang, X.; Liao, B.; Yang, Z. Synthesis and biological evaluation of α-methyl-chalcone for anti-cervical cancer activity. Med. Chem. Res., 2017, 26(9), 1871-1883.
[http://dx.doi.org/10.1007/s00044-017-1891-0]
[160]
Li, C.; Johnson, D.E. Liberation of functional p53 by proteasome inhibition in human papilloma virus-positive head and neck squamous cell carcinoma cells promotes apoptosis and cell cycle arrest. Cell Cycle, 2013, 12(6), 923-934.
[http://dx.doi.org/10.4161/cc.23882] [PMID: 23421999]
[161]
Kim, J.E.E.E.U.N.; Lee, J.I.I.N.; Jin, D.H.; Lee, W.J.; Park, G.B.; Kim, S.; Kim, Y.S.; Wu, T.C.; Hur, D.Y.; Kim, D. Sequential treatment of HPV E6 and E7-expressing TC-1 cells with bortezomib and celecoxib promotes apoptosis through p-p38 MAPK-mediated downregulation of cyclin D1 and CDK2. Oncol. Rep., 2014, 31(5), 2429-2437.
[http://dx.doi.org/10.3892/or.2014.3082] [PMID: 24627094]
[162]
Study of Celebrex (Celecoxib) in Patients with Recurrent Respiratory Papillomatosis. NCT00571701, 2017.
[163]
Palefsky, J. Biology of HPV in HIV Infection. Adv. Dent. Res., 2006, 19(1), 99-105.
[http://dx.doi.org/10.1177/154407370601900120] [PMID: 16672559]
[164]
Hampson, L.; Kitchener, H.C.; Hampson, I.N. Specific HIV protease inhibitors inhibit the ability of HPV16 E6 to degrade p53 and selectively kill E6-dependent cervical carcinoma cells in vitro. Antivir. Ther., 2006, 11(6), 813-826.
[http://dx.doi.org/10.1177/135965350601100607] [PMID: 17310826]
[165]
Kim, D.H.; Jarvis, R.M.; Xu, Y.; Oliver, A.W.; Allwood, J.W.; Hampson, L.; Hampson, I.N.; Goodacre, R. Combining metabolic fingerprinting and footprinting to understand the phenotypic response of HPV16 E6 expressing cervical carcinoma cells exposed to the HIV anti-viral drug lopinavir. Analyst (Lond.), 2010, 135(6), 1235-1244.
[http://dx.doi.org/10.1039/b923046g] [PMID: 20390218]
[166]
Kim, D.H.; Jarvis, R.M.; Allwood, J.W.; Batman, G.; Moore, R.E.; Marsden-Edwards, E.; Hampson, L.; Hampson, I.N.; Goodacre, R. Raman chemical mapping reveals site of action of HIV protease inhibitors in HPV16 E6 expressing cervical carcinoma cells. Anal. Bioanal. Chem., 2010, 398(7-8), 3051-3061.
[http://dx.doi.org/10.1007/s00216-010-4283-6] [PMID: 20957472]
[167]
Batman, G.; Oliver, A.W.; Zehbe, I.; Richard, C.; Hampson, L.; Hampson, I.N. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells. Antivir. Ther., 2011, 16(4), 515-525.
[http://dx.doi.org/10.3851/IMP1786] [PMID: 21685539]
[168]
Brennan-Laun, S.E.; Ezelle, H.J.; Li, X.L.; Hassel, B.A. RNase-L control of cellular mRNAs: roles in biologic functions and mechanisms of substrate targeting. J. Interferon Cytokine Res., 2014, 34(4), 275-288.
[http://dx.doi.org/10.1089/jir.2013.0147] [PMID: 24697205]
[169]
Zehbe, I.; Richard, C.; Lee, K.F.; Campbell, M.; Hampson, L.; Hampson, I.N. Lopinavir shows greater specificity than zinc finger ejecting compounds as a potential treatment for human papillomavirus-related lesions. Antiviral Res., 2011, 91(2), 161-166.
[http://dx.doi.org/10.1016/j.antiviral.2011.05.016] [PMID: 21669231]
[170]
Park, S.; Auyeung, A.; Lee, D.L.; Lambert, P.F.; Carchman, E.H.; Sherer, N.M. HIV-1 protease inhibitors slow HPV16-driven cell proliferation through targeted depletion of viral E6 and E7 oncoproteins. Cancers (Basel), 2021, 13(5), 949.
[http://dx.doi.org/10.3390/cancers13050949] [PMID: 33668328]
[171]
Bandiera, E.; Todeschini, P.; Romani, C.; Zanotti, L.; Erba, E.; Colmegna, B.; Bignotti, E.; Santin, A.D.; Sartori, E.; Odicino, F.E.; Pecorelli, S.; Tassi, R.A.; Ravaggi, A. The HIV-protease inhibitor saquinavir reduces proliferation, invasion and clonogenicity in cervical cancer cell lines. Oncol. Lett., 2016, 12(4), 2493-2500.
[http://dx.doi.org/10.3892/ol.2016.5008] [PMID: 27698818]
[172]
Davis, M-A.; Delaney, J.R.; Patel, C.B.; Storgard, R.; Stupack, D.G. Nelfinavir is effective against human cervical cancer cells in vivo: a potential treatment modality in resource-limited settings. Drug Des. Devel. Ther., 2016, 10, 1837-1846.
[PMID: 27330277]
[173]
Xia, C.; Chen, R.; Chen, J.; Qi, Q.; Pan, Y.; Du, L.; Xiao, G.; Jiang, S. Combining metformin and nelfinavir exhibits synergistic effects against the growth of human cervical cancer cells and xenograft in nude mice. Sci. Rep., 2017, 7(1), 43373.
[http://dx.doi.org/10.1038/srep43373] [PMID: 28252027]
[174]
Xia, C.; He, Z.; Liang, S.; Chen, R.; Xu, W.; Yang, J.; Xiao, G.; Jiang, S. Metformin combined with nelfinavir induces SIRT3/mROS-dependent autophagy in human cervical cancer cells and xenograft in nude mice. Eur. J. Pharmacol., 2019, 848, 62-69.
[http://dx.doi.org/10.1016/j.ejphar.2019.01.045] [PMID: 30695683]
[175]
Xia, C.; Yang, F.; He, Z.; Cai, Y. iTRAQ-based quantitative proteomic analysis of the inhibition of cervical cancer cell invasion and migration by metformin. Biomed. Pharmacother., 2020, 123, 109762.
[http://dx.doi.org/10.1016/j.biopha.2019.109762] [PMID: 31864213]
[176]
Xia, C.; Liu, C.; He, Z.; Cai, Y.; Chen, J. Metformin inhibits cervical cancer cell proliferation by modulating PI3K/Akt-induced major histocompatibility complex class I-related chain A gene expression. J. Exp. Clin. Cancer Res., 2020, 39(1), 127.
[http://dx.doi.org/10.1186/s13046-020-01627-6] [PMID: 32631421]
[177]
Chen, Y.H.; Yang, S.F.; Yang, C.K.; Tsai, H.D.; Chen, T.H.; Chou, M.C.; Hsiao, Y.H. Metformin induces apoptosis and inhibits migration by activating the AMPK/p53 axis and suppressing PI3K/AKT signaling in human cervical cancer cells. Mol. Med. Rep., 2020, 23(1), 88.
[http://dx.doi.org/10.3892/mmr.2020.11725] [PMID: 33236135]
[178]
Hoppe-Seyler, K.; Herrmann, A.L.; Däschle, A.; Kuhn, B.J.; Strobel, T.D.; Lohrey, C.; Bulkescher, J.; Krijgsveld, J.; Hoppe-Seyler, F. Effects of metformin on the virus/host cell crosstalk in human papillomavirus‐positive cancer cells. Int. J. Cancer, 2021, 149(5), 1137-1149.
[http://dx.doi.org/10.1002/ijc.33594] [PMID: 33844847]
[179]
Donalisio, M.; Massari, S.; Argenziano, M.; Manfroni, G.; Cagno, V.; Civra, A.; Sabatini, S.; Cecchetti, V.; Loregian, A.; Cavalli, R.; Lembo, D.; Tabarrini, O. Ethyl 1,8-naphthyridone-3-carboxylates downregulate human papillomavirus-16 E6 and E7 oncogene expression. J. Med. Chem., 2014, 57(13), 5649-5663.
[http://dx.doi.org/10.1021/jm500340h] [PMID: 24905115]
[180]
Cardone, G.; Moyer, A.L.; Cheng, N.; Thompson, C.D.; Dvoretzky, I.; Lowy, D.R.; Schiller, J.T.; Steven, A.C.; Buck, C.B.; Trus, B.L. Maturation of the human papillomavirus 16 capsid. MBio, 2014, 5(4), e01104-e01114.
[http://dx.doi.org/10.1128/mBio.01104-14] [PMID: 25096873]
[181]
de Villiers, E.M.; Fauquet, C.; Broker, T.R.; Bernard, H.U.; zur Hausen, H. Classification of papillomaviruses. Virology, 2004, 324(1), 17-27.
[http://dx.doi.org/10.1016/j.virol.2004.03.033] [PMID: 15183049]
[182]
Buck, C.B.; Day, P.M.; Trus, B.L. The papillomavirus major capsid protein L1. Virology, 2013, 445(1-2), 169-174.
[http://dx.doi.org/10.1016/j.virol.2013.05.038] [PMID: 23800545]
[183]
Wang, J.W.; Roden, R.B.S. L2, the minor capsid protein of papillomavirus. Virology, 2013, 445(1-2), 175-186.
[http://dx.doi.org/10.1016/j.virol.2013.04.017] [PMID: 23689062]
[184]
Zheng, D.D.; Fu, D.Y.; Wu, Y.; Sun, Y.L.; Tan, L.L.; Zhou, T.; Ma, S.Q.; Zha, X.; Yang, Y.W. Efficient inhibition of human papillomavirus 16 L1 pentamer formation by a carboxylatopillarene and a p-sulfonatocalixarene. Chem. Commun. (Camb.), 2014, 50(24), 3201-3203.
[http://dx.doi.org/10.1039/c3cc49789e] [PMID: 24522285]
[185]
Fu, D.Y.; Lu, T.; Liu, Y.X.; Li, F.; Ogden, M.I.; Wang, Y.; Wu, Y.; Mocerino, M. Enantioselective inhibition of human papillomavirus L1 pentamer formation by chiral‐proline modified calix[4]arenes: Targeting the protein interface. ChemistrySelect, 2016, 1(19), 6243-6249.
[http://dx.doi.org/10.1002/slct.201601467]
[186]
Goh, C.Y.; Fu, D.Y.; Duncan, C.L.; Tinker, A.; Li, F.; Mocerino, M.; Ogden, M.I.; Wu, Y. The inhibitory properties of acidic functionalised calix[4]arenes on human papillomavirus pentamer formation. Supramol. Chem., 2020, 32(5), 345-353.
[http://dx.doi.org/10.1080/10610278.2020.1779930]
[187]
Selinka, H.C.; Florin, L.; Patel, H.D.; Freitag, K.; Schmidtke, M.; Makarov, V.A.; Sapp, M. Inhibition of transfer to secondary receptors by heparan sulfate-binding drug or antibody induces noninfectious uptake of human papillomavirus. J. Virol., 2007, 81(20), 10970-10980.
[http://dx.doi.org/10.1128/JVI.00998-07] [PMID: 17686860]
[188]
Surviladze, Z.; Dziduszko, A.; Ozbun, M.A. Essential roles for soluble virion-associated heparan sulfonated proteoglycans and growth factors in human papillomavirus infections. PLoS Pathog., 2012, 8(2), e1002519.
[http://dx.doi.org/10.1371/journal.ppat.1002519] [PMID: 22346752]
[189]
Müller, K.H.; Spoden, G.A.; Scheffer, K.D.; Brunnhöfer, R.; De Brabander, J.K.; Maier, M.E.; Florin, L.; Muller, C.P. Inhibition by cellular vacuolar ATPase impairs human papillomavirus uncoating and infection. Antimicrob. Agents Chemother., 2014, 58(5), 2905-2911.
[http://dx.doi.org/10.1128/AAC.02284-13] [PMID: 24614368]
[190]
Karanam, B.; Peng, S.; Li, T.; Buck, C.; Day, P.M.; Roden, R.B.S. Papillomavirus infection requires gamma secretase. J. Virol., 2010, 84(20), 10661-10670.
[http://dx.doi.org/10.1128/JVI.01081-10] [PMID: 20702627]
[191]
Huang, H.S.; Buck, C.B.; Lambert, P.F. Inhibition of gamma secretase blocks HPV infection. Virology, 2010, 407(2), 391-396.
[http://dx.doi.org/10.1016/j.virol.2010.09.002] [PMID: 20875908]
[192]
Kwak, K.; Jiang, R.; Wang, J.W.; Jagu, S.; Kirnbauer, R.; Roden, R.B.S. Impact of inhibitors and L2 antibodies upon the infectivity of diverse alpha and beta human papillomavirus types. PLoS One, 2014, 9(5), e97232.
[http://dx.doi.org/10.1371/journal.pone.0097232] [PMID: 24816794]
[193]
Richards, R.M.; Lowy, D.R.; Schiller, J.T.; Day, P.M. Cleavage of the papillomavirus minor capsid protein, L2, at a furin consensus site is necessary for infection. Proc. Natl. Acad. Sci. USA, 2006, 103(5), 1522-1527.
[http://dx.doi.org/10.1073/pnas.0508815103] [PMID: 16432208]
[194]
Huang, H.S.; Pyeon, D.; Pearce, S.M.; Lank, S.M.; Griffin, L.M.; Ahlquist, P.; Lambert, P.F. Novel antivirals inhibit early steps in HPV infection. Antiviral Res., 2012, 93(2), 280-287.
[http://dx.doi.org/10.1016/j.antiviral.2011.12.007] [PMID: 22197636]
[195]
Walhart, T.; Isaacson-Wechsler, E.; Ang, K.H.; Arkin, M.; Tugizov, S.; Palefsky, J.M. A cell-based Renilla luminescence reporter plasmid assay for high-throughput screening to identify novel FDA-approved drug inhibitors of HPV-16 infection. SLAS Discov., 2020, 25(1), 79-86.
[http://dx.doi.org/10.1177/2472555219860771] [PMID: 31361520]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy