Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

One-step Bio-guided Isolation of Secondary Metabolites from the Endophytic Fungus Penicillium crustosum Using High-resolution Semi-preparative HPLC

Author(s): Abdulelah Alfattani, Emerson Ferreira Queiroz, Laurence Marcourt, Sara Leoni, Didier Stien, Valerie Hofstetter, Katia Gindro, Karl Perron and Jean-Luc Wolfender*

Volume 27, Issue 4, 2024

Published on: 12 September, 2023

Page: [573 - 583] Pages: 11

DOI: 10.2174/1386207326666230707110651

Price: $65

Abstract

Background: An endophytic fungal strain Penicillium crustosum was isolated from the seagrass Posidonia oceanica and investigated to identify its antimicrobial constituents and characterize its metabolome composition. The ethyl acetate extract of this fungus exhibited antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA) as well as an anti-quorum sensing effect against Pseudomonas aeruginosa.

Methods: The crude extract was profiled by UHPLC-HRMS/MS, and the dereplication was assisted by feature-based molecular networking. As a result, more than twenty compounds were annotated in this fungus. To rapidly identify the active compounds, the enriched extract was fractionated by semipreparative HPLC-UV applying a chromatographic gradient transfer and dry load sample introduction to maximise resolution. The collected fractions were profiled by 1H-NMR and UHPLC-HRMS.

Results: The use of molecular networking-assisted UHPLC-HRMS/MS dereplication allowed preliminary identification of over 20 compounds present in the ethyl acetate extract of P. crustosum. The chromatographic approach significantly accelerated the isolation of the majority of compounds present in the active extract. The one-step fractionation allowed the isolation and identification of eight compounds (1-8).

Conclusion: This study led to the unambiguous identification of eight known secondary metabolites as well as the determination of their antibacterial properties.

Graphical Abstract

[1]
World-Health-Organization, Antimicrobial resistance. 2020. Available from: https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
[2]
Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther., 2013, 11(3), 297-308.
[http://dx.doi.org/10.1586/eri.13.12] [PMID: 23458769]
[3]
Haidar, R.; Najjar, M.; Boghossian, A.D.; Tabbarah, Z. Propionibacterium acnes causing delayed postoperative spine infection (Review). Scand. J. Infect. Dis., 2010, 42(6-7), 405-411.
[http://dx.doi.org/10.3109/00365540903582459] [PMID: 20199135]
[4]
Dréno, B.; Pécastaings, S.; Corvec, S.; Veraldi, S.; Khammari, A.; Roques, C. Cutibacterium acnes (Propionibacterium acnes) and acne vulgaris: a brief look at the latest updates. J. Eur. Acad. Dermatol. Venereol., 2018, 32(S2), 5-14.
[http://dx.doi.org/10.1111/jdv.15043] [PMID: 29894579]
[5]
Hutchings, M.I.; Truman, A.W.; Wilkinson, B. Antibiotics: past, present and future. Curr. Opin. Microbiol., 2019, 51, 72-80.
[http://dx.doi.org/10.1016/j.mib.2019.10.008] [PMID: 31733401]
[6]
Saeki, E.K.; Kobayashi, R.K.T.; Nakazato, G. Quorum sensing system: Target to control the spread of bacterial infections. Microb. Pathog., 2020, 142, 104068.
[http://dx.doi.org/10.1016/j.micpath.2020.104068] [PMID: 32061914]
[7]
Rutherford, S.T.; Bassler, B.L. Bacterial quorum sensing: its role in virulence and possibilities for its control. Cold Spring Harb. Perspect. Med., 2012, 2(11), a012427.
[http://dx.doi.org/10.1101/cshperspect.a012427] [PMID: 23125205]
[8]
Schneider, Y.K. Bacterial natural product drug discovery for new antibiotics: Strategies for tackling the problem of antibiotic resistance by efficient bioprospecting. Antibiotics, 2021, 10(7), 842.
[http://dx.doi.org/10.3390/antibiotics10070842] [PMID: 34356763]
[9]
Nisa, H.; Kamili, A.N. Fungal endophytes from medicinal plants as a potential source of bioactive secondary metabolites and volatile organic compounds: An overview.Endophytes and Secondary Metabolites; Jha, S., Ed.; Springer International Publishing: Cham, 2019, pp. 1-11.
[http://dx.doi.org/10.1007/978-3-319-90484-9_29]
[10]
Sonjak, S.; Frisvad, J.C.; Gunde-Cimerman, N. Comparison of secondary metabolite production by Penicillium crustosum strains, isolated from Arctic and other various ecological niches. FEMS Microbiol. Ecol., 2005, 53(1), 51-60.
[http://dx.doi.org/10.1016/j.femsec.2004.10.014] [PMID: 16329929]
[11]
Skouboe, P.; Frisvad, J.C.; Taylor, J.W.; Lauritsen, D.; Boysen, M.; Rossen, L. Phylogenetic analysis of nucleotide sequences from the ITS region of terverticillate Penicillium species. Mycol. Res., 1999, 103(7), 873-881.
[http://dx.doi.org/10.1017/S0953756298007904]
[12]
El-Morsy, E.M.; Ibrahim, H.A.H.; Amal Zaki, F.; Mohsien, M.T.; Abu El-Regal, M. Pathogenicity of fungi colonizing some hard corals and invertebrates from the northern egyptian red sea coast. Egypt. J. Aquat. Biol. Fish., 2017, 21(2), 47-61.
[http://dx.doi.org/10.21608/ejabf.2017.3532]
[13]
Liu, C.C.; Zhang, Z.Z.; Feng, Y.Y.; Gu, Q.Q.; Li, D.H.; Zhu, T.J. Secondary metabolites from Antarctic marine-derived fungus Penicillium crustosum HDN153086. Nat. Prod. Res., 2019, 33(3), 414-419.
[http://dx.doi.org/10.1080/14786419.2018.1455045] [PMID: 29600717]
[14]
Amer, M.S.; Abd Ellatif, H.H.; Hassan, S.W.M.; Aboelela, G.M.; Gad, A.M. Characterization of some fungal strains isolated from the Eastern coast of Alexandria, Egypt, and some applications of Penicillium crustosum. Egypt. J. Aquat. Res., 2019, 45(3), 211-217.
[http://dx.doi.org/10.1016/j.ejar.2019.06.006]
[15]
Zeng, W.L.; Li, W.K.; Han, H.; Tao, Y.Y.; Yang, L.; Wang, Z.T.; Chen, K.X. Microbial biotransformation of gentiopicroside by the endophytic fungus Penicillium crustosum 2T01Y01. Appl. Environ. Microbiol., 2014, 80(1), 184-192.
[http://dx.doi.org/10.1128/AEM.02309-13] [PMID: 24141132]
[16]
Fan, J.; Liao, G.; Kindinger, F.; Ludwig-Radtke, L.; Yin, W.B.; Li, S.M. Peniphenone and penilactone formation in Penicillium crustosum via 1, 4-Michael additions of ortho-quinone methide from hydroxyclavatol to γ-butyrolactones from crustosic acid. J. Am. Chem. Soc., 2019, 141(10), 4225-4229.
[http://dx.doi.org/10.1021/jacs.9b00110] [PMID: 30811183]
[17]
Wu, G.; Ma, H.; Zhu, T.; Li, J.; Gu, Q.; Li, D. Penilactones A and B, two novel polyketides from Antarctic deep-sea derived fungus Penicillium crustosum PRB-2. Tetrahedron, 2012, 68(47), 9745-9749.
[http://dx.doi.org/10.1016/j.tet.2012.09.038]
[18]
Wolfender, J.L.; Nuzillard, J.M.; van der Hooft, J.J.J.; Renault, J.H.; Bertrand, S. Accelerating metabolite identification in natural product research: toward an ideal combination of liquid chromatography-high-resolution tandem mass spectrometry and NMR profiling, in silico databases, and chemometrics. Anal. Chem., 2019, 91(1), 704-742.
[http://dx.doi.org/10.1021/acs.analchem.8b05112] [PMID: 30453740]
[19]
Yang, J.Y.; Sanchez, L.M.; Rath, C.M.; Liu, X.; Boudreau, P.D.; Bruns, N.; Glukhov, E.; Wodtke, A.; de Felicio, R.; Fenner, A.; Wong, W.R.; Linington, R.G.; Zhang, L.; Debonsi, H.M.; Gerwick, W.H.; Dorrestein, P.C. Molecular networking as a dereplication strategy. J. Nat. Prod., 2013, 76(9), 1686-1699.
[http://dx.doi.org/10.1021/np400413s] [PMID: 24025162]
[20]
Allard, P.M.; Péresse, T.; Bisson, J.; Gindro, K.; Marcourt, L.; Pham, V.C.; Roussi, F.; Litaudon, M.; Wolfender, J.L. Integration of molecular networking and in-silico MS/MS fragmentation for natural products dereplication. Anal. Chem., 2016, 88(6), 3317-3323.
[http://dx.doi.org/10.1021/acs.analchem.5b04804] [PMID: 26882108]
[21]
Weber, R.W.; Stenger, E.; Meffert, A.; Hahn, M. Brefeldin A production by Phoma medicaginis in dead pre-colonized plant tissue: a strategy for habitat conquest? Mycol. Res., 2004, 108, 662-671.
[http://dx.doi.org/10.1017/s0953756204000243]
[22]
Schoch, C.L.; Seifert, K.A.; Huhndorf, S.; Robert, V.; Spouge, J.L.; Levesque, C.A.; Chen, W. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proc. Natl. Acad. Sci. USA, 2012, 109(16), 6241-6246.
[http://dx.doi.org/10.1073/pnas.1117018109]
[23]
Hofstetter, V.; Buyck, B.; Eyssartier, G.; Schnee, S.; Gindro, K. The unbearable lightness of sequenced-based identification. Fungal Divers., 2019, 96(1), 243-284.
[http://dx.doi.org/10.1007/s13225-019-00428-3]
[24]
Rutz, A.; Dounoue-Kubo, M.; Ollivier, S.; Bisson, J.; Bagheri, M.; Saesong, T.; Ebrahimi, S.N.; Ingkaninan, K.; Wolfender, J.L.; Allard, P.M. Taxonomically informed scoring enhances confidence in natural products annotation. Front. Plant Sci., 2019, 10(1329), 1329.
[http://dx.doi.org/10.3389/fpls.2019.01329] [PMID: 31708947]
[25]
Wang, M.; Carver, J.J.; Phelan, V.V.; Sanchez, L.M.; Garg, N.; Peng, Y.; Nguyen, D.D.; Watrous, J.; Kapono, C.A.; Luzzatto-Knaan, T.; Porto, C.; Bouslimani, A.; Melnik, A.V.; Meehan, M.J.; Liu, W.T.; Crüsemann, M.; Boudreau, P.D.; Esquenazi, E.; Sandoval-Calderón, M.; Kersten, R.D.; Pace, L.A.; Quinn, R.A.; Duncan, K.R.; Hsu, C.C.; Floros, D.J.; Gavilan, R.G.; Kleigrewe, K.; Northen, T.; Dutton, R.J.; Parrot, D.; Carlson, E.E.; Aigle, B.; Michelsen, C.F.; Jelsbak, L.; Sohlenkamp, C.; Pevzner, P.; Edlund, A.; McLean, J.; Piel, J.; Murphy, B.T.; Gerwick, L.; Liaw, C.C.; Yang, Y.L.; Humpf, H.U.; Maansson, M.; Keyzers, R.A.; Sims, A.C.; Johnson, A.R.; Sidebottom, A.M.; Sedio, B.E.; Klitgaard, A.; Larson, C.B.; Boya, P. C.A.; Torres-Mendoza, D.; Gonzalez, D.J.; Silva, D.B.; Marques, L.M.; Demarque, D.P.; Pociute, E.; O’Neill, E.C.; Briand, E.; Helfrich, E.J.N.; Granatosky, E.A.; Glukhov, E.; Ryffel, F.; Houson, H.; Mohimani, H.; Kharbush, J.J.; Zeng, Y.; Vorholt, J.A.; Kurita, K.L.; Charusanti, P.; McPhail, K.L.; Nielsen, K.F.; Vuong, L.; Elfeki, M.; Traxler, M.F.; Engene, N.; Koyama, N.; Vining, O.B.; Baric, R.; Silva, R.R.; Mascuch, S.J.; Tomasi, S.; Jenkins, S.; Macherla, V.; Hoffman, T.; Agarwal, V.; Williams, P.G.; Dai, J.; Neupane, R.; Gurr, J.; Rodríguez, A.M.C.; Lamsa, A.; Zhang, C.; Dorrestein, K.; Duggan, B.M.; Almaliti, J.; Allard, P.M.; Phapale, P.; Nothias, L.F.; Alexandrov, T.; Litaudon, M.; Wolfender, J.L.; Kyle, J.E.; Metz, T.O.; Peryea, T.; Nguyen, D.T.; VanLeer, D.; Shinn, P.; Jadhav, A.; Müller, R.; Waters, K.M.; Shi, W.; Liu, X.; Zhang, L.; Knight, R.; Jensen, P.R.; Palsson, B.Ø.; Pogliano, K.; Linington, R.G.; Gutiérrez, M.; Lopes, N.P.; Gerwick, W.H.; Moore, B.S.; Dorrestein, P.C.; Bandeira, N. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol., 2016, 34(8), 828-837.
[http://dx.doi.org/10.1038/nbt.3597] [PMID: 27504778]
[26]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[27]
Houriet, J.; Allard, P-M.; Queiroz, E.F.; Marcourt, L.; Gaudry, A.; Vallin, L. A mass spectrometry based metabolite profiling workflow for selecting abundant specific markers and their structurally related multi-component signatures in traditional chinese medicine multi‐herb formulae. Front. Pharmacol., 1774, 2020, 11.
[PMID: 33362543]
[28]
Queiroz, E.F.; Alfattani, A.; Afzan, A.; Marcourt, L.; Guillarme, D.; Wolfender, J.L. Utility of dry load injection for an efficient natural products isolation at the semi-preparative chromatographic scale. J. Chromatogr. A, 2019, 1598, 85-91.
[http://dx.doi.org/10.1016/j.chroma.2019.03.042] [PMID: 30926257]
[29]
Wiegand, I.; Hilpert, K.; Hancock, R.E.W. Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc., 2008, 3(2), 163-175.
[http://dx.doi.org/10.1038/nprot.2007.521] [PMID: 18274517]
[30]
Eloff, J. A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med., 1998, 64(8), 711-713.
[http://dx.doi.org/10.1055/s-2006-957563] [PMID: 9933989]
[31]
Hentzer, M.; Riedel, K.; Rasmussen, T.B.; Heydorn, A.; Andersen, J.B.; Parsek, M.R.; Rice, S.A.; Eberl, L.; Molin, S.; Høiby, N.; Kjelleberg, S.; Givskov, M. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology (Reading), 2002, 148(1), 87-102.
[http://dx.doi.org/10.1099/00221287-148-1-87] [PMID: 11782502]
[32]
Schaefler, S.; Perry, W.; Jones, D. Methicillin-resistant strains of Staphylococcus aureus phage type 92. Antimicrob. Agents Chemother., 1979, 15(1), 74-80.
[http://dx.doi.org/10.1128/AAC.15.1.74] [PMID: 154874]
[33]
Horváth, B.; Hunyadkürti, J.; Vörös, A.; Fekete, C.; Urbán, E.; Kemény, L.; Nagy, I. Genome sequence of Propionibacterium acnes type II strain ATCC 11828. J. Bacteriol., 2012, 194(1), 202-203.
[http://dx.doi.org/10.1128/JB.06388-11] [PMID: 22156398]
[34]
Medeiros, A.A.; O’Brien, T.F.; Wacker, W.E.C.; Yulug, N.F. Effect of salt concentration on the apparent in-vitro susceptibility of Pseudomonas and other gram-negative bacilli to gentamicin. J. Infect. Dis., 1971, 124(Suppl. 1), S59-S64.
[http://dx.doi.org/10.1093/infdis/124.Supplement_1.S59] [PMID: 5001630]
[35]
Buckingham, J.E. Dictionary of natural products; Chapman and Hall/CRC: Boca Raton, Florida, 2007.
[36]
Nothias, L.F.; Petras, D.; Schmid, R.; Dührkop, K.; Rainer, J.; Sarvepalli, A.; Protsyuk, I.; Ernst, M.; Tsugawa, H.; Fleischauer, M.; Aicheler, F.; Aksenov, A.A.; Alka, O.; Allard, P.M.; Barsch, A.; Cachet, X.; Caraballo-Rodriguez, A.M.; Da Silva, R.R.; Dang, T.; Garg, N.; Gauglitz, J.M.; Gurevich, A.; Isaac, G.; Jarmusch, A.K.; Kameník, Z.; Kang, K.B.; Kessler, N.; Koester, I.; Korf, A.; Le Gouellec, A.; Ludwig, M.; Martin, H. C.; McCall, L.I.; McSayles, J.; Meyer, S.W.; Mohimani, H.; Morsy, M.; Moyne, O.; Neumann, S.; Neuweger, H.; Nguyen, N.H.; Nothias-Esposito, M.; Paolini, J.; Phelan, V.V.; Pluskal, T.; Quinn, R.A.; Rogers, S.; Shrestha, B.; Tripathi, A.; van der Hooft, J.J.J.; Vargas, F.; Weldon, K.C.; Witting, M.; Yang, H.; Zhang, Z.; Zubeil, F.; Kohlbacher, O.; Böcker, S.; Alexandrov, T.; Bandeira, N.; Wang, M.; Dorrestein, P.C. Feature-based molecular networking in the GNPS analysis environment. Nat. Methods, 2020, 17(9), 905-908.
[http://dx.doi.org/10.1038/s41592-020-0933-6] [PMID: 32839597]
[37]
Lin, H.C.; Chiou, G.; Chooi, Y.H.; McMahon, T.C.; Xu, W.; Garg, N.K.; Tang, Y. Elucidation of the concise biosynthetic pathway of the communesin indole alkaloids. Angew. Chem. Int. Ed., 2015, 54(10), 3004-3007.
[http://dx.doi.org/10.1002/anie.201411297] [PMID: 25571861]
[38]
Jadulco, R.; Edrada, R.A.; Ebel, R.; Berg, A.; Schaumann, K.; Wray, V.; Steube, K.; Proksch, P. New communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa. J. Nat. Prod., 2004, 67(1), 78-81.
[http://dx.doi.org/10.1021/np030271y] [PMID: 14738391]
[39]
Huang, S.; Chen, H.; Li, W.; Zhu, X.; Ding, W.; Li, C. Bioactive chaetoglobosins from the mangrove endophytic fungus Penicillium chrysogenum. Mar. Drugs, 2016, 14(10), 172.
[http://dx.doi.org/10.3390/md14100172] [PMID: 27690061]
[40]
Iwamoto, C.; Yamada, T.; Ito, Y.; Minoura, K.; Numata, A. Cytotoxic cytochalasans from a Penicillium species separated from a marine alga. Tetrahedron, 2001, 57(15), 2997-3004.
[http://dx.doi.org/10.1016/S0040-4020(01)00153-3]
[41]
Numata, A.; Takahashi, C.; Ito, Y.; Minoura, K.; Yamada, T.; Matsuda, C.; Nomoto, K. Penochalasins, a novel class of cytotoxic cytochalasans from a Penicillium species separated from a marine alga: structure determination and solution conformation. J. Chem. Soc., Perkin Trans. 1, 1996, (3), 239-245.
[http://dx.doi.org/10.1039/p19960000239]
[42]
Zhu, X.; Zhou, D.; Liang, F.; Wu, Z.; She, Z.; Li, C. Penochalasin K, a new unusual chaetoglobosin from the mangrove endophytic fungus Penicillium chrysogenum V11 and its effective semi-synthesis. Fitoterapia, 2017, 123, 23-28.
[http://dx.doi.org/10.1016/j.fitote.2017.09.016] [PMID: 28958956]
[43]
Flewelling, A.J.; Bishop, A.L.; Johnson, J.A.; Gray, C.A. Polyketides from an endophytic Aspergillus fumigatus isolate inhibit the growth of Mycobacterium tuberculosis and MRSA. Nat. Prod. Commun., 2015, 10(10), 1934578X1501001.
[http://dx.doi.org/10.1177/1934578X1501001009] [PMID: 26669098]
[44]
Jiang, C.; Song, J.; Zhang, J.; Yang, Q. Identification and characterization of the major antifungal substance against Fusarium Sporotrichioides from Chaetomium globosum. World J. Microbiol. Biotechnol., 2017, 33(6), 108.
[http://dx.doi.org/10.1007/s11274-017-2274-x] [PMID: 28466302]
[45]
Chen, C.; Zhu, H.; Wang, J.; Yang, J.; Li, X.N.; Wang, J.; Chen, K.; Wang, Y.; Luo, Z.; Yao, G.; Xue, Y.; Zhang, Y. Armochaetoglobins K–R, anti-HIV pyrrole-based cytochalasans from Chaetomium globosum TW1-1. Eur. J. Org. Chem., 2015, 2015(14), 3086-3094.
[http://dx.doi.org/10.1002/ejoc.201403678]
[46]
Thohinung, S.; Kanokmedhakul, S.; Kanokmedhakul, K.; Kukongviriyapan, V.; Tusskorn, O.; Soytong, K. Cytotoxic 10-(indol-3-yl)-[13]cytochalasans from the fungus Chaetomium elatum ChE01. Arch. Pharm. Res., 2010, 33(8), 1135-1141.
[http://dx.doi.org/10.1007/s12272-010-0801-5] [PMID: 20803114]
[47]
Fujita, M.; Yamada, M.; Nakajima, S.; Kawai, K.; Nagai, M. O-Methylation effect on the carbon-13 nuclear magnetic resonance signals of ortho-disubstituted phenols and its application to structure determination of new phthalides from Aspergillus silvaticus. Chem. Pharm. Bull. (Tokyo), 1984, 32(7), 2622-2627.
[http://dx.doi.org/10.1248/cpb.32.2622] [PMID: 6499082]
[48]
Kimura, Y.; Yoshinari, T.; Koshino, H.; Fujioka, S.; Okada, K.; Shimada, A. Rubralactone, rubralides A, B and C, and rubramin produced by Penicillium rubrum. Biosci. Biotechnol. Biochem., 2007, 71(8), 1896-1901.
[http://dx.doi.org/10.1271/bbb.70112] [PMID: 17690484]
[49]
Fink-Grernmels, J. Mycotoxins: Their implications for human and animal health. Vet. Q., 1999, 21(4), 115-120.
[http://dx.doi.org/10.1080/01652176.1999.9695005] [PMID: 10568000]
[50]
Guillarme, D.; Nguyen, D.T.T.; Rudaz, S.; Veuthey, J.L. Method transfer for fast liquid chromatography in pharmaceutical analysis: Application to short columns packed with small particle. Part I: Isocratic separation. Eur. J. Pharm. Biopharm., 2007, 66(3), 475-482.
[http://dx.doi.org/10.1016/j.ejpb.2006.11.027] [PMID: 17267188]
[51]
Guillarme, D.; Nguyen, D.T.T.; Rudaz, S.; Veuthey, J.L. Method transfer for fast liquid chromatography in pharmaceutical analysis: Application to short columns packed with small particle. Part II: Gradient experiments. Eur. J. Pharm. Biopharm., 2008, 68(2), 430-440.
[http://dx.doi.org/10.1016/j.ejpb.2007.06.018] [PMID: 17703929]
[52]
Bennett, M.; Gill, G.B.; Pattenden, G.; Shuker, A.J.; Stapleton, A. Ylidenebutenolide mycotoxins. Concise syntheses of patulin and neopatulin from carbohydrate precursors. J. Chem. Soc., Perkin Trans. 1, 1991, (4), 929-937.
[http://dx.doi.org/10.1039/p19910000929]
[53]
Wu, H.H.; Tian, L.; Feng, B.M.; Li, Z.F.; Zhang, Q.H.; Pei, Y.H. Three new compounds from the marine fungus Penicillium sp. J. Asian Nat. Prod. Res., 2010, 12(1), 15-19.
[http://dx.doi.org/10.1080/10286020903442020] [PMID: 20390738]
[54]
Ishimaru, K.; Nonaka, G.; Nishioka, I. Tannins and related-compounds. 54. phenolic glucoside gallates from Quercus mongolica and Quercus acutissima. Phytochemistry, 1987, 26(4), 1147-1152.
[http://dx.doi.org/10.1016/S0031-9422(00)82367-5]
[55]
Numata, A.; Takahashi, C.; Ito, Y.; Takada, T.; Kawai, K.; Usami, Y.; Matsumura, E.; Imachi, M.; Ito, T.; Hasegawa, T. Communesins, cytotoxic metabolites of a fungus isolated from a marine alga. Tetrahedron Lett., 1993, 34(14), 2355-2358.
[http://dx.doi.org/10.1016/S0040-4039(00)77612-X]
[56]
Sekita, S.; Yoshihira, K.; Natori, S. Chaetoglobosins, cytotoxic 10-(indol-3-yl)-(13)cytochalasans from Chaetomium spp. IV. 13C-Nuclear magnetic resonance spectra and their application to a biosynthetic study. Chem. Pharm. Bull. (Tokyo), 1983, 31(2), 490-498.
[http://dx.doi.org/10.1248/cpb.31.490]
[57]
Musuku, A.; Selala, M.I.; de Bruyne, T.; Claeys, M.; Schepens, P.J.C.; Tsatsakis, A.; Shtilman, M.I. Isolation and structure determination of a new roquefortine-related mycotoxin from Penicillium verrucosum var. cyclopium isolated from cassava. J. Nat. Prod., 1994, 57(7), 983-987.
[http://dx.doi.org/10.1021/np50109a017]
[58]
Shangguan, N.; Hehre, W.J.; Ohlinger, W.S.; Beavers, M.P.; Joullié, M.M. The total synthesis of roquefortine C and a rationale for the thermodynamic stability of isoroquefortine C over roquefortine C. J. Am. Chem. Soc., 2008, 130(19), 6281-6287.
[http://dx.doi.org/10.1021/ja800067q] [PMID: 18412344]
[59]
Ando, S.; Grote, A.L.; Koide, K. Diastereoselective synthesis of diketopiperazine bis-αβ-epoxides. J. Org. Chem., 2011, 76(4), 1155-1158.
[http://dx.doi.org/10.1021/jo102096d] [PMID: 21250704]
[60]
Brown, R.; Kelley, C.; Wiberley, S.E. The Production of 3-Benzylidene-6-isobutylidene-2,5-dioxopiperazine, 3,6-Dibenzylidene-2,5-dioxopiperazine, 3-Benzyl-6-benzylidene-2,5-dioxopiperazine, and 3,6-Dibenzyl-2,5-dioxopiperazine by a Variant of Streptomyces noursei. J. Org. Chem., 1965, 30(1), 277-280.
[http://dx.doi.org/10.1021/jo01012a066]
[61]
Gerber, N.N. Phenazines, phenoxazinones, and dioxopiperazines from Streptomyces thioluteus. J. Org. Chem., 1967, 32(12), 4055-4057.
[http://dx.doi.org/10.1021/jo01287a075] [PMID: 5622472]
[62]
Kamei, H.; Oka, M.; Hamagishi, Y.; Tomita, K.; Konishi, M.; Oki, T. Piperafizines A and B potentiators of cytotoxicity of vincristine. J. Antibiot. (Tokyo), 1990, 43(8), 1018-1020.
[http://dx.doi.org/10.7164/antibiotics.43.1018] [PMID: 2211350]
[63]
Goetz, M.A.; Zhang, C.; Zink, D.L.; Arocho, M.; Vicente, F.; Bills, G.F.; Polishook, J.; Dorso, K.; Onishi, R.; Gill, C.; Hickey, E.; Lee, S.; Ball, R.; Skwish, S.; Donald, R.G.K.; Phillips, J.W.; Singh, S.B. Coelomycin, a highly substituted 2,6-dioxo-pyrazine fungal metabolite antibacterial agent discovered by Staphylococcus aureus fitness test profiling. J. Antibiot. , 2010, 63(8), 512-518.
[http://dx.doi.org/10.1038/ja.2010.86] [PMID: 20664605]
[64]
Pompeo, M.M.; Cheah, J.H.; Movassaghi, M. Total synthesis and anti-cancer activity of all known communesin alkaloids and related derivatives. J. Am. Chem. Soc., 2019, 141(36), 14411-14420.
[http://dx.doi.org/10.1021/jacs.9b07397] [PMID: 31422662]
[65]
Pinedo, C.; Wright, S.A.I.; Collado, I.G.; Goss, R.J.M.; Castoria, R.; Hrelia, P.; Maffei, F.; Durán-Patrón, R. Isotopic labeling studies reveal the patulin detoxification pathway by the biocontrol yeast Rhodotorula kratochvilovae LS11. J. Nat. Prod., 2018, 81(12), 2692-2699.
[http://dx.doi.org/10.1021/acs.jnatprod.8b00539] [PMID: 30460844]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy