Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Mini-Review Article

Two-Dimensional MXene-Based Functional Composites for Photocatalysts: Current Status and Perspectives

Author(s): Yingchun Chen*, Mengjie Liang and Chi Zhang

Volume 18, Issue 9, 2024

Published on: 13 December, 2023

Article ID: e130723218688 Pages: 18

DOI: 10.2174/1872212118666230713115040

Price: $65

Abstract

MXenes, as novel two-dimensional (2D) transition metal carbides, nitrides or carbonitrides, have excellent metal conductivity, high carrier mobility, and surface-terminated groups regulated band structure. It can be thus used as a cocatalyst in photocatalytic systems to improve the photocatalytic properties. This patent review represented recent research progress on the controllable construction of MXene-based functional composites with zero-dimensional (0D), onedimensional (1D), 2D, and three-dimensional (3D) semiconductor photocatalysts and their applications for photocatalysts. Extensive information related to 2D MXene-Based composites for photocatalysts and their associated patents were collected. The construction methods and photocatalytic enhancement mechanisms of 2D MXene-based composite photocatalysts were given. Due to their excellent physical and chemical properties, 2D MXene composites have been widely used in pollutant removal, hydrogen production, CO2 reduction, and nitrogen fixation. Through the construction of 2D MXene-based functional composite photocatalysts with novel structures and excellent performance, it provides a new perspective for the design and construction of high-efficiency photocatalysts. The future research directions of MXene-based composite photocatalysts was proposed.

Graphical Abstract

[1]
H. Nishiyama, T. Yamada, M. Nakabayashi, Y. Maehara, M. Yamaguchi, Y. Kuromiya, Y. Nagatsuma, H. Tokudome, S. Akiyama, T. Watanabe, R. Narushima, S. Okunaka, N. Shibata, T. Takata, T. Hisatomi, and K. Domen, "Photocatalytic solar hydrogen production from water on a 100-m2 scale", Nature, vol. 598, no. 7880, pp. 304-307, 2021.
[http://dx.doi.org/10.1038/s41586-021-03907-3] [PMID: 34433207]
[2]
F. Xu, K. Meng, B. Cheng, S. Wang, J. Xu, and J. Yu, "Unique S-scheme heterojunctions in self-assembled TiO2/CsPbBr3 hybrids for CO2 photoreduction", Nat. Commun., vol. 11, no. 1, p. 4613, 2020.
[http://dx.doi.org/10.1038/s41467-020-18350-7] [PMID: 32929077]
[3]
Y. Zhu, J. Ren, X. Zhang, and D. Yang, "Elemental red phosphorus-based materials for photocatalytic water purification and hydrogen production", Nanoscale, vol. 12, no. 25, pp. 13297-13310, 2020.
[http://dx.doi.org/10.1039/D0NR01748E] [PMID: 32555899]
[4]
J. Yang, D. Wang, H. Han, and C. Li, "Roles of cocatalysts in photocatalysis and photoelectrocatalysis", Acc. Chem. Res., vol. 46, no. 8, pp. 1900-1909, 2013.
[http://dx.doi.org/10.1021/ar300227e] [PMID: 23530781]
[5]
J. Ran, J. Zhang, J. Yu, M. Jaroniec, and S.Z. Qiao, "Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting", Chem. Soc. Rev., vol. 43, no. 22, pp. 7787-7812, 2014.
[http://dx.doi.org/10.1039/C3CS60425J] [PMID: 24429542]
[6]
C.F. Fu, X. Wu, and J. Yang, "Material design for photocatalytic water splitting from a theoretical perspective", Adv. Mater., vol. 30, no. 48, p. 1802106, 2018.
[http://dx.doi.org/10.1002/adma.201802106] [PMID: 30328641]
[7]
S. Bai, L. Wang, Z. Li, and Y. Xiong, "Facet-engineered surface and interface design of photocatalytic materials", Adv. Sci., vol. 4, no. 1, p. 1600216, 2017.
[http://dx.doi.org/10.1002/advs.201600216] [PMID: 28105398]
[8]
Y. Zhang, Y. Li, H. Yu, K. Yu, and H. Yu, "Interfacial defective Ti3+ on Ti/TiO2 as visible-light responsive sites with promoted charge transfer and photocatalytic performance", J. Mater. Sci. Technol., vol. 106, pp. 139-146, 2022.
[http://dx.doi.org/10.1016/j.jmst.2021.06.081]
[9]
H. Fatima, M.R. Azhar, M. Khiadani, Y. Zhong, W. Wang, C. Su, and Z. Shao, "Prussian blue-conjugated ZnO nanoparticles for near-infrared light-responsive photocatalysis", Mater. Today Energy, vol. 23, p. 100895, 2022.
[http://dx.doi.org/10.1016/j.mtener.2021.100895]
[10]
C. Bie, B. Cheng, J. Fan, W. Ho, and J. Yu, "Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts", EnergyChem, vol. 3, no. 2, p. 100051, 2021.
[http://dx.doi.org/10.1016/j.enchem.2021.100051]
[11]
H. Zou, Y. Zhou, Y. Xiang, Y. Deng, Y. Tan, H. Tang, and Y. Xu, "Preparation of flower-like DUT-5@BiOBr environmental purification functional material with natural photocatalytic activity", Adv. Eng. Mater., vol. 22, no. 8, p. 2000267, 2020.
[http://dx.doi.org/10.1002/adem.202000267]
[12]
B.O. Orimolade, A.O. Idris, U. Feleni, and B. Mamba, "Recent advances in degradation of pharmaceuticals using Bi2WO6 mediated photocatalysis - A comprehensive review", Environ. Pollut., vol. 289, p. 117891, 2021.
[http://dx.doi.org/10.1016/j.envpol.2021.117891] [PMID: 34364116]
[13]
S.K. Sharma, A. Kumar, G. Sharma, D.V.N. Vo, A. García-Peñas, O. Moradi, and M. Sillanpää, "MXenes based nano-heterojunctions and composites for advanced photocatalytic environmental detoxification and energy conversion: A review", Chemosphere, vol. 291, no. Pt 1, p. 132923, 2022.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132923] [PMID: 34813851]
[14]
M. Fagnoni, D. Dondi, D. Ravelli, and A. Albini, "Photocatalysis for the formation of the C-C bond", Chem. Rev., vol. 107, no. 6, pp. 2725-2756, 2007.
[http://dx.doi.org/10.1021/cr068352x] [PMID: 17530909]
[15]
X. Li, J. Yu, M. Jaroniec, and X. Chen, "Cocatalysts for selective photoreduction of CO2 into solar fuels", Chem. Rev., vol. 119, no. 6, pp. 3962-4179, 2019.
[http://dx.doi.org/10.1021/acs.chemrev.8b00400] [PMID: 30763077]
[16]
Y. He, Q. Lei, C. Li, Y. Han, Z. Shi, and S. Feng, "Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels", Mater. Today, vol. 50, pp. 358-384, 2021.
[http://dx.doi.org/10.1016/j.mattod.2021.03.021]
[17]
X. Liang, J. Zhao, T. Wang, Z. Zhang, M. Qu, and C. Wang, "Constructing a Z-scheme heterojunction photocatalyst of GaPO4/α-MoC/Ga2O3 without mingling type-II heterojunction for CO2 reduction to CO", ACS Appl. Mater. Interfaces, vol. 13, no. 28, pp. 33034-33044, 2021.
[http://dx.doi.org/10.1021/acsami.1c07757] [PMID: 34229432]
[18]
W. Bi, X. Li, L. Zhang, T. Jin, L. Zhang, Q. Zhang, Y. Luo, C. Wu, and Y. Xie, "Molecular co-catalyst accelerating hole transfer for enhanced photocatalytic H2 evolution", Nat. Commun., vol. 6, no. 1, p. 8647, 2015.
[http://dx.doi.org/10.1038/ncomms9647] [PMID: 26486863]
[19]
C. Kranz, and M. Wächtler, "Characterizing photocatalysts for water splitting: From atoms to bulk and from slow to ultrafast processes", Chem. Soc. Rev., vol. 50, no. 2, pp. 1407-1437, 2021.
[http://dx.doi.org/10.1039/D0CS00526F] [PMID: 33295371]
[20]
Y. Liu, W. Yang, Q. Chen, D.A. Cullen, Z. Xie, and T. Lian, "Pt particle size affects both the charge separation and water reduction efficiencies of CdS-Pt nanorod photocatalysts for light driven H2 generation", J. Am. Chem. Soc., vol. 144, no. 6, pp. 2705-2715, 2022.
[http://dx.doi.org/10.1021/jacs.1c11745] [PMID: 35089025]
[21]
C. Bie, H. Yu, B. Cheng, W. Ho, J. Fan, and J. Yu, "Design, fabrication, and mechanism of nitrogen-doped graphene-based photocatalyst", Adv. Mater., vol. 33, no. 9, p. 2003521, 2021.
[http://dx.doi.org/10.1002/adma.202003521] [PMID: 33458902]
[22]
X.Y. Li, Y. Wang, D.W. He, Y.J. Chen, X.G. Cao, and Y.B. Liu, "Photocatalytic reduction of U(VI) with Cu-doped Bi2WO6", J. Chin. Ceram. Soc, vol. 49, no. 5, pp. 1025-1032, 2021.
[http://dx.doi.org/10.14062/j.issn.0454-5648.20200462]
[23]
Z. Wang, J. Fan, B. Cheng, J. Yu, and J. Xu, "Nickel-based cocatalysts for photocatalysis: Hydrogen evolution, overall water splitting and CO2 reduction", Mater. Today Phy., vol. 15, p. 100279, 2020.
[http://dx.doi.org/10.1016/j.mtphys.2020.100279]
[24]
Y. Gogotsi, B. Anasori, B. Legum, P.S. Lelyukh, C.A. Randall, J. Guo, and K. Wang, "Ceramic oxide composites reinforced with 2D Mxenes", WO Patent US20210101839A1, 2019.
[25]
F. He, B. Zhu, B. Cheng, J. Yu, W. Ho, and W. Macyk, "2D/2D/0D TiO2/C3N4/Ti3C2 MXene composite S-scheme photocatalyst with enhanced CO2 reduction activity", Appl. Catal. B, vol. 272, p. 119006, 2020.
[http://dx.doi.org/10.1016/j.apcatb.2020.119006]
[26]
P. Kuang, Z. Ni, J. Yu, and J. Low, "New progress on MXenes-based nanocomposite photocatalysts", Mater. Reports: Energy, vol. 2, no. 1, p. 100081, 2022.
[http://dx.doi.org/10.1016/j.matre.2022.100081]
[27]
Q. Zhong, Y. Li, and G. Zhang, "Two-dimensional MXene-based and MXene-derived photocatalysts: Recent developments and perspectives", Chem. Eng. J., vol. 409, p. 128099, 2021.
[http://dx.doi.org/10.1016/j.cej.2020.128099]
[28]
Y. Liu, H. Xiao, and W.A. Goddard III, "Schottky-barrier-free contacts with two-dimensional semiconductors by surface-engineered MXenes", J. Am. Chem. Soc., vol. 138, no. 49, pp. 15853-15856, 2016.
[http://dx.doi.org/10.1021/jacs.6b10834] [PMID: 27960324]
[29]
T. Amrillah, A. Hermawan, V.N. Alviani, Z.W. Seh, and S. Yin, "MXenes and their derivatives as nitrogen reduction reaction catalysts: Recent progress and perspectives", Mater. Today Energy, vol. 22, p. 100864, 2021.
[http://dx.doi.org/10.1016/j.mtener.2021.100864]
[30]
T. Amrillah, A.R. Supandi, V. Puspasari, A. Hermawan, and Z.W. Seh, "MXene-based photocatalysts and electrocatalysts for CO2 conversion to chemicals", Trans. Tianjin Univ., vol. 28, no. 4, pp. 307-322, 2022.
[http://dx.doi.org/10.1007/s12209-022-00328-9]
[31]
T. Amrillah, C. Abdullah, A. Hermawan, F. Sari, V. Alviani, and V.N. Alviani, "Towards greener and more sustainable synthesis of MXenes: A review", Nanomaterials, vol. 12, no. 23, p. 4280, 2022.
[http://dx.doi.org/10.3390/nano12234280] [PMID: 36500902]
[32]
P. Kuang, J. Low, B. Cheng, J. Yu, and J. Fan, "MXene-based photocatalysts", J. Mater. Sci. Technol., vol. 56, pp. 18-44, 2020.
[http://dx.doi.org/10.1016/j.jmst.2020.02.037]
[33]
H.Q. Zheng, J. Chen, Y. Zhao, W.D. Wang, and X.P. Lei, "In-situ solvothermal synthesis and photocatalytic performance of TiO2/Ti3C2Tx composites", J. Chin. Ceram. Soc, vol. 48, no. 5, pp. 723-729, 2020.
[http://dx.doi.org/10.14062/j.issn.0454-5648.2020.05.20190429]
[34]
M. Ding, W. Ao, H. Xu, W. Chen, L. Tao, Z. Shen, H. Liu, C. Lu, and Z. Xie, "Facile construction of dual heterojunction CoO@TiO2/MXene hybrid with efficient and stable catalytic activity for phenol degradation with peroxymonosulfate under visible light irradiation", J. Hazard. Mater., vol. 420, p. 126686, 2021.
[http://dx.doi.org/10.1016/j.jhazmat.2021.126686] [PMID: 34329104]
[35]
G.G. Tang, J. Xu, and F.X. Zhang, "A kind of MXene composite nanomaterial and its preparation method and application", CN Patent 110918108-A, 2019.
[36]
J. Low, L. Zhang, T. Tong, B. Shen, and J. Yu, "TiO2/MXene Ti3C2 composite with excellent photocatalytic CO2 reduction activity", J. Catal., vol. 361, pp. 255-266, 2018.
[http://dx.doi.org/10.1016/j.jcat.2018.03.009]
[37]
T. Su, R. Peng, Z.D. Hood, M. Naguib, I.N. Ivanov, J.K. Keum, Z. Qin, Z. Guo, and Z. Wu, "One-step synthesis of Nb2O5/C/Nb2C (MXene) composites and their use as photocatalysts for hydrogen evolution", ChemSusChem, vol. 11, no. 4, pp. 688-699, 2018.
[http://dx.doi.org/10.1002/cssc.201702317] [PMID: 29281767]
[38]
S. Debow, T. Zhang, X. Liu, F. Song, Y. Qian, J. Han, K. Maleski, Z.B. Zander, W.R. Creasy, D.L. Kuhn, Y. Gogotsi, B.G. DeLacy, and Y. Rao, "Charge dynamics in TiO2/MXene composites", J. Phys. Chem. C, vol. 125, no. 19, pp. 10473-10482, 2021.
[http://dx.doi.org/10.1021/acs.jpcc.1c01543]
[39]
B. Sun, F. Tao, Z. Huang, W. Yan, Y. Zhang, X. Dong, Y. Wu, and G. Zhou, "Ti3C2 MXene-bridged Ag/Ag3PO4 hybrids toward enhanced visible-light-driven photocatalytic activity", Appl. Surf. Sci., vol. 535, p. 147354, 2021.
[http://dx.doi.org/10.1016/j.apsusc.2020.147354]
[40]
Y.C. Zhu, and E. Li, "A kind of MXene/CdS nanoparticle composite photocatalyst and its preparation method and its application in water splitting hydrogen production", CN Patent 112121834-A, 2020.
[41]
H.L. Zhang, N. Zhang, W.X. Chen, J. Yang, and C.Y. Luo, "A bismuth-based photocatalytic composite film based on MXene and its preparation method", CN Patent 111822028-B, 2020.
[42]
X.J. Cheng, J.H. Liao, G.Y. Zeng, Q.Q. Lin, Y. Xue, Z.Y. Zhao, and W. Li, "A kind of bismuth-based photocatalytic MXene film material and preparation method thereof", CN Patent 114433226-A, 2022.
[43]
H.Q. An, H.H. Zhang, X.Q. Zhang, S.Y. Xiao, C.X. Li, and R. Cheng, "Preparation and application of a two-dimensional MXene nanosheet modified porous Au@Ag@Pd nanoparticle core-shell structure photocatalyst", CN Patent 114405526-A, 2021.
[44]
Y. Lu, D.Q. Fan, H. Zhang, M.Y. Ding, and X.F. Yang, "A photothermal-photochemical synergistic conversion hydrogel material and its preparation method and application", CN Patent 113042077-A, 2021.
[45]
C. Peng, X. Xie, W. Xu, T. Zhou, P. Wei, J. Jia, K. Zhang, Y. Cao, H. Wang, F. Peng, R. Yang, X. Yan, H. Pan, and H. Yu, "Engineering highly active Ag/Nb2O5@Nb2CT (MXene) photocatalysts via steering charge kinetics strategy", Chem. Eng. J., vol. 421, p. 128766, 2021.
[http://dx.doi.org/10.1016/j.cej.2021.128766]
[46]
W. Xu, X. Li, C. Peng, G. Yang, Y. Cao, H. Wang, F. Peng, and H. Yu, "One-pot synthesis of Ru/Nb2O5@Nb2C ternary photocatalysts for water splitting by harnessing hydrothermal redox reactions", Appl. Catal. B, vol. 303, p. 120910, 2022.
[http://dx.doi.org/10.1016/j.apcatb.2021.120910]
[47]
S. Cheng, Q.Q. Xiong, C.X. Zhao, and X.F. Yang, "Synergism of 1D CdS/2D modified Ti3C2Tx MXene heterojunctions for boosted photocatalytic hydrogen production", Chin. J. Struct. Chem., vol. 41, pp. 2208058-2208064, 2022.
[http://dx.doi.org/10.14102/j.cnki.0254-5861.2022-0151]
[48]
Y. Zhuang, Y. Liu, and X. Meng, "Fabrication of TiO2 nanofibers/MXene Ti3C2 nanocomposites for photocatalytic H2 evolution by electrostatic self-assembly", Appl. Surf. Sci., vol. 496, p. 143647, 2019.
[http://dx.doi.org/10.1016/j.apsusc.2019.143647]
[49]
H. Shankar, M.G. Manoj, S.R. Raja, K. Balasubramanian, R. Kavitha, and P. Velusamy, "Mxene spinel ferrite heterojunction photoelectrode for e.g. solar hydrogen production, comprises top layer which is spinel ferrite layer as photocatalyst which absorbs light energy to initiate photocatalysis reaction, and middle layer", IN Patent 202141027636-A, 2021.
[50]
A.G. Zhou, S. Jin, Q.X. Xia, L.B. Wang, Y.T. Guo, and Q.K. Hu, "A kind of prickly spherical Mo2C/CdS photocatalyst and preparation method thereof", CN Patent 112619679-B, 2020.
[51]
C. Peng, X. Yang, Y. Li, H. Yu, H. Wang, and F. Peng, "Hybrids of two-dimensional Ti3C2 and TiO2 exposing {001} facets toward enhanced photocatalytic activity", ACS Appl. Mater. Interfaces, vol. 8, no. 9, pp. 6051-6060, 2016.
[http://dx.doi.org/10.1021/acsami.5b11973] [PMID: 26859317]
[52]
L.B. Wang, T.T. Hou, and Q. Li, "A full-spectrum photocatalytic synthesis of ammonia Ti3C2Tx/TiO2 composite material and its preparation method and application", CN Patent 111151276-A, 2020.
[53]
G.B. Ying, Z.M. Zhang, C. Hu, and L. Liu, "A preparation method of TiO2-MXene photocatalytic composite film", CN Patent 112536021-A, 2020.
[54]
Q.Z. Yao, W.Y. Chen, J.M. Zhou, Y.W. Zhang, X.L. Sheng, Q. Zhang, and F.L. Zhang, "A kind of TiO2/MXene/MOFs photocatalytic material and preparation method thereof", CN Patent 114985011-A, 2022.
[55]
Z.X. Zhao, Y. Hu, Z.X. Zhao, and X. Yu, "A kind of preparation method and application of MXene/MOF(Fe) composite photocatalyst with heme-like structure", CN Patent 114405527-A, 2022.
[56]
S. Cao, B. Shen, T. Tong, J. Fu, and J. Yu, "2D/2D heterojunction of ultrathin MXene/Bi2WO6 nanosheets for improved photocatalytic CO2 reduction", Adv. Funct. Mater., vol. 28, no. 21, p. 1800136, 2018.
[http://dx.doi.org/10.1002/adfm.201800136]
[57]
X. Chen, Y. Guo, R. Bian, Y. Ji, X. Wang, X. Zhang, H. Cui, and J. Tian, "Titanium carbide MXenes coupled with cadmium sulfide nanosheets as two-dimensional/two-dimensional heterostructures for photocatalytic hydrogen production", J. Colloid Interface Sci., vol. 613, pp. 644-651, 2022.
[http://dx.doi.org/10.1016/j.jcis.2022.01.079] [PMID: 35065438]
[58]
V. Sharma, A. Kumar, A. Kumar, and V. Krishnan, "Enhanced photocatalytic activity of two dimensional ternary nanocomposites of ZnO–Bi2WO6–Ti3C2 MXene under natural sunlight irradiation", Chemosphere, vol. 287, no. Pt 2, p. 132119, 2022.
[http://dx.doi.org/10.1016/j.chemosphere.2021.132119] [PMID: 34492421]
[59]
J. Bai, R. Shen, Z. Jiang, P. Zhang, Y. Li, and X. Li, "Integration of 2D layered CdS/WO3 S-scheme heterojunctions and metallic Ti3C2 MXene-based Ohmic junctions for effective photocatalytic H2 generation", Chin. J. Catal., vol. 43, no. 2, pp. 359-369, 2022.
[http://dx.doi.org/10.1016/S1872-2067(21)63883-4]
[60]
H. Wang, L. Chen, Y. Sun, J. Yu, Y. Zhao, X. Zhan, and H. Shi, "Ti3C2 Mxene modified SnNb2O6 nanosheets Schottky photocatalysts with directed internal electric field for tetracycline hydrochloride removal and hydrogen evolution", Separ. Purif. Tech., vol. 265, p. 118516, 2021.
[http://dx.doi.org/10.1016/j.seppur.2021.118516]
[61]
D. Liu, C. Li, J. Ge, C. Zhao, Q. Zhao, F. Zhang, T. Ni, and W. Wu, "3D interconnected g-C3N4 hybridized with 2D Ti3C2 MXene nanosheets for enhancing visible light photocatalytic hydrogen evolution and dye contaminant elimination", Appl. Surf. Sci., vol. 579, p. 152180, 2022.
[http://dx.doi.org/10.1016/j.apsusc.2021.152180]
[62]
C. Peng, P. Wei, T. Zhou, W.M. Liao, Q.Y. Wu, Y.Y. Wang, and K. Zhang, "A composite material based on in situ growth of TiO2 heterogeneous junction on two-dimensional MXene and its preparation method and application", CN Patent 112456551-B, 2021.
[63]
S.T. Cai, L. Yuan, Z. Wu, S.J. Zeng, J.X. Luo, Z.Y. Wu, and Y.X. Dai, "Metal-supported MXene/C3N4 heterogeneous microsphere photocatalyst and its preparation method and application", CN Patent 114308108-A, 2022.
[64]
K. Liu, H. Zhang, T. Fu, L. Wang, R. Tang, Z. Tong, and X. Huang, "Construction of BiOBr/Ti3C2/exfoliated montmorillonite Schottky junction: New insights into exfoliated montmorillonite for inducing MXene oxygen functionalization and enhancing photocatalytic activity", Chem. Eng. J., vol. 438, p. 135609, 2022.
[http://dx.doi.org/10.1016/j.cej.2022.135609]
[65]
S.Y. Pu, G.Y. Zeng, C.M. Yang, Q.Q. Lin, X.Y. Wang, S.B. Liu, C.Q. Wang, and S.M. Zhao, "Preparation method and application of a ternary heterojunction photocatalytic film", CN Patent 115106105-A, 2022.
[66]
W. Huang, Z. Li, C. Wu, H. Zhang, J. Sun, and Q. Li, "Delaminating Ti3C2 MXene by blossom of ZnIn2S4 microflowers for noble-metal-free photocatalytic hydrogen production", J. Mater. Sci. Technol., vol. 120, pp. 89-98, 2022.
[http://dx.doi.org/10.1016/j.jmst.2021.12.028]
[67]
X. Wang, L.Q. Yang, and Z.H. Chen, "A kind of sulfur indium zinc-MXene quantum dot composite photocatalyst and its preparation method and application", CN Patent 112844412-B, 2021.
[68]
Z. H. Chen, L. Q. Yang, and X. Wang, "Synergistic modification of indium zinc sulfide photocatalysts with hole assistant Ti(IV) and electron assistant MXene QDs", CN Patent112892555-B, 2021.
[69]
F.X. Xiao, and B.J. Liu, "Indium zinc sulfide photocatalyst modified by MXene quantum dots sensitized polydiallyl-dimethylammonium chloride and its preparation and application", CN Patent 114100678-A, 2021.
[70]
Z. Othman, A. Sinopoli, H.R. Mackey, and K.A. Mahmoud, "Efficient photocatalytic degradation of organic dyes by Ag NPs/TiO2/Ti3C2Tx MXene composites under UV and solar light", ACS Omega, vol. 6, no. 49, pp. 33325-33338, 2021.
[http://dx.doi.org/10.1021/acsomega.1c03189] [PMID: 34926884]
[71]
L. Cheng, Q. Chen, J. Li, and H. Liu, "Boosting the photocatalytic activity of CdLa2S4 for hydrogen production using Ti3C2 MXene as a co-catalyst", Appl. Catal. B, vol. 267, p. 118379, 2020.
[http://dx.doi.org/10.1016/j.apcatb.2019.118379]
[72]
X. Liu, T. Chen, Y. Xue, J. Fan, S. Shen, M.S.A. Hossain, M.A. Amin, L. Pan, X. Xu, and Y. Yamauchi, "Nanoarchitectonics of MXene/semiconductor heterojunctions toward artificial photosynthesis via photocatalytic CO2 reduction", Coord. Chem. Rev., vol. 459, p. 214440, 2022.
[http://dx.doi.org/10.1016/j.ccr.2022.214440]
[73]
J. Qin, X. Hu, X. Li, Z. Yin, B. Liu, and K. Lam, "0D/2D AgInS2/MXene Z-scheme heterojunction nanosheets for improved ammonia photosynthesis of N2", Nano Energy, vol. 61, pp. 27-35, 2019.
[http://dx.doi.org/10.1016/j.nanoen.2019.04.028]
[74]
N. Mu, Y.G. Liu, Z. Hui, X.W. Zhou, W. Guo, C. Jin, and P. Peng, "Synthesis and Visible Light Photodegradation Activity of Ag NW@TiO2 Core–shell Structure", J. Chin. Ceram. Soc, vol. 48, no. 9, pp. 1460-1467, 2020.
[http://dx.doi.org/10.14062/j.issn.0454-5648.20200284]
[75]
E.N. Zare, S. Iftekhar, Y. Park, J. Joseph, V. Srivastava, M.A. Khan, P. Makvandi, M. Sillanpaa, and R.S. Varma, "An overview on non-spherical semiconductors for heterogeneous photocatalytic degradation of organic water contaminants", Chemosphere, vol. 280, p. 130907, 2021.
[http://dx.doi.org/10.1016/j.chemosphere.2021.130907] [PMID: 34162104]
[76]
C. Cui, R. Guo, E. Ren, H. Xiao, X. Lai, Q. Qin, S. Jiang, H. Shen, M. Zhou, and W. Qin, "Facile hydrothermal synthesis of rod-like Nb2O5/Nb2CTx composites for visible-light driven photocatalytic degradation of organic pollutants", Environ. Res., vol. 193, p. 110587, 2021.
[http://dx.doi.org/10.1016/j.envres.2020.110587] [PMID: 33307080]
[77]
C. Cui, R. Guo, H. Xiao, E. Ren, Q. Song, C. Xiang, X. Lai, J. Lan, and S. Jiang, "Bi2WO6/Nb2CTx MXene hybrid nanosheets with enhanced visible-light-driven photocatalytic activity for organic pollutants degradation", Appl. Surf. Sci., vol. 505, p. 144595, 2020.
[http://dx.doi.org/10.1016/j.apsusc.2019.144595]
[78]
W.Y. Zu, and W. Liu, "Preparation method and application of a kind of high-efficiency photocatalyst", CN Patent 114653393-A, 2022.
[79]
Y.L. Guo, Y.H. Cheng, and X.T. Li, "Preparation and application of a kind of metal atom-doped hollow MXene quantum dots", CN Patent 112517035-A, 2020.
[80]
G.Q. Tan, Y. Wang, M. Wang, B.X. Zhang, Q. Yang, H.J. Ren, A. Xia, and W.L. Liu, "An exposed (001) crystal face titanium dioxide/titanium carbide nanosheet and its preparation method and application", CN Patent 113578355-A, 2021.
[81]
Z. Zhuge, X. Liu, T. Chen, Y. Gong, C. Li, L. Niu, S. Xu, X. Xu, Z.A. Alothman, C.Q. Sun, J.G. Shapter, and Y. Yamauchi, "Highly efficient photocatalytic degradation of different hazardous contaminants by CaIn2S4-Ti3C2Tx Schottky heterojunction: An experimental and mechanism study", Chem. Eng. J., vol. 421, p. 127838, 2021.
[http://dx.doi.org/10.1016/j.cej.2020.127838]
[82]
D.Q. Zhang, B. Wang, R. Liang, Z. Wan, S.N. Xiao, G.S. Li, and H.X. Li, "Preparation method and application of gas-solid phase microwave in situ synthesis of MXene/TiO2 composite material", CN Patent 110479339-A, 2019.
[83]
W.J. Zhang, Y.X. Ma, X.Y. Hu, S.J. Liu, L. Qiao, and T. An, "A kind of α-Fe2O3/LaFeO3/g-C3N4/MXene material and its preparation method", CN Patent 114100657-B, 2021.
[84]
M.L. Zhai, S.X. Li, W.Q. Shi, L. Wang, J. Peng, and J.Q. Li, "A kind of porous titanium dioxide material containing oxygen vacancies and its preparation method and application", CN Patent 113735163-B, 2021.
[85]
N.H. Solangi, R.R. Karri, S.A. Mazari, N.M. Mubarak, A.S. Jatoi, G. Malafaia, and A.K. Azad, "MXene as emerging material for photocatalytic degradation of environmental pollutants", Coord. Chem. Rev., vol. 477, p. 214965, 2023.
[http://dx.doi.org/10.1016/j.ccr.2022.214965]
[86]
T. Takata, J. Jiang, Y. Sakata, M. Nakabayashi, N. Shibata, V. Nandal, K. Seki, T. Hisatomi, and K. Domen, "Photocatalytic water splitting with a quantum efficiency of almost unity", Nature, vol. 581, no. 7809, pp. 411-414, 2020.
[http://dx.doi.org/10.1038/s41586-020-2278-9] [PMID: 32461647]
[87]
J. Corredor, M.J. Rivero, C.M. Rangel, F. Gloaguen, and I. Ortiz, "Comprehensive review and future perspectives on the photocatalytic hydrogen production", J. Chem. Technol. Biotechnol., vol. 94, no. 10, pp. 3049-3063, 2019.
[http://dx.doi.org/10.1002/jctb.6123]
[88]
C. Guo, B. Wu, S. Ye, J. Liu, X. Deng, L. Luo, Q. Li, X. Xiao, J. Wang, J. Liu, T. Xia, and B. Jiang, "Enhancing the heterojunction component-interaction by in situ hydrothermal growth toward photocatalytic hydrogen evolution", J. Colloid Interface Sci., vol. 614, pp. 367-377, 2022.
[http://dx.doi.org/10.1016/j.jcis.2022.01.130] [PMID: 35104708]
[89]
X.F. Wang, Y.L. Li, D.M. Yu, T. You, and L.J. Meng, "A photocatalyst and its preparation method and a method for preparing hydrogen with the catalyst", CN Patent 111068791-B, 2019.
[90]
D. Liu, C.Y. Pan, T.Q. Niu, T.J. Ni, Q. Zhao, F.Q. Zhang, and C.L. Li, "A defect-rich three-dimensional cross-linked g-C3N4 hybrid two-dimensional Ti3C2 MXene photocatalyst and its preparation method", CN Patent 114377717-A, 2021.
[91]
Y. Li, Z. Yin, G. Ji, Z. Liang, Y. Xue, Y. Guo, J. Tian, X. Wang, and H. Cui, "2D/2D/2D heterojunction of Ti3C2 MXene/MoS2 nanosheets/TiO2 nanosheets with exposed (001) facets toward enhanced photocatalytic hydrogen production activity", Appl. Catal. B, vol. 246, pp. 12-20, 2019.
[http://dx.doi.org/10.1016/j.apcatb.2019.01.051]
[92]
F.X. Xiao, S.C. Zhu, S. Li, and B. Tang, "A preparation method of MXene modified cadmium selenide quantum dot heterogeneous composite material for photolysis of water to produce hydrogen", CN Patent 113171784-A, 2021.
[93]
Y.H. Peng, Y.N. Guo, and D.S. Zhang, "Preparation method and application of a kind of Ti3C2-MXene/ZnIn2S4 composite photocatalyst", CN Patent 113070074-A, 2021.
[94]
M. Ou, J.K. Jin, Y.H. Chen, Y.Z. Chen, and M. Ken, "A 2D/2D indium zinc sulfide/MXene photocatalytic heterojunction hydrogen production material and its preparation method", CN Patent 113134349-A, 2020.
[95]
M. Ou, J.K. Li, Y.H. Chen, Y.Z. Chen, and M. Ken, "A 2D/2D indium zinc sulfide/MXene photocatalytic heterojunction hydrogen production material and the preparation method thereof", CN Patent 112827503-A, 2020.
[96]
A.Q. Wang, and S.Y. Guo, "A kind of single-atom modified MXenes composite material and its preparation method and application", CN Patent 114471660-A, 2022.
[97]
D.J. Lee, and J.Y. Kang, "3D nanostructure, photocatalyst including the same, and manufacturing method of 3D nanostructure", KR Patent 2440964-B1, 2021.
[98]
R. Ramírez, A. Melillo, S. Osella, A.M. Asiri, H. Garcia, and P. Ana, "Green, HF-Free synthesis of MXene quantum dots and their photocatalytic activity for hydrogen evolution", Small Methods, vol. 7, no. 6, p. e2300063, 2023.
[http://dx.doi.org/10.1002/smtd.202300063] [PMID: 36840646]
[99]
Z. Wang, Y. Zhang, Y. Chen, P. Wei, H. Wang, H. Yu, J. Jia, K. Zhang, and C. Peng, "Surface -O terminated urchin-like TiO2/Ti3C2O (MXene) as high performance photocatalyst: Interfacial engineering and mechanism insight", Appl. Surf. Sci., vol. 615, p. 156343, 2023.
[http://dx.doi.org/10.1016/j.apsusc.2023.156343]
[100]
T. Su, Z.D. Hood, M. Naguib, L. Bai, S. Luo, C.M. Rouleau, I.N. Ivanov, H. Ji, Z. Qin, and Z. Wu, "Monolayer Ti3C2Tx as an effective co-catalyst for enhanced photocatalytic hydrogen production over TiO2", ACS Appl. Energy Mater., vol. 2, no. 7, pp. 4640-4651, 2019.
[http://dx.doi.org/10.1021/acsaem.8b02268]
[101]
Z. Zhuo, X. Wang, C. Shen, M. Cai, Y. Jiang, Z. Xue, Z. Fu, Q. Wang, Y. Wei, and S. Sun, "Construction of TiO2/SrTiO3 heterojunction derived from monolayer Ti3C2 MXene for efficient photocatalytic overall water splitting", Chemistry, vol. 29, no. 12, p. e202203450, 2023.
[http://dx.doi.org/10.1002/chem.202203450] [PMID: 36445821]
[102]
H. Huang, H. Song, J. Kou, C. Lu, and J. Ye, "Atomic-level insights into surface engineering of semiconductors for photocatalytic CO2 reduction", J. Energy Chem., vol. 67, pp. 309-341, 2022.
[http://dx.doi.org/10.1016/j.jechem.2021.10.015]
[103]
J. Wang, S. Lin, N. Tian, T. Ma, Y. Zhang, and H. Huang, "Nanostructured metal sulfides: Classification, modification strategy, and solar-driven CO2 reduction application", Adv. Funct. Mater., vol. 31, no. 9, p. 2008008, 2021.
[http://dx.doi.org/10.1002/adfm.202008008]
[104]
C. Yang, Q. Tan, Q. Li, J. Zhou, J. Fan, B. Li, J. Sun, and K. Lv, "2D/2D Ti3C2 MXene/g-C3N4 nanosheets heterojunction for high efficient CO2 reduction photocatalyst: Dual effects of urea", Appl. Catal. B, vol. 268, p. 118738, 2020.
[http://dx.doi.org/10.1016/j.apcatb.2020.118738]
[105]
J. Li, Z. Wang, H. Chen, Q. Zhang, H. Hu, L. Liu, J. Ye, and D. Wang, "A surface-alkalinized Ti3C2 MXene as an efficient cocatalyst for enhanced photocatalytic CO2 reduction over ZnO", Catal. Sci. Technol., vol. 11, no. 14, pp. 4953-4961, 2021.
[http://dx.doi.org/10.1039/D1CY00716E]
[106]
H. Xue, Q. Yan, L. Chen, Y. Wang, X. Xie, and J. Sun, "Ti3C2 MXene assembled with TiO2 for efficient photocatalytic mineralization of gaseous o-xylene", Appl. Surf. Sci., vol. 608, p. 155136, 2023.
[http://dx.doi.org/10.1016/j.apsusc.2022.155136]
[107]
K. Wang, M. Cheng, N. Wang, Q. Zhang, Y. Liu, J. Liang, J. Guan, M. Liu, J. Zhou, and N. Li, "Inter-plane 2D/2D ultrathin La2Ti2O7/Ti3C2 MXene Schottky heterojunctions toward high-efficiency photocatalytic CO2 reduction", Chin. J. Catal., vol. 44, pp. 146-159, 2023.
[http://dx.doi.org/10.1016/S1872-2067(22)64155-X]
[108]
W.T. Wu, H.Y. Bi, Z.Q. Zhang, L.P. Sun, R.P. Wei, L.J. Gao, X.M. Pan, J. Zhang, and G.M. Xiao, "Z-scheme π-π stacking MXene/GO/PDI composite aerogels to construct interface electron transport network for photocatalytic CO2 reduction", Colloids Surf. A Physicochem. Eng. Asp., vol. 657, p. 13048620, 2023.
[http://dx.doi.org/10.1016/j.colsurfa.2022.130486]
[109]
Z. Yao, J. Nie, Q. Ul Hassan, G. Li, J. Liao, W. Zhang, L. Zhu, X. Shi, F. Rao, J. Chang, Y. Huang, and G. Zhu, "Efficient charge separation of a Z-scheme Bi5 O7− δ I/CeO2− δ heterojunction with enhanced visible light photocatalytic activity for NO removal", Inorg. Chem. Front., vol. 9, no. 12, pp. 2832-2844, 2022.
[http://dx.doi.org/10.1039/D2QI00391K]
[110]
J. Zheng, L. Jiang, Y. Lyu, S.P. Jiang, and S. Wang, "Green synthesis of nitrogen-to-ammonia fixation: Past, present, and future", Energy Environ. Mater., vol. 5, no. 2, pp. 452-457, 2022.
[http://dx.doi.org/10.1002/eem2.12192]
[111]
C. Xu, P. Qiu, H. Chen, and F. Jiang, "Semi-crystalline graphitic carbon nitride with midgap states for efficient photocatalytic nitrogen fixation", Appl. Surf. Sci., vol. 529, p. 147088, 2020.
[http://dx.doi.org/10.1016/j.apsusc.2020.147088]
[112]
Y. Zhou, P. Yuan, Y.J. Xiang, W.F. Han, H.D. Tang, R.B. Huang, and A.M. Chen, "Fe-Doped TiO2 for visible light-driven nitrogen fixation", J. Chin. Ceram. Soc, vol. 49, no. 9, pp. 1976-1984, 2021.
[http://dx.doi.org/10.14062/j.issn.0454-5648.20200933]
[113]
Y. Xue, X. Kong, Y. Guo, Z. Liang, H. Cui, and J. Tian, "Synthesis of porous few-layer carbon nitride with excellent photocatalytic nitrogen fixation", J. Materiomics, vol. 6, no. 1, pp. 128-137, 2020.
[http://dx.doi.org/10.1016/j.jmat.2020.01.006]
[114]
B. Chang, Y. Guo, H. Liu, L. Li, and B. Yang, "Engineering a surface defect-rich Ti3C2 quantum dots/mesoporous C3N4 hollow nanosphere Schottky junction for efficient N2 photofixation", J. Mater. Chem. A Mater. Energy Sustain., vol. 10, no. 6, pp. 3134-3145, 2022.
[http://dx.doi.org/10.1039/D1TA09941H]
[115]
Y. Liao, J. Qian, G. Xie, Q. Han, W. Dang, Y. Wang, L. Lv, S. Zhao, L. Luo, W. Zhang, H.Y. Jiang, and J. Tang, "2D-layered Ti3C2 MXenes for promoted synthesis of NH3 on P25 photocatalysts", Appl. Catal. B, vol. 273, p. 119054, 2020.
[http://dx.doi.org/10.1016/j.apcatb.2020.119054]
[116]
B.B. Chang, W.W. Shi, G.L. He, and B.C. Yang, "Preparation method and application of a kind of MXene/Au photocatalytic nitrogen fixation material", CN Patent 112191259-B, 2020.
[117]
W. Gao, X. Li, S. Luo, Z. Luo, X. Zhang, R. Huang, and M. Luo, "In situ modification of cobalt on MXene/TiO2 as composite photocatalyst for efficient nitrogen fixation", J. Colloid Interface Sci., vol. 585, pp. 20-29, 2021.
[http://dx.doi.org/10.1016/j.jcis.2020.11.064] [PMID: 33279703]
[118]
B. Sun, P. Qiu, Z. Liang, Y. Xue, X. Zhang, L. Yang, H. Cui, and J. Tian, "The fabrication of 1D/2D CdS nanorod@Ti3C2 MXene composites for good photocatalytic activity of hydrogen generation and ammonia synthesis", Chem. Eng. J., vol. 406, p. 127177, 2021.
[http://dx.doi.org/10.1016/j.cej.2020.127177]
[119]
C. Sun, Z. Chen, J. Cui, K. Li, H. Qu, H. Xie, and Q. Zhong, "Site-exposed Ti3C2 MXene anchored in N-defect g-C3N4 heterostructure nanosheets for efficient photocatalytic N2 fixation", Catal. Sci. Technol., vol. 11, no. 3, pp. 1027-1038, 2021.
[http://dx.doi.org/10.1039/D0CY01955K]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy