Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

In silico Molecular Docking Analysis of Three Molecules Isolated from Litsea guatemalensis Mez on Anti-inflammatory Receptors

Author(s): Lucrecia Peralta*, Allan Vásquez, Nereida Marroquín, Lesbia Guerra, Sully M. Cruz and Armando Cáceres

Volume 27, Issue 4, 2024

Published on: 21 June, 2023

Page: [562 - 572] Pages: 11

DOI: 10.2174/1386207326666230525152928

Price: $65

Abstract

Background: The Litsea genus has four native species from Mesoamerica. Litsea guatemalensis Mez. is a native tree, traditionally used as a condiment and herbal medicine in the region. It has demonstrated antimicrobial, aromatic, anti-inflammatory and antioxidant activity. Bioactive fractionation attributed the anti-inflammatory and anti-hyperalgesic activities to pinocembrin, scopoletin, and 5,7,3´4´-tetrahydroxy-isoflavone. In silico analysis, these molecules were analyzed on receptors involved in the anti-inflammatory process to determine which pathways they interact.

Objective: To analyze and evaluate 5,7,3',4'-tetrahydroxyisoflavone, pinocembrin, and scopoletin using the in silico analysis against selected receptors involved in the inflammatory pathway.

Methods: Known receptors involved in the anti-inflammatory process found as protein-ligand complex in the Protein Data Bank (PDB) were used as references for each receptor and compared with the molecules of interest. The GOLD-ChemScore function, provided by the software, was used to rank the complexes and visually inspect the overlap between the reference ligand and the poses of the studied metabolites.

Results: 53 proteins were evaluated, each one in five conformations minimized by molecular dynamics. The scores obtained for dihydroorotate dehydrogenase were greater than 80 for the three molecules of interest, scores for cyclooxygenase 1 and glucocorticoid receptor were greater than 50, and identified residues with interaction in binding sites overlap with the reference ligands in these receptors.

Conclusion: The three molecules involved in the anti-inflammatory process of L. guatemalensis show in silico high affinity to the enzyme dihydroorotate dehydrogenase, glucocorticoid receptors and cyclooxygenase-1.

[1]
Patil, K.R.; Mahajan, U.B.; Unger, B.S.; Goyal, S.N.; Belemkar, S.; Surana, S.J.; Ojha, S.; Patil, C.R. Animal models of inflammation for screening of anti-inflammatory drugs: Implications for the discovery and development of phytopharmaceuticals. Int. J. Mol. Sci., 2019, 20(18), 4367.
[http://dx.doi.org/10.3390/ijms20184367] [PMID: 31491986]
[2]
Medzhitov, R. Origin and physiological roles of inflammation. Nature, 2008, 454(7203), 428-435.
[http://dx.doi.org/10.1038/nature07201] [PMID: 18650913]
[3]
Moumbock, A.F.A.; Li, J.; Mishra, P.; Gao, M.; Günther, S. Current computational methods for predicting protein interactions of natural products. Comput. Struct. Biotechnol. J., 2019, 17, 1367-1376.
[http://dx.doi.org/10.1016/j.csbj.2019.08.008] [PMID: 31762960]
[4]
Saldívar-González, F.; Prieto-Martínez, F.D.; Medina-Franco, J.L. Drug discovery and development: A computational approach. Educ. Quím., 2017, 28, 51-58.
[5]
Medina-Franco, J.L. Advances in computation approaches for drug discovery based on natural products. Rev. Lat.-Amer. Quím., 2013, 41, 95-110.
[6]
Wang, H.; Liu, Y. Chemical composition and antibacterial activity of essential oils from different parts of Litsea cubeba. Chem. Biodivers., 2010, 7(1), 229-235.
[http://dx.doi.org/10.1002/cbdv.200800349] [PMID: 20087994]
[7]
Hwang, J.K.; Choi, E.M.; Lee, J.H. Antioxidant activity of Litsea cubeba. Fitoterapia, 2005, 76(7-8), 684-686.
[http://dx.doi.org/10.1016/j.fitote.2005.05.007] [PMID: 16239077]
[8]
Ho, C.L.; Wang, E.I.C.; Tseng, Y.H.; Liao, P.C.; Lin, C.N.; Chou, J.C.; Su, Y.C. Composition and antimicrobial activity of the leaf and twig oils of Litsea mushaensis and L. linii from Taiwan. Nat. Prod. Commun., 2010, 5(11), 1934578X1000501.
[http://dx.doi.org/10.1177/1934578X1000501127] [PMID: 21213991]
[9]
López-Caamal, A.; Reyes-Chilpa, R. The New World bays (Litsea, Lauraceae). A botanical, chemical, pharmacological and ecological review in relation to their traditional and potential applications as phytomedicines. Bot. Rev., 2021, 87(3), 392-420.
[http://dx.doi.org/10.1007/s12229-021-09265-z]
[10]
Agrawal, N.; Choudhary, A.S.; Sharma, M.C.; Dobhal, M.P. Chemical constituents of plants from the genus Litsea. Chem. Biodivers., 2011, 8(2), 223-243.
[http://dx.doi.org/10.1002/cbdv.200900408] [PMID: 21337497]
[11]
Jiménez-Pérez, N.C.; Lorea-Hernández, F.G. Identity and delimitation of the American species of Litsea Lam. (Lauraceae): A morphological approach. Plant Syst. Evol., 2009, 283(1-2), 19-32.
[http://dx.doi.org/10.1007/s00606-009-0218-0]
[12]
Vallverdú, C.; Vila, R.; Cruz, S.M.; Cáceres, A.; Cañigueral, S. Composition of the essential oil from leaves of Litsea guatemalensis. Flavour Fragrance J., 2005, 20(4), 415-418.
[http://dx.doi.org/10.1002/ffj.1446]
[13]
Cruz, S.M.; Mérida, M.; Pérez, F.; Santizo, A.; Cáceres, A.; Apel, M.; Henriquez, A. Chemical composition of essential oil of Litsea guatemalensis (Mexican bay) from different provenances of Guatemala. Acta Hortic., 2012, (964), 47-57.
[http://dx.doi.org/10.17660/ActaHortic.2012.964.5]
[14]
Azhar, M.A.M.; Salleh, W.M.N.W. Chemical composition and biological activities of essential oils of the genus Litsea (Lauraceae)-a review. ACS Agric. Conspec. Sci., 2020, 85, 97-103.
[15]
Simão da Silva, K.A.B.; Klein-Junior, L.C.; Cruz, S.M.; Cáceres, A.; Quintão, N.L.M.; Monache, F.D.; Cechinel-Filho, V. Anti-inflammatory and anti-hyperalgesic evaluation of the condiment laurel (Litsea guatemalensis Mez.) and its chemical composition. Food Chem., 2012, 132(4), 1980-1986.
[http://dx.doi.org/10.1016/j.foodchem.2011.12.036]
[16]
Nathan, C.F. Neutrophil activation on biological surfaces. Massive secretion of hydrogen peroxide in response to products of macrophages and lymphocytes. J. Clin. Invest., 1987, 80(6), 1550-1560.
[http://dx.doi.org/10.1172/JCI113241] [PMID: 2445780]
[17]
Marvin (version 19.17.0), developed by ChemAxon. 2019. Available from: http://www.chemaxon.com/products/marvin/
[18]
RDKit: Open-source cheminformatics developed by Greg Landrum. 2018. Available from: http://www.rdkit.org
[19]
Avogadro: an open-source molecular builder and visualization tool. Version 1.2.0. Available from: http://avogadro.cc/
[20]
Research Collaboratory for Structural Bioinformatics. (5 de julio de 2018). The Protein Data Bank. Available from: https://www.rcsb.org
[21]
Release, S. 2020-2: Maestro; Schrödinger, LLC: New York, NY, 2020.
[22]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera-A visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25, 1605-1612.
[http://dx.doi.org/10.1002/jcc.20084] [PMID: 15264254]
[23]
Phillips, J.C.; Hardy, D.J.; Maia, J.D.C.; Stone, J.E.; Ribeiro, J.V.; Bernardi, R.C.; Buch, R.; Fiorin, G.; Hénin, J.; Jiang, W.; McGreevy, R.; Melo, M.C.R.; Radak, B.K.; Skeel, R.D.; Singharoy, A.; Wang, Y.; Roux, B.; Aksimentiev, A.; Luthey-Schulten, Z.; Kalé, L.V.; Schulten, K.; Chipot, C.; Tajkhorshid, E. Scalable molecular dynamics on CPU and GPU architectures with NAMD. J. Chem. Phys., 2020, 153(4), 044130.
[http://dx.doi.org/10.1063/5.0014475] [PMID: 32752662]
[24]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking 1 1Edited by F. E. Cohen. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[25]
Adasme, M.F.; Linnemann, K.L.; Bolz, S.N.; Kaiser, F.; Salentin, S.; Haupt, V.J.; Schroeder, M. PLIP 2021: Expand-ing the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Res., 2021, 49(W1), W530-W534.
[http://dx.doi.org/10.1093/nar/gkab294] [PMID: 33950214]
[26]
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2013. Available from: http://www.R-project.org/
[27]
Ursu, O.; Rayan, A.; Goldblum, A.; Oprea, T.I. Understanding drug‐likeness. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2011, 1(5), 760-781.
[http://dx.doi.org/10.1002/wcms.52]
[28]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[29]
Estrada, H.; Ruiz, K.N.G.; Medina, J.D. Anti-inflammatory activity of natural products. Bol. Lat. Amer. Caribe Plant. Med. Arom., 2011, 10, 182-217.
[30]
Muller, P.; Lena, G.; Boilard, E.; Bezzine, S.; Lambeau, G.; Guichard, G.; Rognan, D. In silico-guided target identifi-cation of a scaffold-focused library: 1,3,5-triazepan-2,6-diones as novel phospholipase A2 inhibitors. J. Med. Chem., 2006, 49(23), 6768-6778.
[http://dx.doi.org/10.1021/jm0606589] [PMID: 17154507]
[31]
Leban, J.; Vitt, D. Human dihydroorotate dehydrogenase inhibitors, a novel approach for the treatment of autoimmune and inflammatory diseases. Arzneimittelforschung, 2011, 61(1), 66-72.
[http://dx.doi.org/10.1055/s-0031-1296169] [PMID: 21355448]
[32]
Munier-Lehmann, H.; Vidalain, P.O.; Tangy, F.; Janin, Y.L. On dihydroorotate dehydrogenases and their inhibitors and uses. J. Med. Chem., 2013, 56(8), 3148-3167.
[http://dx.doi.org/10.1021/jm301848w] [PMID: 23452331]
[33]
Xu, D.; Meroueh, S.O. Effect of binding pose and modeled structures on SVMGen and glidescore enrichment of chemical libraries. J. Chem. Inf. Model., 2016, 56(6), 1139-1151.
[http://dx.doi.org/10.1021/acs.jcim.5b00709] [PMID: 27154487]
[34]
Sidhu, R.S.; Lee, J.Y.; Yuan, C.; Smith, W.L. Comparison of cyclooxygenase-1 crystal structures: Cross-talk between monomers comprising cyclooxygenase-1 homodimers. Biochemistry, 2010, 49(33), 7069-7079.
[http://dx.doi.org/10.1021/bi1003298] [PMID: 20669977]
[35]
Gogoi, D.; Bezbaruah, R.L.; Bordoloi, M.; Sarmah, R.; Bora, T.C. Insights from the docking analysis of biologically active compounds from plant Litsea Genus as potential COX-2 inhibitors. Bioinformation, 2012, 8(17), 812-815.
[http://dx.doi.org/10.6026/97320630008812] [PMID: 23139590]
[36]
Kulagowski, J.J.; Blair, W.; Bull, R.J.; Chang, C.; Deshmukh, G.; Dyke, H.J.; Eigenbrot, C.; Ghilardi, N.; Gibbons, P.; Harrison, T.K.; Hewitt, P.R.; Liimatta, M.; Hurley, C.A.; Johnson, A.; Johnson, T.; Kenny, J.R.; Bir Kohli, P.; Maxey, R.J.; Mendonca, R.; Mortara, K.; Murray, J.; Narukulla, R.; Shia, S.; Steffek, M.; Ubhayakar, S.; Ultsch, M.; van Abbema, A.; Ward, S.I.; Waszkowycz, B.; Zak, M. Identification of imidazo-pyrrolopyridines as novel and potent JAK1 inhibitors. J. Med. Chem., 2012, 55(12), 5901-5921.
[http://dx.doi.org/10.1021/jm300438j] [PMID: 22591402]
[37]
Brzozowski, A.M.; Pike, A.C.W.; Dauter, Z.; Hubbard, R.E.; Bonn, T.; Engström, O.; Öhman, L.; Greene, G.L.; Gustafsson, J.Å.; Carlquist, M. Molecular basis of agonism and antagonism in the oestrogen receptor. Nature, 1997, 389(6652), 753-758.
[http://dx.doi.org/10.1038/39645] [PMID: 9338790]
[38]
Carson, M.W.; Luz, J.G.; Suen, C.; Montrose, C.; Zink, R.; Ruan, X.; Cheng, C.; Cole, H.; Adrian, M.D.; Kohlman, D.T.; Mabry, T.; Snyder, N.; Condon, B.; Maletic, M.; Clawson, D.; Pustilnik, A.; Coghlan, M.J. Glucocorticoid receptor modulators informed by crystallography lead to a new rationale for receptor selectivity, function, and implications for structure-based design. J. Med. Chem., 2014, 57(3), 849-860.
[http://dx.doi.org/10.1021/jm401616g] [PMID: 24446728]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy