Generic placeholder image

Recent Patents on Engineering

Editor-in-Chief

ISSN (Print): 1872-2121
ISSN (Online): 2212-4047

Review Article

Channel Estimation for Underwater Acoustic OFDM Communications: Recent Advances

In Press, (this is not the final "Version of Record"). Available online 18 September, 2023
Author(s): Mingzhang Zhou, Haixin Sun*, Junfeng Wang*, Zhuofan Xie and Xiao Feng
Published on: 18 September, 2023

Article ID: e050723218434

DOI: 10.2174/1872212118666230705141644

Price: $95

Abstract

Background: To resist the time-variant underwater acoustic (UWA) channel, large amounts of channel estimation algorithms for the UWA orthogonal frequency division multiplexing (OFDM) are presented. An updated review of the recent UWA OFDM channel estimators is suggested in this article.

Objective: The goal of this patent is to review and conclude the development of different types of channel estimators. The possible perspectives about the future UWA channel estimator design are also discussed.

Methodology: The principles and performances of the linear channel estimators, the compressed sensing (CS)-based channel estimators, and the neural network (NN)-based channel estimators are reviewed and discussed. Simulations are conducted to compare the typical implementations of the different methods.

Conclusion: To take more channel state characteristics into account, the data-driven methods have been applied in the channel estimator design. Compared with the linear and CS-based methods, the NN-based channel estimator shows the higher performance, robustness and lower complexity, which is promising to be applied with the proper structure and training sets.

[1]
X. Kuai, H. Sun, S. Zhou, and E. Cheng, "Impulsive noise mitigation in underwater acoustic OFDM systems", IEEE Trans. Vehicular Technol., vol. 65, no. 10, pp. 8190-8202, 2016.
[http://dx.doi.org/10.1109/TVT.2016.2516539]
[2]
X. Feng, J. Wang, X. Kuai, M. Zhou, H. Sun, and J. Li, "Message passing-based impulsive noise mitigation and channel estimation for underwater acoustic OFDM communications", IEEE Trans. Vehicular Technol., vol. 71, no. 1, pp. 611-625, 2022.
[http://dx.doi.org/10.1109/TVT.2021.3130061]
[3]
S. Roy, T.M. Duman, V. McDonald, and J.G. Proakis, "High-rate communication for underwater acoustic channels using multiple transmitters and space–time coding: Receiver structures and experimental results", IEEE J. Oceanic Eng., vol. 32, no. 3, pp. 663-688, 2007.
[http://dx.doi.org/10.1109/JOE.2007.899275]
[4]
R. Diamant, F. Campagnaro, M. de Filippo de Grazia, P. Casari, A. Testolin, V. Sanjuan Calzado, and M. Zorzi, "On the relationship between the underwater acoustic and optical channels", IEEE Trans. Wirel. Commun., vol. 16, no. 12, pp. 8037-8051, 2017.
[http://dx.doi.org/10.1109/TWC.2017.2756055]
[5]
P. Zhu, X. Xu, X. Tu, Y. Chen, and Y. Tao, "Anti-multipath orthogonal chirp division multiplexing for underwater acoustic communication", IEEE Access, vol. 8, pp. 13305-13314, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.2966072]
[6]
S. Zhou, and Z. Wang, OFDM for underwater acoustic communications., John Wiley & Sons, 2014.
[http://dx.doi.org/10.1002/9781118693865]
[7]
Zhaohui Wang, Shengli Zhou, J. Catipovic, and Jie Huang, "Factor-graph-based joint IBI/ICI mitigation for ofdm in underwater acoustic multipath channels with long-separated clusters", IEEE J. Oceanic Eng., vol. 37, no. 4, pp. 680-694, 2012.
[http://dx.doi.org/10.1109/JOE.2012.2205639]
[8]
Y. Zhou, and F. Tong, "Channel estimation based equalizer for underwater acoustic multiple-input-multiple-output communication", IEEE Access, vol. 7, pp. 79005-79016, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2921596]
[9]
M. Stojanovic, "MIMO OFDM over underwater acoustic channels", In: 2009 Conference Record of the Forty-Third Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 2009, pp. 605-609.
[http://dx.doi.org/10.1109/ACSSC.2009.5469907]
[10]
X. Huang, and V. Lawrence, "OFDM with pilot aided channel estimation for time-varying shallow water acoustic channels", In: 2010 International Conference on Communication and Mobile Computer, 2010, pp. pp. 442-446.
[http://dx.doi.org/10.1109/CMC.2010.68]
[11]
T. Suzuki, H. Tran, and T. Wada, "An underwater acoustic OFDM communication system with shrimp (impulsive) noise cancelling", In: 2014 International Conference Computer Management and Telecommunication (ComManTel), 2014, pp. pp. 152-156.
[12]
S. Zhao, S. Yan, and J. Xi, "Adaptive turbo equalization for differential ofdm systems in underwater acoustic communications", IEEE Trans. Vehicular Technol., vol. 69, no. 11, pp. 13937-13941, 2020.
[http://dx.doi.org/10.1109/TVT.2020.3017778]
[13]
J. Huang, S. Zhou, J. Huang, C.R. Berger, and P. Willett, "Progressive inter-carrier interference equalization for ofdm transmission over time-varying underwater acoustic channels", IEEE J. Sel. Top. Signal Process., vol. 5, no. 8, pp. 1524-1536, 2011.
[http://dx.doi.org/10.1109/JSTSP.2011.2160040]
[14]
G. Qiao, Z. Babar, L. Ma, and N. Ahmed, "Channel Estimation and Equalization of Underwater Acoustic MIMO-OFDM Systems: A Review Estimation du canal et l’égalisation des systèmes MEMS-MROF acoustiques sous-marins: une revue", Can. J. Electr. Comput. Eng., vol. 42, no. 4, pp. 199-208, 2019.
[http://dx.doi.org/10.1109/CJECE.2019.2897587]
[15]
X. Qin, F. Qu, and Y. Zheng, "Block soft decision feedback turbo equalization for orthogonal signal-division multiplexing underwater acoustic communications", In: OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 2019, pp. 1-5.
[http://dx.doi.org/10.23919/OCEANS40490.2019.8962719]
[16]
J. Nelson, A. Singer, and R. Koetter, "Linear turbo equalization for parallel isi channels", IEEE Trans. Commun., vol. 51, no. 6, pp. 860-864, 2003.
[http://dx.doi.org/10.1109/TCOMM.2003.813178]
[17]
J. Van De Beek, O. Edfors, M. Sandell, S. Wilson, and P. Borjesson, "On channel estimation in OFDM systems", In: 1995 IEEE 45th Vehicular Technology Conference. Countdown to the Wireless Twenty-First Century, Chicago, IL, USA, 1995, pp. pp. 815-819.
[http://dx.doi.org/10.1109/VETEC.1995.504981]
[18]
B. Li, "Further results on high-rate MIMO-OFDM underwater acoustic communications", Oceans, vol. 2008, pp. 1-6, 2008.
[19]
X. Shi, and Y. Yang, "Adaptive sparse channel estimation based on RLS for underwater acoustic OFDM systems", In: 2016 Sixth International Conference on Instrumentation & Measurement, Computer, Communication and Control (IMCCC), Harbin, China, 2016, pp. 266-269.
[http://dx.doi.org/10.1109/IMCCC.2016.80]
[20]
S.F. Cotter, and B.D. Rao, "Sparse channel estimation via matching pursuit with application to equalization", IEEE Trans. Commun., vol. 50, no. 3, pp. 374-377, 2002.
[http://dx.doi.org/10.1109/26.990897]
[21]
S. Wang, D. Li, M. Liu, W. Huang, H. Chen, and Y. Cen, "Clustered-sparse bayesian learning for channel estimation in underwater acoustic OFDM systems", In: 2020 International Conference on Wireless Communications and Signal Processing (WCSP), Nanjing, China, pp. 546-551.
[http://dx.doi.org/10.1109/WCSP49889.2020.9299826]
[22]
C.R. Berger, Shengli Zhou, J.C. Preisig, and P. Willett, "Sparse channel estimation for multicarrier underwater acoustic communication: From subspace methods to compressed sensing", IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1708-1721, 2010.
[http://dx.doi.org/10.1109/TSP.2009.2038424]
[23]
N. Ur Rehman Junejo, H. Esmaiel, M. Zhou, H. Sun, J. Qi, and J. Wang, "Sparse channel estimation of underwater TDS-OFDM system using look-ahead backtracking orthogonal matching pursuit", IEEE Access, vol. 6, pp. 74389-74399, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2881766]
[24]
D. Hu, X. Wang, and L. He, "A new sparse channel estimation and tracking method for time-varying OFDM systems", IEEE Trans. Vehicular Technol., vol. 62, no. 9, pp. 4648-4653, 2013.
[http://dx.doi.org/10.1109/TVT.2013.2266282]
[25]
Y. Yin, S. Liu, G. Qiao, Y. Yang, and Y. Yang, "OFDM demodulation using virtual time reversal processing in underwater acoustic communications", J. Comput. Acoust., vol. 23, no. 4, p. 1540011, 2015.
[http://dx.doi.org/10.1142/S0218396X15400111]
[26]
G. Qiao, Q. Song, L. Ma, S. Liu, Z. Sun, and S. Gan, "Sparse bayesian learning for channel estimation in time-varying underwater acoustic ofdm communication", IEEE Access, vol. 6, pp. 56675-56684, 2018.
[http://dx.doi.org/10.1109/ACCESS.2018.2873406]
[27]
W. Feng, and J. Li, "Sparse bayesian learning for blind multichannel estimation in shallow water", In: 2019 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Dalian, China, 2019, pp. 1-5.
[http://dx.doi.org/10.1109/ICSPCC46631.2019.8960888]
[28]
L. Liu, L. Cai, L. Ma, and G. Qiao, "Channel state information prediction for adaptive underwater acoustic downlink OFDMA system: Deep neural networks based approach", IEEE Trans. Vehicular Technol., vol. 70, no. 9, pp. 9063-9076, 2021.
[http://dx.doi.org/10.1109/TVT.2021.3099797]
[29]
L. Gao, and S. Liu, "Underwater acoustic channel estimation based on sparsity-aware deep neural networks", In: OES China Ocean Acoust, COA, 2021, pp. pp. 544-549.
[30]
Y. Zhang, H. Wang, C. Li, X. Chen, and F. Meriaudeau, "On the performance of deep neural network aided channel estimation for underwater acoustic OFDM communications", Ocean Eng., vol. 259, p. 111518, 2022.
[http://dx.doi.org/10.1016/j.oceaneng.2022.111518]
[31]
K. Hiray, and K.V. Babu, "A neural network based channel estimation scheme for OFDM system", In: 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur, India, 2016, pp. 0438-0441.
[http://dx.doi.org/10.1109/ICCSP.2016.7754174]
[32]
J. Gu, C. Shan, X. Chen, H. Yin, and W. Wang, "A novel pilot-aided channel estimation scheme based on RNN for FDD-LTE systems", In: 2018 10th International Conference on Wireless Communications and Signal Processing (WCSP), Hangzhou, China, 2018, pp. pp. 1-5.
[http://dx.doi.org/10.1109/WCSP.2018.8555634]
[33]
M. Murad, I. Tasadduq, and P. Otero, "Pilots based LSE Channel Estimation for Underwater Acoustic OFDM Communication", In: 2020 Global Conf. Wireless and Optical Technologies (GCWOT), Malaga, Spain, 2020, pp. pp.1-6.
[http://dx.doi.org/10.1109/GCWOT49901.2020.9391633]
[34]
Y. Zhang, H. Sun, F. Xu, and D. Wang, "OFDM transform-domain channel estimation based on MMSE for underwater acoustic channels", In: 2008 2nd International Conference on Anti-counterfeiting, Security and Identification, Guiyang, 2008, pp. pp. 177-181.
[http://dx.doi.org/10.1109/IWASID.2008.4688377]
[35]
M. Zhou, J. Wang, X. Feng, H. Sun, J. Li, and X. Kuai, "On generative-adversarial-network-based underwater acoustic noise modeling", IEEE Trans. Vehicular Technol., vol. 70, no. 9, pp. 9555-9559, 2021.
[http://dx.doi.org/10.1109/TVT.2021.3102302]
[36]
K.S. Priyanjali, and A.V. Babu, "An improved least square channel estimation technique for OFDM systems in sparse underwater acoustic channel", In: 2014 International Conference on Advances in Computing, Communications and Informatics (ICACCI), Delhi, India, 2014, pp. 521-2525.
[http://dx.doi.org/10.1109/ICACCI.2014.6968326]
[37]
D. Kari, I. Marivani, F. Khan, M.O. Sayin, and S.S. Kozat, "Robust adaptive algorithms for underwater acoustic channel estimation and their performance analysis", Digit. Signal Process., vol. 68, pp. 57-68, 2017.
[http://dx.doi.org/10.1016/j.dsp.2017.05.006]
[38]
H. Yu, A. Song, M. Badiey, F. Chen, and F. Ji, "Iterative estimation of doubly selective underwater acoustic channel using basis expansion models", Ad Hoc Netw., vol. 34, pp. 52-61, 2015.
[http://dx.doi.org/10.1016/j.adhoc.2015.01.016]
[39]
P. Chen, Y. Rong, S. Nordholm, and Z. He, "Joint channel and impulsive noise estimation in underwater acoustic OFDM systems", IEEE Trans. Vehicular Technol., vol. 66, no. 11, pp. 10567-10571, 2017.
[http://dx.doi.org/10.1109/TVT.2017.2743220]
[40]
Y.H. Cho, and H.L. Ko, "Channel estimation based on adaptive denoising for underwater acoustic OFDM systems", IEEE Access, vol. 8, pp. 157197-157210, 2020.
[http://dx.doi.org/10.1109/ACCESS.2020.3018474]
[41]
R. Nadakuditi, and J.C. Preisig, "A channel subspace post-filtering approach to adaptive least-squares estimation", IEEE Trans. Signal Process., vol. 52, no. 7, pp. 1901-1914, 2004.
[http://dx.doi.org/10.1109/TSP.2004.828926]
[42]
J.J. Mechery, and M. Remadevi, "Compressive sensing based underwater channel estimation", Procedia Comput. Sci., vol. 115, pp. 683-690, 2017.
[http://dx.doi.org/10.1016/j.procs.2017.09.155]
[43]
C. Qi, and L. Wu, "A study of deterministic pilot allocation for sparse channel estimation in OFDM systems", IEEE Commun. Lett., vol. 16, no. 5, pp. 742-744, 2012.
[http://dx.doi.org/10.1109/LCOMM.2012.032612.112553]
[44]
A. Kamali, M.R. Aghabozorgi Sahaf, A.M. Doost Hosseini, and A.A. Tadaion, "A low complexity DFT-matrix based pilot allocation algorithm for sparse channel estimation in OFDM systems", AEU Int. J. Electron. Commun., vol. 68, no. 2, pp. 85-89, 2014.
[http://dx.doi.org/10.1016/j.aeue.2013.07.005]
[45]
L. Tang, H. Wu, R. Jiang, and C. Lu, "An improved pilot routing algorithm for compressed sensing-based channel estimation in underwater acoustic OFDM system", In: 2017 9th International Conference on Advanced Infocomm Technology (ICAIT), Chengdu, China, 2017, pp. 90-94.
[http://dx.doi.org/10.1109/ICAIT.2017.8388895]
[46]
R. Jiang, S. Cao, W. Gao, and X. Wang, "Grey correlation degree analysis on pilot pattern optimization for OFDM Channel Estimation", In: 2018 IEEE Global Commun. Conf. (GLOBECOM), Abu Dhabi, UAE, 2018, pp. pp. 1-6.
[http://dx.doi.org/10.1109/GLOCOM.2018.8647550]
[47]
S. Yerramalli, U. Mitra, Z. Tang, and G. Leus, "Channel estimation for multi-layer block transmissions over underwater acoustic channels", In: 22012 Conference Record of the Forty Sixth Asilomar Conference on Signals, Systems and Computers (ASILOMAR), Pacific Grove, CA, USA, 2012, pp. 1530-1535.
[http://dx.doi.org/10.1109/ACSSC.2012.6489284]
[48]
H. Yu, and J. Guo, "Compressed sensing: Underwater acoustic channel estimation with doppler shifts", In: 2012 8th International Conference on Wireless Communications, Networking and Mobile Computing, Shanghai, China, 2012, pp. 1-4.
[http://dx.doi.org/10.1109/WiCOM.2012.6478459]
[49]
P. Chen, Y. Rong, S. Nordholm, A. Duncan, and Z. He, “Compressed sensing based channel estimation and impulsive noise cancelation in underwater acoustic OFDM systems”, 2016 IEEE Region 10 Conf., TENCON, 2016, pp. 2539-2542.
[50]
T. Kang, and R. Iltis, "Matching pursuits channel estimation for an underwater acoustic OFDM modem", In: 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 2008, pp. p. 5296-5299.
[http://dx.doi.org/10.1109/ICASSP.2008.4518855]
[51]
H. Wang, J. Huang, C. He, and Q. Zhang, "An efficient sparse channel estimation method with predetermined sparsity", In: 2013 IEEE Int. Conf. IEEE Region 10 (TENCON 2013), 2013, pp. 1-5.
[http://dx.doi.org/10.1109/TENCON.2013.6718511]
[52]
W. Jiang, F. Tong, S. Zheng, and X. Cao, "Estimation of underwater acoustic channel with hybrid sparsity via static-dynamic discriminative compressed sensing", IEEE Sensors J, vol. 20, no. 23, pp. 14548-14558, 2020.
[http://dx.doi.org/10.1109/JSEN.2020.3008163]
[53]
M.R. Khan, B. Das, and B.B. Pati, "Channel estimation strategies for underwater acoustic (UWA) communication: An overview", J. Franklin Inst., vol. 357, no. 11, pp. 7229-7265, 2020.
[http://dx.doi.org/10.1016/j.jfranklin.2020.04.002]
[54]
F. Qu, X. Nie, and W. Xu, "A two-stage approach for the estimation of doubly spread acoustic channels", IEEE J. Oceanic Eng., vol. 40, no. 1, pp. 131-143, 2015.
[http://dx.doi.org/10.1109/JOE.2014.2307194]
[55]
Z. Wang, H. Wu, and S. Liu, "An improved sparse underwater acoustic OFDM channel estimation method based on joint sparse model and exponential smoothing", In onference: 2017 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 2017, pp. 1-6
[http://dx.doi.org/10.1109/ICSPCC.2017.8242418]
[56]
S. Liu, F. Yang, W. Ding, and J. Song, "Double kill: Compressive-sensing-based narrow-band interference and impulsive noise mitigation for vehicular communications", IEEE Trans. Vehicular Technol., vol. 65, no. 7, pp. 5099-5109, 2016.
[http://dx.doi.org/10.1109/TVT.2015.2459060]
[57]
Y. Chen, C. Clemente, J. Soraghan, and S. Weiss, “Fractional Fourier Based Sparse Channel Estimation for Multicarrier Underwater Acoustic Communication System, ”2016 Sensor Signal Proc. for Defence., SSPD, 2016, pp. 1-5.
[58]
J. Wang, Z. Yan, W. Shi, and X. Yang, "Underwater Acoustic Sparse Channel Estimation Based on DW-SACoSaMP Reconstruction Algorithm", IEEE Commun. Lett., vol. 23, no. 11, pp. 1985-1988, 2019.
[http://dx.doi.org/10.1109/LCOMM.2019.2933426]
[59]
X. Wu, C. He, X. Dai, and Y. Zhang, "An improved sparsity adaptive CoSaMP with regularization for underwater channel estimation", In: 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Macau, China, 2020, pp. pp. 1-4.
[http://dx.doi.org/10.1109/ICSPCC50002.2020.9259493]
[60]
S. Zhang, L. Xu, and S. Yan, "A low complexity OMP sparse channel estimation algorithm in OFDM system", In: 2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi'an, China, 2021, pp. pp. 1-5.
[http://dx.doi.org/10.1109/ICSPCC52875.2021.9565070]
[61]
J. Huang, C.R. Berger, S. Zhou, and J. Huang, Comparison of basis pursuit algorithms for sparse channel estimation in underwater acoustic OFDM, Sydney, Australia, 2010, pp. pp. 1-5.
[http://dx.doi.org/10.1109/OCEANSSYD.2010.5603522]
[62]
K. Lakshmi, P. Muralikrishna, and K. Soman, "Compressive estimation of UWA channels for OFDM transmission using iterative sparse reconstruction algorithms", International Mutli-Conference on Automation, Computing, Communication, Control and Compressed Sensing (iMac4s), pp. pp. 847-851, 2013.
[http://dx.doi.org/10.1109/iMac4s.2013.6526524]
[63]
P. Schniter, L. Potter, and J. Ziniel, "Fast bayesian matching pursuit", In: 2008 Inf. Theory and Appl. Workshop, 2008, pp. 326-333.
[64]
X. Qin, F. Qu, Y. Wu, and D. Ma, “On Sparse Bayesian Spreading Function Estimation Based Iterative Detection in Multiple-Input Multiple-Output Underwater Acoustic Communications”,2018 OCEANS - MTS/IEEE Kobe Techno-Oceans., OTO, 2018, pp. pp. 1-7.
[65]
X. Qin, F. Qu, and Y. Zheng, ""Bayesian iterative channel estimation for multiple-input multiple-output underwater acoustic communications", ", In: OCEANS 2019 MTS/IEEE SEATTLE, Seattle, WA, USA, 2019.
[http://dx.doi.org/10.23919/OCEANS40490.2019.8962661]
[66]
X. Qin, F. Qu, and Y.R. Zheng, "Bayesian Iterative Channel Estimation and Turbo Equalization for Multiple-Input–Multiple-Output Underwater Acoustic Communications", IEEE J. Oceanic Eng., vol. 46, no. 1, pp. 326-337, 2021.
[http://dx.doi.org/10.1109/JOE.2019.2956299]
[67]
G. Gui, A. Mehbodniya, and F. Adachi, "Bayesian sparse channel estimation and data detection for OFDM communication systems", In: 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, USA, 2013, pp. pp. 1-5.
[http://dx.doi.org/10.1109/VTCFall.2013.6692113]
[68]
H. Chen, and C. Qi, "Underwater acoustic channel estimation via fast Bayesian matching pursuit", In: 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), 2017, pp. 1-6.
[http://dx.doi.org/10.1109/WCSP.2017.8171016.]
[69]
T. Ballal, T.Y. Al-Naffouri, and S.F. Ahmed, "Low-complexity bayesian estimation of cluster-sparse channels", IEEE Trans. Commun., vol. 63, no. 11, pp. 4159-4173, 2015.
[http://dx.doi.org/10.1109/TCOMM.2015.2480092]
[70]
G. Qiao, Q. Song, L. Ma, Z. Sun, J. Zhang, S. Gan, and J. Zhang, "Channel prediction based temporal multiple sparse bayesian learning for channel estimation in fast time-varying underwater acoustic OFDM communications", Signal Processing, vol. 175, p. 107668, 2020.
[http://dx.doi.org/10.1016/j.sigpro.2020.107668]
[71]
S. Jia, S. Zou, X. Zhang, D. Tian, and L. Da, "Multi-block Sparse Bayesian learning channel estimation for OFDM underwater acoustic communication based on fractional Fourier transform", Appl. Acoust., vol. 192, p. 108721, 2022.
[http://dx.doi.org/10.1016/j.apacoust.2022.108721]
[72]
J. Ling, X. Tan, T. Yardibi, J. Li, M. Lundberg Nordenvaad, H. He, and K. Zhao, "On Bayesian Channel Estimation and FFT-Based Symbol Detection in MIMO Underwater Acoustic Communications", IEEE J. Oceanic Eng., vol. 39, no. 1, pp. 59-73, 2014.
[http://dx.doi.org/10.1109/JOE.2012.2234893]
[73]
S. Wang, Z. He, K. Niu, P. Chen, and Y. Rong, “A sparse bayesian learning based joint channel and impulsive noise estimation algorithm for underwater acoustic ofdm systems”,2018 OCEANS - MTS/IEEE Kobe Techno-Oceans., OTO, 2018, pp. 1-5.
[74]
U. Güntürkün, C. Schlegel, and D. Truhachev, "Compression-Aided Kalman Filter for recursive Bayesian estimation of sparse wideband channels in OFDM systems", In: OCEANS 2016 MTS/IEEE Monterey,, IEEE, 2016, pp. 1-8.
[http://dx.doi.org/10.1109/OCEANS.2016.7761145]
[75]
S. Chen, B. Mulgrew, and S. McLaughlin, "Adaptive Bayesian decision feedback equaliser based on a radial basis function network", In: [Conference Record] SUPERCOMM/ICC'92 Discovering a New World of Communications,, 1992, pp. 1267-1271.
[http://dx.doi.org/10.1109/ICC.1992.268037]
[76]
Inhyok Cha, and S.A. Kassam, "Channel equalization using adaptive complex radial basis function networks", IEEE J. Sel. Areas Comm., vol. 13, no. 1, pp. 122-131, 1995.
[http://dx.doi.org/10.1109/49.363139]
[77]
J. Lee, C. Beach, and N. Tepedelenlioglu, "Channel equalization using radial basis function network", In: 1996 IEEE Int. Conf. Acoust., Speech, and Signal Proc. Conf. Proc., vol. vol. 3. 1996, pp. 1719-1722.
[http://dx.doi.org/10.1109/ICASSP.1996.544139]
[78]
J. Gomes, and V. Barroso, "Using an RBF network for blind equalization: design and performance evaluation", In: 1997 IEEE Int. Conf. on Acoust., Speech, and Signal Proc., vol. 4. 1997, pp. 3285-3288.
[http://dx.doi.org/10.1109/ICASSP.1997.595495]
[79]
P. Kumar, P. Saratchandran, and N. Sundararajan, "Communication channel equalisation using minimal radial basis function neural networks", In: Neural Networks for Signal Processing VIII. Proceedings of the 1998 IEEE Signal Processing Society Workshop (Cat. No. 98TH8378), 1998, pp. 477-485.
[http://dx.doi.org/10.1109/NNSP.1998.710678]
[80]
P. Kumar, P. Saratchandran, and N. Sundararajan, "Non-linear channel equalisation using minimal radial basis function neural networks", In: Proceedings of the 1998 IEEE Int. Conf. Acoust., Speech and Signal Proc., ICASSP ’98 (Cat. No. 98CH36181), vol. 6. 1998, pp. 3373-3376.
[http://dx.doi.org/10.1109/ICASSP.1998.679588]
[81]
Jungsik Lee, C. Beach, and N. Tepedelenlioglu, "A practical radial basis function equalizer", IEEE Trans. Neural Netw., vol. 10, no. 2, pp. 450-455, 1999.
[http://dx.doi.org/10.1109/72.750577] [PMID: 18252544]
[82]
Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning", Nature, vol. 521, pp. 436-444, 2015.
[http://dx.doi.org/10.1038/nature14539]
[83]
H. Ye, G.Y. Li, and B.H. Juang, "Power of Deep Learning for Channel Estimation and Signal Detection in OFDM Systems", IEEE Wirel. Commun. Lett., vol. 7, no. 1, pp. 114-117, 2018.
[http://dx.doi.org/10.1109/LWC.2017.2757490]
[84]
E. Balevi, and J.G. Andrews, "One-Bit OFDM Receivers via Deep Learning", IEEE Trans. Commun., vol. 67, no. 6, pp. 4326-4336, 2019.
[http://dx.doi.org/10.1109/TCOMM.2019.2903811]
[85]
M. Honkala, D. Korpi, and J.M.J. Huttunen, "DeepRx: Fully Convolutional Deep Learning Receiver", IEEE Trans. Wirel. Commun., vol. 20, no. 6, pp. 3925-3940, 2021.
[http://dx.doi.org/10.1109/TWC.2021.3054520]
[86]
J. Kim, H. Ro, and H. Park, "Deep learning-based detector for dual mode OFDM wth index modulation", IEEE Wirel. Commun. Lett., vol. 10, no. 7, pp. 1562-1566, 2021.
[http://dx.doi.org/10.1109/LWC.2021.3074433]
[87]
H. Zhao, F. Ji, M. Wen, H. Yu, and Q. Guan, Multi-task learning based underwater acoustic OFDM communications In IEEE Int. Conf. on Signal Proc., Commun. and Comput. (ICSPCC), 2021, pp. 1-5
[http://dx.doi.org/10.1109/ICSPCC52875.2021.9564511]
[88]
X. Gao, S. Jin, C.K. Wen, and G.Y. Li, "ComNet: Combination of deep learning and expert knowledge in Ofdm receivers", IEEE Commun. Lett., vol. 22, no. 12, pp. 2627-2630, 2018.
[http://dx.doi.org/10.1109/LCOMM.2018.2877965]
[89]
M. Zhang, C. Wen, S. Jin, and F. Zheng, "A Model-driven deep learning network for quantized GFDM receiver", J. Communications and Information Networks, vol. 4, no. 3, pp. 53-59, 2019.
[http://dx.doi.org/10.23919/JCIN.2019.8917885]
[90]
Q. Hu, F. Gao, H. Zhang, S. Jin, and G.Y. Li, "Deep learning for channel estimation: Interpretation, Performance, and Comparison", IEEE Trans. Wirel. Commun., vol. 20, no. 4, pp. 2398-2412, 2021.
[http://dx.doi.org/10.1109/TWC.2020.3042074]
[91]
X. Cheng, D. Liu, Z. Zhu, W. Shi, and Y. Li, "A ResNet-DNN based channel estimation and equalization scheme in FBMC/OQAM Systems",
[http://dx.doi.org/10.1109/WCSP.2018.8555649]
[92]
S. Lee, H. Ju, and B. Shim, "Pilot assignment and channel estimation via deep neural network", In 2018 24th Asia-Pacific Conference on Communications (APCC), 2018, pp. 454-458
[http://dx.doi.org/10.1109/APCC.2018.8633453]
[93]
Y. Liao, Y. Hua, X. Dai, H. Yao, and X. Yang, "Chanestnet: A deep learning based channel estimation for high-speed scenarios", In ICC 2019-2019 IEEE international conference on communications (ICC), 2019, pp. 1-6
[http://dx.doi.org/10.1109/ICC.2019.8761312]
[94]
M.B. Mashhadi, and D. Gündüz, "Pruning the Pilots: Deep learning-based pilot design and channel estimation for MIMO-OFDM systems", IEEE Trans. Wirel. Commun., vol. 20, no. 10, pp. 6315-6328, 2021.
[http://dx.doi.org/10.1109/TWC.2021.3073309]
[95]
P. Jiang, C.K. Wen, S. Jin, and G.Y. Li, "Dual CNN-based channel estimation for MIMO-OFDM systems", IEEE Trans. Commun., vol. 69, no. 9, pp. 5859-5872, 2021.
[http://dx.doi.org/10.1109/TCOMM.2021.3085895]
[96]
Y. Yang, F. Gao, X. Ma, and S. Zhang, "Deep learning-based channel estimation for doubly selective fading channels", IEEE Access, vol. 7, pp. 36579-36589, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2901066]
[97]
R. Jiang, X. Wang, S. Cao, J. Zhao, and X. Li, "Deep neural networks for channel estimation in underwater acoustic OFDM systems", IEEE Access, vol. 7, pp. 23579-23594, 2019.
[http://dx.doi.org/10.1109/ACCESS.2019.2899990]
[98]
Y. Zhang, J. Li, Y. Zakharov, X. Li, and J. Li, "Deep learning based underwater acoustic OFDM communications", Appl. Acoust., vol. 154, pp. 53-58, 2019.
[http://dx.doi.org/10.1016/j.apacoust.2019.04.023]
[99]
M. Zhou, J. Wang, H. Sun, J. Qi, X. Feng, and H. Esmaiel, "A novel DNN based channel estimator for underwater acoustic communications with IM-OFDM", In: 2020 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), 2020, pp. 1-6.
[http://dx.doi.org/10.1109/ICSPCC50002.2020.9259486]
[100]
D. Ouyang, Y. Li, and Z. Wang, "Channel Estimation for Underwater Acoustic OFDM Communications: An Image Super-Resolution Approach", In: Conf. on Commun, 2021, pp. 1-6.
[http://dx.doi.org/10.1109/ICC42927.2021.9500819]
[101]
S. Karunakaran, D. Shanthind, V.V. Hari Babu, and S. Mutahar Aaqib, "WITHDRAWN: Machine learning based wireless acoustic communication with enhanced performance", Mater. Today Proc., 2021.
[http://dx.doi.org/10.1016/j.matpr.2020.12.1132]
[102]
R. Zhao, M. Li, and W. Bai, "Underwater acoustic networks environment simulation with combination of BELLHOP and OPNET modeler", In: OCEANS 2017-Aberdeen, Aberdeen, UK, 2017.
[http://dx.doi.org/10.1109/OCEANSE.2017.8085016]
[103]
F. Jia, E. Cheng, and F. Yuan, "The study on time-variant characteristics of under water acoustic channels", In: 2012 International Conference on Systems and Informatics (ICSAI2012), Yantai, China, 2012, pp. 1650-1654.
[http://dx.doi.org/10.1109/ICSAI.2012.6223357]
[104]
J. Zhang, J. Cross, and Y. R. Zheng, "Statistical channel modeling of wireless shallow water acoustic communications from experiment data", In: 2010 - MILCOM 2010 Military communications conference, San Jose, CA, USA, 2010.
[http://dx.doi.org/10.1109/MILCOM.2010.5680323]
[105]
S. Beygi, and U. Mitra, "Multi-scale multi-lag channel estimation using low rank structure of received signal", In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014, pp. pp. 4299-4303.
[http://dx.doi.org/10.1109/ICASSP.2014.6854413]
[106]
S. Beygi, and U. Mitra, Multi-Scale Multi-Lag Channel Estimation Using Low Rank Approximation for OFDM. IEEE Trans. Signal Process., vol. 63, no. 18, pp. 4744-4755, 2015.
[http://dx.doi.org/10.1109/TSP.2015.2449266]
[107]
S. Beygi, U. Mitra, and M.R. Petraglia, "Multi-scale multi-lag channel estimation via linearization of training signal spectrum and sparse approximation", In: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), South Brisbane, QLD, Australia, 2015, pp. pp. 3222-3226.
[http://dx.doi.org/10.1109/ICASSP.2015.7178566]
[108]
S. Kim, "Angle-domain frequency-selective sparse channel estimation for underwater MIMO-OFDM systems", IEEE Commun. Lett., vol. 16, no. 5, pp. 685-687, 2012.
[http://dx.doi.org/10.1109/LCOMM.2012.032612.120250]
[109]
R. Bu, S. Wang, and X. Yu, "Blind channel estimation and phase ambiguity elimination in MIMO-OFDM UWA communications", In: 2016 IEEE Int. Conf. on Signal Process., 2016, pp. 1-6.
[110]
E. Panayirci, M.T. Altabbaa, and H.V. Poor, "Channel Estimation and Equalization for Alamouti SF-Coded OFDM-UWA Communications", IEEE Trans. Vehicular Technol., vol. 70, no. 2, pp. 1709-1723, 2021.
[http://dx.doi.org/10.1109/TVT.2021.3056004]
[111]
M. Altabbaa, "Sparse channel estimation for mimo index modulated ofdm based underwater acoustic communications", In: 2020 International Conference on Communication, Computing and Industry 4.0 (C2I4), Bangalore, India, 2020, pp. 1-6.
[http://dx.doi.org/10.1109/c2i451079.2020.9368920]
[112]
M. Altabbaa, A. Ogrenci, E. Panayirci, and H. Poor, "Sparse channel estimation for space-time block coded ofdm-based underwater acoustic channels", In: 2018 IEEE Global Commun. Conf. (GLOBECOM), 2018, pp. 1-6.
[http://dx.doi.org/10.1109/GLOCOM.2018.8647219]
[113]
M. Zhang, X. Kuai, F. Wang, and X. Yuan, "Variance state propagation for channel estimation in underwater acoustic massive mimo-ofdm with clustered channel sparsity", In: 2021 IEEE/CIC Int. Conf. Commun. China (ICCC Workshops), Xiamen, China, 2021, pp. pp. 233-238.
[http://dx.doi.org/10.1109/ICCCWorkshops52231.2021.9538905]
[114]
T. Le, P. Makula, T. Bui, M. Richterova, and X. Tran, "Group successive ICI cancellation for MIMO-OFDM systems in underwater acoustic channels", In: Conf. Mechatronics, Mechatronika (ME), 2016, pp. 1-5.
[115]
Y. Yang, Y. Li, W. Zhang, F. Qin, P. Zhu, and C.X. Wang, "Generative-adversarial-network-based wireless channel modeling: challenges and opportunities", IEEE Commun. Mag., vol. 57, no. 3, pp. 22-27, 2019.
[http://dx.doi.org/10.1109/MCOM.2019.1800635]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy