Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

The Metformin Immunoregulatory Actions in Tumor Suppression and Normal Tissues Protection

Author(s): Jitendra Gupta, Abduladheem Turki Jalil*, Zahraa Hamzaa Abd Alzahraa, Zafar Aminov, Fahad Alsaikhan*, Andrés Alexis Ramírez-Coronel, Pushpamala Ramaiah and Masoud Najafi*

Volume 31, Issue 33, 2024

Published on: 24 July, 2023

Page: [5370 - 5396] Pages: 27

DOI: 10.2174/0929867331666230703143907

Price: $65

Abstract

The immune system is the key player in a wide range of responses in normal tissues and tumors to anticancer therapy. Inflammatory and fibrotic responses in normal tissues are the main limitations of chemotherapy, radiotherapy, and also some newer anticancer drugs such as immune checkpoint inhibitors (ICIs). Immune system responses within solid tumors including anti-tumor and tumor-promoting responses can suppress or help tumor growth. Thus, modulation of immune cells and their secretions such as cytokines, growth factors and epigenetic modulators, pro-apoptosis molecules, and some other molecules can be suggested to alleviate side effects in normal tissues and drug-resistance mechanisms in the tumor. Metformin as an anti-diabetes drug has shown intriguing properties such as anti-inflammation, anti-fibrosis, and anticancer effects. Some investigations have uncovered that metformin can ameliorate radiation/chemotherapy toxicity in normal cells and tissues through the modulation of several targets in cells and tissues. These effects of metformin may ameliorate severe inflammatory responses and fibrosis after exposure to ionizing radiation or following treatment with highly toxic chemotherapy drugs. Metformin can suppress the activity of immunosuppressive cells in the tumor through the phosphorylation of AMP-activated protein kinase (AMPK). In addition, metformin may stimulate antigen presentation and maturation of anticancer immune cells, which lead to the induction of anticancer immunity in the tumor. This review aims to explain the detailed mechanisms of normal tissue sparing and tumor suppression during cancer therapy using adjuvant metformin with an emphasis on immune system responses.

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Koene, R.J.; Prizment, A.E.; Blaes, A.; Konety, S.H. Shared risk factors in cardiovascular disease and cancer. Circulation, 2016, 133(11), 1104-1114.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.020406] [PMID: 26976915]
[3]
Das, S.; Dasari, A. Novel therapeutics for patients with well-differentiated gastroenteropancreatic neuroendocrine tumors. Ther. Adv. Med. Oncol., 2021, 13
[http://dx.doi.org/10.1177/17588359211018047] [PMID: 34093744]
[4]
Das, S.; Phillips, S.; Lee, C.L.; Agarwal, R.; Bergsland, E.; Strosberg, J.; Chan, J.A.; LaFerriere, H.; Ramirez, R.A.; Berlin, J.; Dasari, A. Efficacy and toxicity of anti-vascular endothelial growth receptor tyrosine kinase inhibitors in patients with neuroendocrine tumours – A systematic review and meta-analysis. Eur. J. Cancer, 2023, 182, 43-52.
[http://dx.doi.org/10.1016/j.ejca.2022.12.031] [PMID: 36738541]
[5]
Popp, I.; Grosu, A.L.; Niedermann, G.; Duda, D.G. Immune modulation by hypofractionated stereotactic radiation therapy: Therapeutic implications. Radiother. Oncol., 2016, 120(2), 185-194.
[http://dx.doi.org/10.1016/j.radonc.2016.07.013] [PMID: 27495145]
[6]
Lubas, M.J.; Kumar, S.S. The combined use of SBRT and immunotherapy—a literature review. Curr. Oncol. Rep., 2020, 22(12), 117.
[http://dx.doi.org/10.1007/s11912-020-00986-9] [PMID: 32929678]
[7]
Yang, F.; Li, A.; Liu, H.; Zhang, H. Gastric cancer combination therapy: synthesis of a hyaluronic acid and cisplatin containing lipid prodrug coloaded with sorafenib in a nanoparticulate system to exhibit enhanced anticancer efficacy and reduced toxicity. Drug Des. Devel. Ther., 2018, 12, 3321-3333.
[http://dx.doi.org/10.2147/DDDT.S176879] [PMID: 30323564]
[8]
Bensadoun, R.J.; Schubert, M.M.; Lalla, R.V.; Keefe, D. Amifostine in the management of radiation-induced and chemo-induced mucositis. Support. Care Cancer, 2006, 14(6), 566-572.
[http://dx.doi.org/10.1007/s00520-006-0047-4] [PMID: 16586122]
[9]
Rades, D.; Fehlauer, F.; Bajrovic, A.; Mahlmann, B.; Richter, E.; Alberti, W. Serious adverse effects of amifostine during radiotherapy in head and neck cancer patients. Radiother. Oncol., 2004, 70(3), 261-264.
[http://dx.doi.org/10.1016/j.radonc.2003.10.005] [PMID: 15064010]
[10]
Kouvaris, J.R.; Kouloulias, V.E.; Vlahos, L.J. Amifostine: The first selective-target and broad-spectrum radioprotector. Oncologist, 2007, 12(6), 738-747.
[http://dx.doi.org/10.1634/theoncologist.12-6-738] [PMID: 17602063]
[11]
Fernando, W.; Rupasinghe, H.P.V.; Hoskin, D.W. Dietary phytochemicals with anti-oxidant and pro-oxidant activities: A double-edged sword in relation to adjuvant chemotherapy and radiotherapy? Cancer Lett., 2019, 452, 168-177.
[http://dx.doi.org/10.1016/j.canlet.2019.03.022] [PMID: 30910593]
[12]
Golchin, A.; Farahany, T.Z. Biological products: Cellular therapy and FDA approved products. Stem Cell Rev., 2019, 15(2), 166-175.
[http://dx.doi.org/10.1007/s12015-018-9866-1] [PMID: 30623359]
[13]
Majolo, F.; de Oliveira Becker Delwing, L.K.; Marmitt, D.J.; Bustamante-Filho, I.C.; Goettert, M.I. Medicinal plants and bioactive natural compounds for cancer treatment: Important advances for drug discovery. Phytochem. Lett., 2019, 31, 196-207.
[http://dx.doi.org/10.1016/j.phytol.2019.04.003]
[14]
Zhao, S.; Tang, Y.; Wang, R.; Najafi, M. Mechanisms of cancer cell death induction by paclitaxel: An updated review. Apoptosis, 2022, 27(9-10), 647-667.
[http://dx.doi.org/10.1007/s10495-022-01750-z] [PMID: 35849264]
[15]
Ma, R.; Yi, B.; Riker, A.I.; Xi, Y. Metformin and cancer immunity. Acta Pharmacol. Sin., 2020, 41(11), 1403-1409.
[http://dx.doi.org/10.1038/s41401-020-00508-0] [PMID: 32868904]
[16]
Tang, Z.; Tang, N.; Jiang, S.; Bai, Y.; Guan, C.; Zhang, W.; Fan, S.; Huang, Y.; Lin, H.; Ying, Y. The chemosensitizing role of metformin in anti-cancer therapy. Anticancer Agents Med Chem, 2021, 21(8), 949-962.
[17]
Sutkowska, E.; Fortuna, P.; Wisniewski, J.; Sutkowska, K.; Hodurek, P.; Gamian, A.; Kaluza, B. Low metformin dose and its therapeutic serum concentration in prediabetes. Sci. Rep., 2021, 11(1), 11684.
[http://dx.doi.org/10.1038/s41598-021-91174-7] [PMID: 34083618]
[18]
Ningrum, V.D.A.; Ikawati, Z.; Sadewa, A.H.; Ikhsan, M.R. Patient-factors associated with metformin steady-state levels in type 2 diabetes mellitus with therapeutic dosage. J. Clin. Transl. Endocrinol., 2018, 12, 42-47.
[http://dx.doi.org/10.1016/j.jcte.2018.05.001] [PMID: 29892566]
[19]
Najafi, M.; Cheki, M.; Rezapoor, S.; Geraily, G.; Motevaseli, E.; Carnovale, C.; Clementi, E.; Shirazi, A. Metformin: Prevention of genomic instability and cancer: A review. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2018, 827, 1-8.
[http://dx.doi.org/10.1016/j.mrgentox.2018.01.007] [PMID: 29502733]
[20]
Jeong, Y.S.; Jusko, W.J. Meta-assessment of metformin absorption and disposition pharmacokinetics in nine species. Pharmaceuticals, 2021, 14(6), 545.
[http://dx.doi.org/10.3390/ph14060545] [PMID: 34200427]
[21]
Jalving, M.; Gietema, J.A.; Lefrandt, J.D.; Jong, S.; Reyners, A.K.L.; Gans, R.O.B.; Vries, E.G.E. Metformin: Taking away the candy for cancer? Eur. J. Cancer, 2010, 46(13), 2369-2380.
[http://dx.doi.org/10.1016/j.ejca.2010.06.012] [PMID: 20656475]
[22]
Saraei, P.; Asadi, I.; Kakar, M.A.; Moradi-Kor, N. The beneficial effects of metformin on cancer prevention and therapy: A comprehensive review of recent advances. Cancer Manag. Res., 2019, 11, 3295-3313.
[http://dx.doi.org/10.2147/CMAR.S200059] [PMID: 31114366]
[23]
DeCensi, A.; Puntoni, M.; Goodwin, P.; Cazzaniga, M.; Gennari, A.; Bonanni, B.; Gandini, S. Metformin and cancer risk in diabetic patients: A systematic review and meta-analysis. Cancer Prev. Res., 2010, 3(11), 1451-1461.
[http://dx.doi.org/10.1158/1940-6207.CAPR-10-0157] [PMID: 20947488]
[24]
vial, G.; Detaille, D.; Guigas, B. Role of mitochondria in the mechanism(s) of action of metformin. Front. Endocrinol., 2019, 10, 294.
[http://dx.doi.org/10.3389/fendo.2019.00294] [PMID: 31133988]
[25]
Fontaine, E. Metformin-induced mitochondrial complex I inhibition: Facts, uncertainties, and consequences. Front. Endocrinol., 2018, 9, 753.
[http://dx.doi.org/10.3389/fendo.2018.00753] [PMID: 30619086]
[26]
Tosca, L.; Ramé, C.; Chabrolle, C.; Tesseraud, S.; Dupont, J. Metformin decreases IGF1-induced cell proliferation and protein synthesis through AMP-activated protein kinase in cultured bovine granulosa cells. Reproduction, 2010, 139(2), 409-418.
[http://dx.doi.org/10.1530/REP-09-0351] [PMID: 19906888]
[27]
Farhood, B.; Ashrafizadeh, M.; khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Afrashi, S.; Musa, A.E.; Najafi, M. Targeting of cellular redox metabolism for mitigation of radiation injury. Life Sci., 2020, 250, 117570.
[http://dx.doi.org/10.1016/j.lfs.2020.117570] [PMID: 32205088]
[28]
Liu, Y.Q.; Wang, X.L.; He, D.H.; Cheng, Y.X. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicine, 2021, 80, 153402.
[http://dx.doi.org/10.1016/j.phymed.2020.153402] [PMID: 33203590]
[29]
Boopathi, E.; Thangavel, C. Dark side of cancer therapy: Cancer treatment-induced cardiopulmonary inflammation, fibrosis, and immune modulation. Int. J. Mol. Sci., 2021, 22(18), 10126.
[http://dx.doi.org/10.3390/ijms221810126] [PMID: 34576287]
[30]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. Damage-associated molecular patterns in tumor radiotherapy. Int. Immunopharmacol., 2020, 86, 106761.
[http://dx.doi.org/10.1016/j.intimp.2020.106761] [PMID: 32629409]
[31]
Veiko, N.N. Oxidized extracellular DNA as a stress signal in human cells. Oxid Med Cell Longev, 2013, 2013, 649747.
[32]
Wu, X.; Xu, W.W.; Huan, X.; Wu, G.; Li, G.; Zhou, Y.H.; Najafi, M. Mechanisms of cancer cell killing by metformin: a review on different cell death pathways. Mol. Cell. Biochem., 2023, 478(1), 197-214.
[http://dx.doi.org/10.1007/s11010-022-04502-4] [PMID: 35771397]
[33]
Huang, J.; Chang, Z.; Lu, Q.; Chen, X.; Najafi, M. Nobiletin as an inducer of programmed cell death in cancer: A review. Apoptosis, 2022, 27(5-6), 297-310.
[http://dx.doi.org/10.1007/s10495-022-01721-4] [PMID: 35312885]
[34]
Hochreiter-Hufford, A.; Ravichandran, K.S. Clearing the dead: Apoptotic cell sensing, recognition, engulfment, and digestion. Cold Spring Harb. Perspect. Biol., 2013, 5(1), a008748.
[http://dx.doi.org/10.1101/cshperspect.a008748] [PMID: 23284042]
[35]
Prata, L.G.L.; Ovsyannikova, I.G.; Tchkonia, T.; Kirkland, J.L. In Semin Immunol; Elsevier, 2018, Vol. 40, p. 101275.
[36]
Tominaga, K.; Suzuki, H.I. TGF-β signaling in cellular senescence and aging-related pathology. Int. J. Mol. Sci., 2019, 20(20), 5002.
[http://dx.doi.org/10.3390/ijms20205002] [PMID: 31658594]
[37]
Marchi, S.; Guilbaud, E.; Tait, S.W.; Yamazaki, T.; Galluzzi, L. Mitochondrial control of inflammation. Nat. Rev. Immunol., 2022, 23(3), 159-173.
[PMID: 35879417]
[38]
Pandolfi, F.; Altamura, S.; Frosali, S.; Conti, P. Key role of DAMP in inflammation, cancer, and tissue repair. Clin. Ther., 2016, 38(5), 1017-1028.
[http://dx.doi.org/10.1016/j.clinthera.2016.02.028] [PMID: 27021609]
[39]
Gong, T.; Liu, L.; Jiang, W.; Zhou, R. DAMP-sensing receptors in sterile inflammation and inflammatory diseases. Nat. Rev. Immunol., 2020, 20(2), 95-112.
[http://dx.doi.org/10.1038/s41577-019-0215-7] [PMID: 31558839]
[40]
Lai, X.; Najafi, M. Redox interactions in chemo/radiation therapy-induced lung toxicity; Mechanisms and therapy perspectives. Curr. Drug Targets, 2022, 23(13), 1261-1276.
[http://dx.doi.org/10.2174/1389450123666220705123315] [PMID: 35792117]
[41]
khodamoradi, E.; Hoseini-Ghahfarokhi, M.; Amini, P.; Motevaseli, E.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Targets for protection and mitigation of radiation injury. Cell. Mol. Life Sci., 2020, 77(16), 3129-3159.
[http://dx.doi.org/10.1007/s00018-020-03479-x] [PMID: 32072238]
[42]
Yang, C.; Song, C.; Wang, Y.; Zhou, W.; Zheng, W.; Zhou, H.; Deng, G.; Li, H.; Xiao, W.; Yang, Z.; Kong, L.; Ge, H.; Song, Y.; Sun, Y. Re-Du-Ning injection ameliorates radiation-induced pneumonitis and fibrosis by inhibiting AIM2 inflammasome and epithelial-mesenchymal transition. Phytomedicine, 2022, 102, 154184.
[http://dx.doi.org/10.1016/j.phymed.2022.154184] [PMID: 35665679]
[43]
Yu, D.; Li, S.; Wang, S.; Li, X.; Zhu, M.; Huang, S.; Sun, L.; Zhang, Y.; Liu, Y.; Wang, S. Development and characterization of VEGF165-chitosan nanoparticles for the treatment of radiation-induced skin injury in rats. Mar. Drugs, 2016, 14(10), 182.
[http://dx.doi.org/10.3390/md14100182] [PMID: 27727163]
[44]
Borrelli, M.R.; Shen, A.H.; Lee, G.K.; Momeni, A.; Longaker, M.T.; Wan, D.C. Radiation-induced skin fibrosis: Pathogenesis, current treatment options, and emerging therapeutics. Ann. Plast. Surg., 2019, 83(4S)(Suppl. 1), S59-S64.
[http://dx.doi.org/10.1097/SAP.0000000000002098] [PMID: 31513068]
[45]
Cohn, S.M.; Vidrich, A.; Bickston, S.J. Radiation injury in the gastrointestinal tract; Yamada's Textbook of Gastroenterology, 2015, pp. 2509-2520.
[46]
Chen, C.C.; Wang, L.; Lin, J.C.; Jan, J.S. The prognostic factors for locally advanced cervical cancer patients treated by intensity-modulated radiation therapy with concurrent chemotherapy. J. Formos. Med. Assoc., 2015, 114(3), 231-237.
[http://dx.doi.org/10.1016/j.jfma.2012.10.021] [PMID: 25777974]
[47]
Xu, C.; Najafi, M.; Shang, Z. lung pneumonitis and fibrosis in cancer therapy: A review on cellular and molecular mechanisms. Curr. Drug Targets, 2022, 23(16), 1505-1525.
[http://dx.doi.org/10.2174/1389450123666220907144131] [PMID: 36082868]
[48]
Fu, X.; Tang, J.; Wen, P.; Huang, Z.; Najafi, M. Redox interactions-induced cardiac toxicity in cancer therapy. Arch. Biochem. Biophys., 2021, 708, 108952.
[http://dx.doi.org/10.1016/j.abb.2021.108952] [PMID: 34097901]
[49]
Altan, M.; Toki, M.I.; Gettinger, S.N.; Carvajal-Hausdorf, D.E.; Zugazagoitia, J.; Sinard, J.H.; Herbst, R.S.; Rimm, D.L. Immune checkpoint inhibitor–associated pericarditis. J. Thorac. Oncol., 2019, 14(6), 1102-1108.
[http://dx.doi.org/10.1016/j.jtho.2019.02.026] [PMID: 30851443]
[50]
Michel, L.; Rassaf, T.; Totzeck, M. Cardiotoxicity from immune checkpoint inhibitors. Int. J. Cardiol. Heart Vasc., 2019, 25, 100420.
[http://dx.doi.org/10.1016/j.ijcha.2019.100420] [PMID: 31517036]
[51]
Klein, D.; Steens, J.; Wiesemann, A.; Schulz, F.; Kaschani, F.; Röck, K.; Yamaguchi, M.; Wirsdörfer, F.; Kaiser, M.; Fischer, J.W.; Stuschke, M.; Jendrossek, V. Mesenchymal stem cell therapy protects lungs from radiation-induced endothelial cell loss by restoring superoxide dismutase 1 expression. Antioxid. Redox Signal., 2017, 26(11), 563-582.
[http://dx.doi.org/10.1089/ars.2016.6748] [PMID: 27572073]
[52]
Groves, A.M.; Johnston, C.J.; Williams, J.P.; Finkelstein, J.N. Role of infiltrating monocytes in the development of radiation-induced pulmonary fibrosis. Radiat. Res., 2018, 189(3), 300-311.
[http://dx.doi.org/10.1667/RR14874.1] [PMID: 29332538]
[53]
Li, L.; Mok, H.; Jhaveri, P.; Bonnen, M.D.; Sikora, A.G.; Eissa, N.T.; Komaki, R.U.; Ghebre, Y.T. Anticancer therapy and lung injury: Molecular mechanisms. Expert Rev. Anticancer Ther., 2018, 18(10), 1041-1057.
[http://dx.doi.org/10.1080/14737140.2018.1500180] [PMID: 29996062]
[54]
Leger, P.; Limper, A.H.; Maldonado, F. Pulmonary toxicities from conventional chemotherapy. Clin. Chest Med., 2017, 38(2), 209-222.
[http://dx.doi.org/10.1016/j.ccm.2017.01.002] [PMID: 28477634]
[55]
Straub, J.M.; New, J.; Hamilton, C.D.; Lominska, C.; Shnayder, Y.; Thomas, S.M. Radiation-induced fibrosis: Mechanisms and implications for therapy. J. Cancer Res. Clin. Oncol., 2015, 141(11), 1985-1994.
[http://dx.doi.org/10.1007/s00432-015-1974-6] [PMID: 25910988]
[56]
Farhood, B.; Aliasgharzadeh, A.; Amini, P.; Rezaeyan, A.; Tavassoli, A.; Motevaseli, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Mitigation of radiation-induced lung pneumonitis and fibrosis using metformin and melatonin: A histopathological study. Medicina, 2019, 55(8), 417.
[http://dx.doi.org/10.3390/medicina55080417] [PMID: 31366142]
[57]
Yahyapour, R.; Amini, P.; Saffar, H.; Motevaseli, E.; Farhood, B.; Pooladvand, V.; Shabeeb, D.; Musa, A.E.; Najafi, M. Protective effect of metformin, resveratrol and alpha-lipoic acid on radiation- induced pneumonitis and fibrosis: A histopathological study. Curr. Drug Res. Rev., 2019, 11(2), 111-117.
[http://dx.doi.org/10.2174/2589977511666191018180758] [PMID: 31875783]
[58]
Azmoonfar, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Yahyapour, R.; farhood, B.; Nouruzi, F.; Khodamoradi, E.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced pneumonitis and fibrosis and attenuates upregulation of dual oxidase genes expression. Adv. Pharm. Bull., 2018, 8(4), 697-704.
[http://dx.doi.org/10.15171/apb.2018.078] [PMID: 30607342]
[59]
Chung, S.I.; Horton, J.A.; Ramalingam, T.R.; White, A.O.; Chung, E.J.; Hudak, K.E.; Scroggins, B.T.; Arron, J.R.; Wynn, T.A.; Citrin, D.E. IL-13 is a therapeutic target in radiation lung injury. Sci. Rep., 2016, 6(1), 39714.
[http://dx.doi.org/10.1038/srep39714] [PMID: 28004808]
[60]
Groves, A.M.; Johnston, C.J.; Misra, R.S.; Williams, J.P.; Finkelstein, J.N. Effects of IL-4 on pulmonary fibrosis and the accumulation and phenotype of macrophage subpopulations following thoracic irradiation. Int. J. Radiat. Biol., 2016, 92(12), 754-765.
[http://dx.doi.org/10.1080/09553002.2016.1222094] [PMID: 27539247]
[61]
Büttner, C.; Skupin, A.; Reimann, T.; Rieber, E.P.; Unteregger, G.; Geyer, P.; Frank, K.H. Local production of interleukin-4 during radiation-induced pneumonitis and pulmonary fibrosis in rats: Macrophages as a prominent source of interleukin-4. Am. J. Respir. Cell Mol. Biol., 1997, 17(3), 315-325.
[http://dx.doi.org/10.1165/ajrcmb.17.3.2279] [PMID: 9308918]
[62]
Park, H.R.; Jo, S.K.; Jung, U. Ionizing radiation promotes epithelial–to–mesenchymal transition in lung epithelial cells by TGF-β-producing M2 macrophages. In Vivo, 2019, 33(6), 1773-1784.
[http://dx.doi.org/10.21873/invivo.11668] [PMID: 31662502]
[63]
Jakubzick, C.; Choi, E.S.; Joshi, B.H.; Keane, M.P.; Kunkel, S.L.; Puri, R.K.; Hogaboam, C.M. Therapeutic attenuation of pulmonary fibrosis via targeting of IL-4- and IL-13-responsive cells. J. Immunol., 2003, 171(5), 2684-2693.
[http://dx.doi.org/10.4049/jimmunol.171.5.2684] [PMID: 12928422]
[64]
Karo-Atar, D.; Bordowitz, A.; Wand, O.; Pasmanik-Chor, M.; Fernandez, I.E.; Itan, M.; Frenkel, R.; Herbert, D.R.; Finkelman, F.D.; Eickelberg, O.; Munitz, A. A protective role for IL-13 receptor α 1 in bleomycin-induced pulmonary injury and repair. Mucosal Immunol., 2016, 9(1), 240-253.
[http://dx.doi.org/10.1038/mi.2015.56] [PMID: 26153764]
[65]
Wang, J.; Wang, Y.; Han, J.; Mei, H.; Yu, D.; Ding, Q.; Zhang, T.; Wu, G.; Peng, G.; Lin, Z. Metformin attenuates radiation-induced pulmonary fibrosis in a murine model. Radiat. Res., 2017, 188(1), 105-113.
[http://dx.doi.org/10.1667/RR14708.1] [PMID: 28437189]
[66]
Shahid, S. Review of hematological indices of cancer patients receiving combined chemotherapy & radiotherapy or receiving radiotherapy alone. Crit. Rev. Oncol. Hematol., 2016, 105, 145-155.
[http://dx.doi.org/10.1016/j.critrevonc.2016.06.001] [PMID: 27423975]
[67]
Kumar, T.; Schernberg, A.; Busato, F.; Laurans, M.; Fumagalli, I.; Dumas, I.; Deutsch, E.; Haie-Meder, C.; Chargari, C. Correlation between pelvic bone marrow radiation dose and acute hematological toxicity in cervical cancer patients treated with concurrent chemoradiation. Cancer Manag. Res., 2019, 11, 6285-6297.
[http://dx.doi.org/10.2147/CMAR.S195989] [PMID: 31372035]
[68]
Chang, J.; Feng, W.; Wang, Y.; Luo, Y.; Allen, A.R.; Koturbash, I.; Turner, J.; Stewart, B.; Raber, J.; Hauer-Jensen, M.; Zhou, D.; Shao, L. Whole-body proton irradiation causes long-term damage to hematopoietic stem cells in mice. Radiat. Res., 2015, 183(2), 240-248.
[http://dx.doi.org/10.1667/RR13887.1] [PMID: 25635345]
[69]
Wang, Y.; Liu, L.; Pazhanisamy, S.K.; Li, H.; Meng, A.; Zhou, D. Total body irradiation causes residual bone marrow injury by induction of persistent oxidative stress in murine hematopoietic stem cells. Free Radic. Biol. Med., 2010, 48(2), 348-356.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.11.005] [PMID: 19925862]
[70]
Zhang, H.; Zhai, Z.; Wang, Y.; Zhang, J.; Wu, H.; Wang, Y.; Li, C.; Li, D.; Lu, L.; Wang, X.; Chang, J.; Hou, Q.; Ju, Z.; Zhou, D.; Meng, A. Resveratrol ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med., 2013, 54, 40-50.
[http://dx.doi.org/10.1016/j.freeradbiomed.2012.10.530] [PMID: 23124026]
[71]
Zhang, H.; Wang, Y.; Meng, A.; Yan, H.; Wang, X.; Niu, J.; Li, J.; Wang, H. Inhibiting TGFβ1 has a protective effect on mouse bone marrow suppression following ionizing radiation exposure in vitro. J. Radiat. Res., 2013, 54(4), 630-636.
[http://dx.doi.org/10.1093/jrr/rrs142] [PMID: 23370919]
[72]
Cheki, M.; Shirazi, A.; Mahmoudzadeh, A.; Bazzaz, J.T.; Hosseinimehr, S.J. The radioprotective effect of metformin against cytotoxicity and genotoxicity induced by ionizing radiation in cultured human blood lymphocytes. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2016, 809, 24-32.
[http://dx.doi.org/10.1016/j.mrgentox.2016.09.001] [PMID: 27692296]
[73]
Mortezaee, K.; Shabeeb, D.; Musa, A.E.; Najafi, M.; Farhood, B. Metformin as a radiation modifier; Implications to normal tissue protection and tumor sensitization. Curr. Clin. Pharmacol., 2019, 14(1), 41-53.
[http://dx.doi.org/10.2174/1574884713666181025141559] [PMID: 30360725]
[74]
Xu, G.; Wu, H.; Zhang, J.; Li, D.; Wang, Y.; Wang, Y.; Zhang, H.; Lu, L.; Li, C.; Huang, S.; Xing, Y.; Zhou, D.; Meng, A. Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice. Free Radic. Biol. Med., 2015, 87, 15-25.
[http://dx.doi.org/10.1016/j.freeradbiomed.2015.05.045] [PMID: 26086617]
[75]
Spałek, M. Chronic radiation-induced dermatitis: Challenges and solutions. Clin. Cosmet. Investig. Dermatol., 2016, 9, 473-482.
[http://dx.doi.org/10.2147/CCID.S94320] [PMID: 28003769]
[76]
Kole, A.J.; Kole, L.; Moran, M. Acute radiation dermatitis in breast cancer patients: Challenges and solutions. Breast Cancer, 2017, 9, 313-323.
[http://dx.doi.org/10.2147/BCTT.S109763] [PMID: 28503074]
[77]
Ferreira, E.B.; Ciol, M.A.; de Meneses, A.G.; Bontempo, P.S.M.; Hoffman, J.M.; Reis, P.E.D. Chamomile gel versus urea cream to prevent acute radiation dermatitis in head and neck cancer patients: Results from a preliminary clinical trial. Integr. Cancer Ther., 2020, 19
[http://dx.doi.org/10.1177/1534735420962174] [PMID: 32985288]
[78]
Liang, X.; Bradley, J.A.; Zheng, D.; Rutenberg, M.; Yeung, D.; Mendenhall, N.; Li, Z. Prognostic factors of radiation dermatitis following passive-scattering proton therapy for breast cancer. Radiat. Oncol., 2018, 13(1), 72.
[http://dx.doi.org/10.1186/s13014-018-1004-3] [PMID: 29673384]
[79]
Shabeeb, D.; Najafi, M.; Musa, A.E.; Keshavarz, M.; Shirazi, A.; Hassanzadeh, G.; Hadian, M.R.; Samandari, H. Biochemical and histopathological evaluation of the radioprotective effects of melatonin against gamma ray-induced skin damage. Curr. Radiopharm., 2019, 12(1), 72-81.
[http://dx.doi.org/10.2174/1874471012666181120163250] [PMID: 30465519]
[80]
Kim, J.M.; Yoo, H.; Kim, J.Y.; Oh, S.H.; Kang, J.W.; Yoo, B.R.; Han, S.Y.; Kim, C.S.; Choi, W.H.; Lee, E.J.; Byeon, H.J.; Lee, W.J.; Lee, Y.S.; Cho, J. Metformin alleviates radiation-induced skin fibrosis via the downregulation of FOXO3. Cell. Physiol. Biochem., 2018, 48(3), 959-970.
[http://dx.doi.org/10.1159/000491964] [PMID: 30036874]
[81]
Mollà, M.; Panés, J. Radiation-induced intestinal inflammation. World J. Gastroenterol., 2007, 13(22), 3043-3046.
[http://dx.doi.org/10.3748/wjg.v13.i22.3043] [PMID: 17589918]
[82]
Wang, J.; Boerma, M.; Fu, Q.; HauerJensen, M. Significance of endothelial dysfunction in the pathogenesis of early and delayed radiation enteropathy. World J. Gastroenterol., 2007, 13(22), 3047-3055.
[http://dx.doi.org/10.3748/wjg.v13.i22.3047] [PMID: 17589919]
[83]
Gervaz, P.; Morel, P.; Vozenin-Brotons, M.C. Molecular aspects of intestinal radiation-induced fibrosis. Curr. Mol. Med., 2009, 9(3), 273-280.
[http://dx.doi.org/10.2174/156652409787847164] [PMID: 19355909]
[84]
Shadad, A.K.; Sullivan, F.J.; Martin, J.D.; Egan, L.J. Gastrointestinal radiation injury: Symptoms, risk factors and mechanisms. World J. Gastroenterol., 2013, 19(2), 185-198.
[http://dx.doi.org/10.3748/wjg.v19.i2.185] [PMID: 23345941]
[85]
Bagheri, H.; Rezapoor, S.; Najafi, M.; Safar, H.; Shabeeb, D.; Cheki, M.; Shekarchi, B.; Motevaseli, E. Metformin protects the rat small intestine against radiation enteritis. Jundishapur J. Nat. Pharm. Prod., 2019, 14(4)
[http://dx.doi.org/10.5812/jjnpp.67352]
[86]
Uthaiwat, P.; Priprem, A.; Chio-Srichan, S.; Settasatian, C.; Lee, Y.C.; Mahakunakorn, P.; Boonsiri, P.; Leelayuwat, C.; Tippayawat, P.; Puthongking, P.; Daduang, J. Oral administration of melatonin or succinyl melatonin niosome gel benefits 5-fu-induced small intestinal mucositis treatment in mice. AAPS PharmSciTech, 2021, 22(5), 200.
[http://dx.doi.org/10.1208/s12249-021-01941-y] [PMID: 34212283]
[87]
Uthaiwat, P.; Daduang, J.; Priprem, A.; Settasatian, C.; Chio-Srichan, S.; Lee, Y.C.; Mahakunakorn, P.; Boonsiri, P. Topical melatonin niosome gel for the treatment of 5-fu-induced oral mucositis in mice. Curr. Drug Deliv., 2021, 18(2), 199-211.
[http://dx.doi.org/10.2174/1567201817666200525151848] [PMID: 32484102]
[88]
Lozano, A.; Marruecos, J.; Rubió, J.; Farré, N.; Gómez-Millán, J.; Morera, R.; Planas, I.; Lanzuela, M.; Vázquez-Masedo, M.G.; Cascallar, L.; Giralt, J.; Escames, G.; Valentí, V.; Grima, P.; Bosser, R.; Tarragó, C.; Mesía, R. Randomized placebo-controlled phase II trial of high-dose melatonin mucoadhesive oral gel for the prevention and treatment of oral mucositis in patients with head and neck cancer undergoing radiation therapy concurrent with systemic treatment. Clin. Transl. Oncol., 2021, 23(9), 1801-1810.
[http://dx.doi.org/10.1007/s12094-021-02586-w] [PMID: 33738704]
[89]
Pulito, C.; Cristaudo, A.; Porta, C.L.; Zapperi, S.; Blandino, G.; Morrone, A.; Strano, S. Oral mucositis: The hidden side of cancer therapy. J. Exp. Clin. Cancer Res., 2020, 39(1), 210.
[http://dx.doi.org/10.1186/s13046-020-01715-7] [PMID: 33028357]
[90]
Sun, H.; Zhou, Y.; Ma, R.; Zhang, J.; Shan, J.; Chen, Y.; Li, X.; Shan, E. Metformin protects 5-Fu-induced chemotherapy oral mucositis by reducing endoplasmic reticulum stress in mice. Eur. J. Pharm. Sci., 2022, 173, 106182.
[http://dx.doi.org/10.1016/j.ejps.2022.106182] [PMID: 35405270]
[91]
Xia, J.; Chen, J.; Vashisth, M.K.; Ge, Y.; Dai, Q.; He, S.; Shi, Y.; Wang, X. Metformin ameliorates 5-fluorouracil-induced intestinal injury by inhibiting cellular senescence, inflammation, and oxidative stress. Int. Immunopharmacol., 2022, 113(Pt A), 109342.
[http://dx.doi.org/10.1016/j.intimp.2022.109342] [PMID: 36327871]
[92]
Mercurio, V.; Cuomo, A.; Della Pepa, R.; Ciervo, D.; Cella, L.; Pirozzi, F.; Parrella, P.; Campi, G.; Franco, R.; Varricchi, G.; Abete, P.; Marone, G.; Petretta, M.; Bonaduce, D.; Pacelli, R.; Picardi, M.; Tocchetti, C.G. What is the cardiac impact of chemotherapy and subsequent radiotherapy in lymphoma patients? Antioxid. Redox Signal., 2019, 31(15), 1166-1174.
[http://dx.doi.org/10.1089/ars.2019.7842] [PMID: 31436110]
[93]
Gorini, S.; De Angelis, A.; Berrino, L.; Malara, N.; Rosano, G.; Ferraro, E. Chemotherapeutic drugs and mitochondrial dysfunction: Focus on doxorubicin, trastuzumab, and sunitinib. Oxid. Med. Cell. Longev., 2018, 2018, 1-15.
[http://dx.doi.org/10.1155/2018/7582730] [PMID: 29743983]
[94]
Safaei, A.; Sheibani, M.; Azizi, Y. A journey in anthracycline-induced cardiotoxicity with emphasizing on doxorubicin: a review article. Tehran Univ. Medical J, 2021, 79(8), 575-583.
[95]
Fabin, N.; Bergami, M.; Cenko, E.; Bugiardini, R.; Manfrini, O. The role of vasospasm and microcirculatory dysfunction in fluoropyrimidine-induced ischemic heart disease. J. Clin. Med., 2022, 11(5), 1244.
[http://dx.doi.org/10.3390/jcm11051244] [PMID: 35268333]
[96]
Qi, Y.; Ying, Y.; Zou, J.; Fang, Q.; Yuan, X.; Cao, Y.; Cai, Y.; Fu, S. Kaempferol attenuated cisplatin-induced cardiac injury via inhibiting STING/NF-κB-mediated inflammation. Am. J. Transl. Res., 2020, 12(12), 8007-8018.
[PMID: 33437376]
[97]
Yang, R.; Tan, C.; Najafi, M. Cardiac inflammation and fibrosis following chemo/radiation therapy: Mechanisms and therapeutic agents. Inflammopharmacology, 2022, 30(1), 73-89.
[http://dx.doi.org/10.1007/s10787-021-00894-9] [PMID: 34813027]
[98]
Wei, T.; Cheng, Y. The cardiac toxicity of radiotherapy – a review of characteristics, mechanisms, diagnosis, and prevention. Int. J. Radiat. Biol., 2021, 97(10), 1333-1340.
[http://dx.doi.org/10.1080/09553002.2021.1956007] [PMID: 34264176]
[99]
Livingston, K.; Schlaak, R.A.; Puckett, L.L.; Bergom, C. The role of mitochondrial dysfunction in radiation-induced heart disease: from bench to bedside. Front. Cardiovasc. Med., 2020, 7, 20.
[http://dx.doi.org/10.3389/fcvm.2020.00020] [PMID: 32154269]
[100]
Dhingra, R.; Rabinovich-Nikitin, I.; Rothman, S.; Guberman, M.; Gang, H.; Margulets, V.; Jassal, D.S.; Alagarsamy, K.N.; Dhingra, S.; Valenzuela Ripoll, C.; Billia, F.; Diwan, A.; Javaheri, A.; Kirshenbaum, L.A. Proteasomal degradation of TRAF2 mediates mitochondrial dysfunction in doxorubicin-cardiomyopathy. Circulation, 2022, 146(12), 934-954.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.121.058411] [PMID: 35983756]
[101]
El kiki, S.M.; Omran, M.M.; Mansour, H.H.; Hasan, H.F. Metformin and/or low dose radiation reduces cardiotoxicity and apoptosis induced by cyclophosphamide through SIRT-1/SOD and BAX/Bcl-2 pathways in rats. Mol. Biol. Rep., 2020, 47(7), 5115-5126.
[http://dx.doi.org/10.1007/s11033-020-05582-5] [PMID: 32537703]
[102]
Karam, H.M.; Radwan, R.R. Metformin modulates cardiac endothelial dysfunction, oxidative stress and inflammation in irradiated rats: A new perspective of an antidiabetic drug. Clin. Exp. Pharmacol. Physiol., 2019, 46(12), 1124-1132.
[http://dx.doi.org/10.1111/1440-1681.13148] [PMID: 31357226]
[103]
Yahyapour, R.; Amini, P.; Saffar, H.; Rezapoor, S.; Motevaseli, E.; Cheki, M.; Farhood, B.; Nouruzi, F.; Shabeeb, D.; Eleojo Musa, A.; Najafi, M. Metformin protects against radiation-induced heart injury and attenuates the upregulation of dual oxidase genes following rat’s chest irradiation. Int. J. Mol. Cell. Med., 2018, 7(3), 193-202.
[PMID: 31565651]
[104]
Panpan, T.; Yuchen, D.; Xianyong, S.; Meng, L.; Ruijuan, H.; Ranran, D.; Pengyan, Z.; Mingxi, L.; Rongrong, X. Cardiac remodelling following cancer therapy: A review. Cardiovasc. Toxicol., 2022, 22(9), 771-786.
[http://dx.doi.org/10.1007/s12012-022-09762-6] [PMID: 35877038]
[105]
Arinno, A.; Maneechote, C.; Khuanjing, T.; Chunchai, T.; Prathumsap, N.; Arunsak, B.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.; Chattipakorn, N. Abstract 9375: Melatonin and metformin exert cardioprotection against trastuzumab-induced cardiotoxicity through modulating cardiac mitochondrial dynamics in rats. Circulation, 2021, 144(S1), A9375-A9375.
[106]
Arinno, A.; Maneechote, C.; Khuanjing, T.; Prathumsap, N.; Chunchai, T.; Arunsak, B.; Nawara, W.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.C.; Chattipakorn, N. Melatonin and metformin ameliorated trastuzumab-induced cardiotoxicity through the modulation of mitochondrial function and dynamics without reducing its anticancer efficacy. Biochim. Biophys. Acta Mol. Basis Dis., 2023, 1869(2), 166618.
[http://dx.doi.org/10.1016/j.bbadis.2022.166618] [PMID: 36494039]
[107]
Kuburas, R.; Gharanei, M.; Haussmann, I.; Maddock, H.; Sandhu, H. Metformin protects against sunitinib-induced cardiotoxicity: Investigating the role of AMPK. J. Cardiovasc. Pharmacol., 2022, 79(6), 799-807.
[http://dx.doi.org/10.1097/FJC.0000000000001256] [PMID: 35266920]
[108]
Ajzashokouhi, A.H.; Bostan, H.B.; Jomezadeh, V.; Hayes, A.W.; Karimi, G. A review on the cardioprotective mechanisms of metformin against doxorubicin. Hum. Exp. Toxicol., 2020, 39(3), 237-248.
[http://dx.doi.org/10.1177/0960327119888277] [PMID: 31735071]
[109]
Karim, L.Z.A.; Arif, I.S.; Saady, F. Metabolomics Of metformin’s cardioprotective effect in acute doxorubicin induced-cardiotoxicity in rats. Syst. Rev. Pharm, 2021, 12, 100-109.
[110]
Ikewuchi, J.C.; Ikewuchi, C.C.; Ifeanacho, M.O.; Jaja, V.S.; Okezue, E.C.; Jamabo, C.N.; Adeku, K.A. Attenuation of doxorubicin-induced cardiotoxicity in Wistar rats by aqueous leaf-extracts of Chromolaena odorata and Tridax procumbens. J. Ethnopharmacol., 2021, 274, 114004.
[http://dx.doi.org/10.1016/j.jep.2021.114004] [PMID: 33727109]
[111]
Arinno, A.; Maneechote, C.; Khuanjing, T.; Ongnok, B.; Prathumsap, N.; Chunchai, T.; Arunsak, B.; Kerdphoo, S.; Shinlapawittayatorn, K.; Chattipakorn, S.C.; Chattipakorn, N. Cardioprotective effects of melatonin and metformin against doxorubicin-induced cardiotoxicity in rats are through preserving mitochondrial function and dynamics. Biochem. Pharmacol., 2021, 192, 114743.
[http://dx.doi.org/10.1016/j.bcp.2021.114743] [PMID: 34453902]
[112]
Shaty, M.H.; Al-Ezzi, M.I.; Arif, I.S.; Basil, D. Effect of metformin on inflammatory markers involved in cardiotoxicity induced by doxorubicin. Res. J. Pharm. Technol., 2019, 12(12), 5815-5821.
[http://dx.doi.org/10.5958/0974-360X.2019.01007.2]
[113]
Timm, K.N.; Tyler, D.J. The role of AMPK activation for cardioprotection in doxorubicin-induced cardiotoxicity. Cardiovasc. Drugs Ther., 2020, 34(2), 255-269.
[http://dx.doi.org/10.1007/s10557-020-06941-x] [PMID: 32034646]
[114]
Chen, J.; Zhang, S.; Pan, G.; Lin, L.; Liu, D.; Liu, Z.; Mei, S.; Zhang, L.; Hu, Z.; Chen, J.; Luo, H.; Wang, Y.; Xin, Y.; You, Z. Modulatory effect of metformin on cardiotoxicity induced by doxorubicin via the MAPK and AMPK pathways. Life Sci., 2020, 249, 117498.
[http://dx.doi.org/10.1016/j.lfs.2020.117498] [PMID: 32142765]
[115]
Chen, K.; Li, Y.; Guo, Z.; Zeng, Y.; Zhang, W.; Wang, H. Metformin: Current clinical applications in nondiabetic patients with cancer. Aging, 2020, 12(4), 3993-4009.
[http://dx.doi.org/10.18632/aging.102787] [PMID: 32074084]
[116]
Rocca, A.; Cortesi, P.; Cortesi, L.; Gianni, L.; Matteucci, F.; Fantini, L.; Maestri, A.; Giunchi, D.C.; Cavanna, L.; Ciani, R.; Falcini, F.; Bagni, A.; Meldoli, E.; Dall’Agata, M.; Volpi, R.; Andreis, D.; Nanni, O.; Curcio, A.; Lucchi, L.; Amadori, D.; Fedeli, A. Phase II study of liposomal doxorubicin, docetaxel and trastuzumab in combination with metformin as neoadjuvant therapy for HER2-positive breast cancer. Ther. Adv. Med. Oncol., 2021, 13
[http://dx.doi.org/10.1177/1758835920985632] [PMID: 33613693]
[117]
Osataphan, N.; Apaijai, N.; Phrommintikul, A.; LEEMASAWAT, K.; Somwangprasert, A.; Suksai, S.; Chattipakorn, S.; Chattipakorn, N. Abstract 11469: Effects of metformin and donepezil on the prevention of doxorubicin-induced cardiotoxicity in breast cancer patient: A randomized controlled trial. Circulation, 2022, 146(S1), A11469-A11469.
[118]
Yu, J-M.; Hsieh, M-C.; Qin, L.; Zhang, J.; Wu, S-Y. Metformin reduces radiation-induced cardiac toxicity risk in patients having breast cancer. Am. J. Cancer Res., 2019, 9(5), 1017-1026.
[PMID: 31218109]
[119]
Hirata, E.; Sahai, E. Tumor microenvironment and differential responses to therapy. Cold Spring Harb. Perspect. Med., 2017, 7(7), a026781.
[http://dx.doi.org/10.1101/cshperspect.a026781] [PMID: 28213438]
[120]
Melaiu, O.; Lucarini, V.; Cifaldi, L.; Fruci, D. Influence of the tumor microenvironment on NK cell function in solid tumors. Front. Immunol., 2020, 10, 3038.
[http://dx.doi.org/10.3389/fimmu.2019.03038] [PMID: 32038612]
[121]
Katsuta, E.; Rashid, O.M.; Takabe, K. Clinical relevance of tumor microenvironment: Immune cells, vessels, and mouse models. Hum. Cell, 2020, 33(4), 930-937.
[http://dx.doi.org/10.1007/s13577-020-00380-4] [PMID: 32507979]
[122]
Thorsson, V.; Gibbs, D.L.; Brown, S.D.; Wolf, D.; Bortone, D.S.; Yang, T.-H.O.; Porta-Pardo, E.; Gao, G.F.; Plaisier, C.L.; Eddy, J.A. The immune landscape of cancer. Immunity, 2018, 48(4), 812-830. e814..
[http://dx.doi.org/10.1016/j.immuni.2018.03.023]
[123]
Schreiber, S.; Hammers, C.M.; Kaasch, A.J.; Schraven, B.; Dudeck, A.; Kahlfuss, S. Metabolic interdependency of Th2 cell-mediated type 2 immunity and the tumor microenvironment. Front. Immunol., 2021, 12, 632581.
[http://dx.doi.org/10.3389/fimmu.2021.632581] [PMID: 34135885]
[124]
Radomska-Leśniewska, D.M.; Białoszewska, A.; Kamiński, P. Angiogenic properties of NK cells in cancer and other angiogenesis-dependent diseases. Cells, 2021, 10(7), 1621.
[http://dx.doi.org/10.3390/cells10071621] [PMID: 34209508]
[125]
Tsukioki, T.; Shien, T.; Tanaka, T.; Suzuki, Y.; Kajihara, Y.; Hatono, M.; Kawada, K.; Kochi, M.; Iwamoto, T.; Ikeda, H.; Taira, N.; Doihara, H.; Toyooka, S. Influences of preoperative metformin on immunological factors in early breast cancer. Cancer Chemother. Pharmacol., 2020, 86(1), 55-63.
[http://dx.doi.org/10.1007/s00280-020-04092-2] [PMID: 32533334]
[126]
Wang, S.; Lin, Y.; Xiong, X.; Wang, L.; Guo, Y.; Chen, Y.; Chen, S.; Wang, G.; Lin, P.; Chen, H.; Yeung, S.C.J.; Bremer, E.; Zhang, H. Low-dose metformin reprograms the tumor immune microenvironment in human esophageal cancer: Results of a phase II clinical trial. Clin. Cancer Res., 2020, 26(18), 4921-4932.
[http://dx.doi.org/10.1158/1078-0432.CCR-20-0113] [PMID: 32646922]
[127]
Patel, D.D.; Kuchroo, V.K. Th17 cell pathway in human immunity: Lessons from genetics and therapeutic interventions. Immunity, 2015, 43(6), 1040-1051.
[http://dx.doi.org/10.1016/j.immuni.2015.12.003] [PMID: 26682981]
[128]
Perez, L.G.; Kempski, J.; McGee, H.M.; Pelzcar, P.; Agalioti, T.; Giannou, A.; Konczalla, L.; Brockmann, L.; Wahib, R.; Xu, H.; Vesely, M.C.A.; Soukou, S.; Steglich, B.; Bedke, T.; Manthey, C.; Seiz, O.; Diercks, B.P.; Gnafakis, S.; Guse, A.H.; Perez, D.; Izbicki, J.R.; Gagliani, N.; Flavell, R.A.; Huber, S. TGF-β signaling in Th17 cells promotes IL-22 production and colitis-associated colon cancer. Nat. Commun., 2020, 11(1), 2608.
[http://dx.doi.org/10.1038/s41467-020-16363-w] [PMID: 32451418]
[129]
Nalbant, A. IL-17, IL-21, and IL-22 Cytokines of T Helper 17 Cells in Cancer. J. Interferon Cytokine Res., 2019, 39(1), 56-60.
[http://dx.doi.org/10.1089/jir.2018.0057] [PMID: 30562123]
[130]
Asadzadeh, Z.; Mohammadi, H.; Safarzadeh, E.; Hemmatzadeh, M.; Mahdian-shakib, A.; Jadidi-Niaragh, F.; Azizi, G.; Baradaran, B. The paradox of Th17 cell functions in tumor immunity. Cell. Immunol., 2017, 322, 15-25.
[http://dx.doi.org/10.1016/j.cellimm.2017.10.015] [PMID: 29103586]
[131]
Zhao, D.; Long, X.D.; Lu, T.F.; Wang, T.; Zhang, W.W.; Liu, Y.X.; Cui, X.L.; Dai, H.J.; Xue, F.; Xia, Q. Metformin decreases IL-22 secretion to suppress tumor growth in an orthotopic mouse model of hepatocellular carcinoma. Int. J. Cancer, 2015, 136(11), 2556-2565.
[http://dx.doi.org/10.1002/ijc.29305] [PMID: 25370454]
[132]
Limagne, E.; Thibaudin, M.; Euvrard, R.; Berger, H.; Chalons, P.; Végan, F.; Humblin, E.; Boidot, R.; Rébé, C.; Derangère, V.; Ladoire, S.; Apetoh, L.; Delmas, D.; Ghiringhelli, F. Sirtuin-1 activation controls tumor growth by impeding Th17 differentiation via STAT3 deacetylation. Cell Rep., 2017, 19(4), 746-759.
[http://dx.doi.org/10.1016/j.celrep.2017.04.004] [PMID: 28445726]
[133]
Chiang, C.F.; Chao, T.T.; Su, Y.F.; Hsu, C.C.; Chien, C.Y.; Chiu, K.C.; Shiah, S.G.; Lee, C.H.; Liu, S.Y.; Shieh, Y.S. Metformin-treated cancer cells modulate macrophage polarization through AMPK-NF-κB signaling. Oncotarget, 2017, 8(13), 20706-20718.
[http://dx.doi.org/10.18632/oncotarget.14982] [PMID: 28157701]
[134]
Ding, L.; Liang, G.; Yao, Z.; Zhang, J.; Liu, R.; Chen, H.; Zhou, Y.; Wu, H.; Yang, B.; He, Q. Metformin prevents cancer metastasis by inhibiting M2-like polarization of tumor associated macrophages. Oncotarget, 2015, 6(34), 36441-36455.
[http://dx.doi.org/10.18632/oncotarget.5541] [PMID: 26497364]
[135]
Kunisada, Y.; Eikawa, S.; Tomonobu, N.; Domae, S.; Uehara, T.; Hori, S.; Furusawa, Y.; Hase, K.; Sasaki, A.; Udono, H. Attenuation of CD4+CD25+ regulatory T cells in the tumor microenvironment by metformin, a type 2 diabetes drug. EBioMedicine, 2017, 25, 154-164.
[http://dx.doi.org/10.1016/j.ebiom.2017.10.009] [PMID: 29066174]
[136]
Amin, D.; Richa, T.; Mollaee, M.; Zhan, T.; Tassone, P.; Johnson, J.; Luginbuhl, A.; Cognetti, D.; Martinez-Outschoorn, U.; Stapp, R.; Solomides, C.; Rodeck, U.; Curry, J. Metformin effects on FOXP3 + and CD8 + T cell infiltrates of head and neck squamous cell carcinoma. Laryngoscope, 2020, 130(9), E490-E498.
[http://dx.doi.org/10.1002/lary.28336] [PMID: 31593308]
[137]
Qin, G.; Lian, J.; Huang, L.; Zhao, Q.; Liu, S.; Zhang, Z.; Chen, X.; Yue, D.; Li, L.; Li, F.; Wang, L.; Umansky, V.; Zhang, B.; Yang, S.; Zhang, Y. Metformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axis. OncoImmunology, 2018, 7(7), e1442167.
[http://dx.doi.org/10.1080/2162402X.2018.1442167] [PMID: 29900050]
[138]
Xu, P.; Yin, K.; Tang, X.; Tian, J.; Zhang, Y.; Ma, J.; Xu, H.; Xu, Q.; Wang, S. Metformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing mice. Biomed. Pharmacother., 2019, 120, 109458.
[http://dx.doi.org/10.1016/j.biopha.2019.109458] [PMID: 31550676]
[139]
Li, L.; Wang, L.; Li, J.; Fan, Z.; Yang, L.; Zhang, Z.; Zhang, C.; Yue, D.; Qin, G.; Zhang, T.; Li, F.; Chen, X.; Ping, Y.; Wang, D.; Gao, Q.; He, Q.; Huang, L.; Li, H.; Huang, J.; Zhao, X.; Xue, W.; Sun, Z.; Lu, J.; Yu, J.J.; Zhao, J.; Zhang, B.; Zhang, Y. Metformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancer. Cancer Res., 2018, 78(7), 1779-1791.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2460] [PMID: 29374065]
[140]
Incio, J.; Suboj, P.; Chin, S.M.; Vardam-Kaur, T.; Liu, H.; Hato, T.; Babykutty, S.; Chen, I.; Deshpande, V.; Jain, R.K.; Fukumura, D. Metformin reduces desmoplasia in pancreatic cancer by reprogramming stellate cells and tumor-associated macrophages. PLoS One, 2015, 10(12), e0141392.
[http://dx.doi.org/10.1371/journal.pone.0141392] [PMID: 26641266]
[141]
Abdelmoneim, M.; Eissa, I.R.; Aboalela, M.A.; Naoe, Y.; Matsumura, S.; Sibal, P.A.; Bustos-Villalobos, I.; Tanaka, M.; Kodera, Y.; Kasuya, H. Metformin enhances the antitumor activity of oncolytic herpes simplex virus HF10 (canerpaturev) in a pancreatic cell cancer subcutaneous model. Sci. Rep., 2022, 12(1), 21570.
[http://dx.doi.org/10.1038/s41598-022-25065-w] [PMID: 36513720]
[142]
Oliveras-Ferraros, C.; Cufí, S.; Vazquez-Martin, A.; Menendez, O.J.; Bosch-Barrera, J.; Martin-Castillo, B.; Joven, J.; Menendez, J.A. Metformin rescues cell surface major histocompatibility complex class I (MHC-I) deficiency caused by oncogenic transformation. Cell Cycle, 2012, 11(5), 865-870.
[http://dx.doi.org/10.4161/cc.11.5.19252] [PMID: 22333588]
[143]
Hashimoto, M.; Kamphorst, A.O.; Im, S.J.; Kissick, H.T.; Pillai, R.N.; Ramalingam, S.S.; Araki, K.; Ahmed, R. CD8 T cell exhaustion in chronic infection and cancer: Opportunities for interventions. Annu. Rev. Med., 2018, 69(1), 301-318.
[http://dx.doi.org/10.1146/annurev-med-012017-043208] [PMID: 29414259]
[144]
Kurachi, M. CD8+ T cell exhaustion. Semin. Immunopathol., 2019, 41(3), 327-337.
[http://dx.doi.org/10.1007/s00281-019-00744-5] [PMID: 30989321]
[145]
Rha, M.S.; Shin, E.C. Activation or exhaustion of CD8+ T cells in patients with COVID-19. Cell. Mol. Immunol., 2021, 18(10), 2325-2333.
[http://dx.doi.org/10.1038/s41423-021-00750-4] [PMID: 34413488]
[146]
Jiang, W.; He, Y.; He, W.; Wu, G.; Zhou, X.; Sheng, Q.; Zhong, W.; Lu, Y.; Ding, Y.; Lu, Q.; Ye, F.; Hua, H. Exhausted CD8+ T cells in the tumor immune microenvironment: New pathways to therapy. Front. Immunol., 2021, 11, 622509.
[http://dx.doi.org/10.3389/fimmu.2020.622509] [PMID: 33633741]
[147]
Huang, Y.; Jia, A.; Wang, Y.; Liu, G. CD8+ T cell exhaustion in anti-tumour immunity: The new insights for cancer immunotherapy. Immunology, 2023, 168(1), 30-48.
[http://dx.doi.org/10.1111/imm.13588] [PMID: 36190809]
[148]
Nojima, I.; Eikawa, S.; Tomonobu, N.; Hada, Y.; Kajitani, N.; Teshigawara, S.; Miyamoto, S.; Tone, A.; Uchida, H.A.; Nakatsuka, A.; Eguchi, J.; Shikata, K.; Udono, H.; Wada, J. Dysfunction of CD8+ PD-1 + T cells in type 2 diabetes caused by the impairment of metabolism-immune axis. Sci. Rep., 2020, 10(1), 14928.
[http://dx.doi.org/10.1038/s41598-020-71946-3] [PMID: 32913271]
[149]
Shikuma, C.M.; Chew, G.M.; Kohorn, L.; Souza, S.A.; Chow, D.; SahBandar, I.N.; Park, E.Y.; Hanks, N.; Gangcuangco, L.M.A.; Gerschenson, M.; Ndhlovu, L.C. Short communication: Metformin reduces CD4 T cell exhaustion in HIV-infected adults on suppressive antiretroviral therapy. AIDS Res. Hum. Retroviruses, 2020, 36(4), 303-305.
[http://dx.doi.org/10.1089/aid.2019.0078] [PMID: 31731885]
[150]
Wu, Z.; Zhang, C.; Najafi, M. Targeting of the tumor immune microenvironment by metformin. J. Cell Commun. Signal., 2022, 16(3), 333-348.
[http://dx.doi.org/10.1007/s12079-021-00648-w] [PMID: 34611852]
[151]
Zhang, Z.; Li, F.; Tian, Y.; Cao, L.; Gao, Q.; Zhang, C.; Zhang, K.; Shen, C.; Ping, Y.; Maimela, N.R.; Wang, L.; Zhang, B.; Zhang, Y. Metformin enhances the antitumor activity of CD8+ T lymphocytes via the AMPK–miR-107–Eomes–PD-1 pathway. J. Immunol., 2020, 204(9), 2575-2588.
[http://dx.doi.org/10.4049/jimmunol.1901213] [PMID: 32221038]
[152]
Watanabe, M.; Eikawa, S.; Shien, K.; Yamamoto, H.; Shien, T.; Soh, J.; Doihara, H.; Toyooka, S.; Miyoshi, S.; Udono, H. Abstract 5592: Metformin improves immune function of exhausted peripheral CD8+ T cells derived from cancer patients. Cancer Res., 2017, 77(S13), 5592-5592.
[http://dx.doi.org/10.1158/1538-7445.AM2017-5592]
[153]
Xu, X.D.; Shao, S.X.; Jiang, H.P.; Cao, Y.W.; Wang, Y.H.; Yang, X.C.; Wang, Y.L.; Wang, X.S.; Niu, H.T. Warburg effect or reverse Warburg effect? A review of cancer metabolism. Oncol. Res. Treat., 2015, 38(3), 117-122.
[http://dx.doi.org/10.1159/000375435] [PMID: 25792083]
[154]
Chang, C.H.; Qiu, J.; O’Sullivan, D.; Buck, M.D.; Noguchi, T.; Curtis, J.D.; Chen, Q.; Gindin, M.; Gubin, M.M.; van der Windt, G.J.W.; Tonc, E.; Schreiber, R.D.; Pearce, E.J.; Pearce, E.L. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell, 2015, 162(6), 1229-1241.
[http://dx.doi.org/10.1016/j.cell.2015.08.016] [PMID: 26321679]
[155]
Bahrambeigi, S.; Shafiei-Irannejad, V. Immune-mediated anti-tumor effects of metformin; targeting metabolic reprogramming of T cells as a new possible mechanism for anti-cancer effects of metformin. Biochem. Pharmacol., 2020, 174, 113787.
[http://dx.doi.org/10.1016/j.bcp.2019.113787] [PMID: 31884044]
[156]
Zhang, J.; Liu, J. Tumor stroma as targets for cancer therapy. Pharmacol. Ther., 2013, 137(2), 200-215.
[http://dx.doi.org/10.1016/j.pharmthera.2012.10.003] [PMID: 23064233]
[157]
Horn, L.A.; Chariou, P.L.; Gameiro, S.R.; Qin, H.; Iida, M.; Fousek, K.; Meyer, T.J.; Cam, M.; Flies, D.; Langermann, S.; Schlom, J.; Palena, C. Remodeling the tumor microenvironment via blockade of LAIR-1 and TGF-β signaling enables PD-L1–mediated tumor eradication. J. Clin. Invest., 2022, 132(8), e155148.
[http://dx.doi.org/10.1172/JCI155148] [PMID: 35230974]
[158]
Augsten, M. Cancer-associated fibroblasts as another polarized cell type of the tumor microenvironment. Front. Oncol., 2014, 4, 62.
[http://dx.doi.org/10.3389/fonc.2014.00062] [PMID: 24734219]
[159]
Gunaydin, G. CAFs interacting with TAMs in tumor microenvironment to enhance tumorigenesis and immune evasion. Front. Oncol., 2021, 11, 668349.
[http://dx.doi.org/10.3389/fonc.2021.668349] [PMID: 34336660]
[160]
Jiang, Y.; Zhang, H.; Wang, J.; Liu, Y.; Luo, T.; Hua, H. Targeting extracellular matrix stiffness and mechanotransducers to improve cancer therapy. J. Hematol. Oncol., 2022, 15(1), 34.
[http://dx.doi.org/10.1186/s13045-022-01252-0] [PMID: 35331296]
[161]
Kojima, Y.; Acar, A.; Eaton, E.N.; Mellody, K.T.; Scheel, C.; Ben-Porath, I.; Onder, T.T.; Wang, Z.C.; Richardson, A.L.; Weinberg, R.A.; Orimo, A. Autocrine TGF-β and stromal cell-derived factor-1 (SDF-1) signaling drives the evolution of tumor-promoting mammary stromal myofibroblasts. Proc. Natl. Acad. Sci., 2010, 107(46), 20009-20014.
[http://dx.doi.org/10.1073/pnas.1013805107] [PMID: 21041659]
[162]
Xu, S.; Yang, Z.; Jin, P.; Yang, X.; Li, X.; Wei, X.; Wang, Y.; Long, S.; Zhang, T.; Chen, G.; Sun, C.; Ma, D.; Gao, Q. Metformin suppresses tumor progression by inactivating stromal fibroblasts in ovarian cancer. Mol. Cancer Ther., 2018, 17(6), 1291-1302.
[http://dx.doi.org/10.1158/1535-7163.MCT-17-0927] [PMID: 29545331]
[163]
Shao, S.; Zhao, L.; An, G.; Zhang, L.; Jing, X.; Luo, M.; Li, W.; Meng, D.; Ning, Q.; Zhao, X.; Lei, J. Metformin suppresses HIF-1α expression in cancer-associated fibroblasts to prevent tumor-stromal cross talk in breast cancer. FASEB J., 2020, 34(8), 10860-10870.
[http://dx.doi.org/10.1096/fj.202000951RR] [PMID: 32592239]
[164]
Zhang, X.; Dong, Y.; Zhao, M.; Ding, L.; Yang, X.; Jing, Y.; Song, Y.; Chen, S.; Hu, Q.; Ni, Y. ITGB2-mediated metabolic switch in CAFs promotes OSCC proliferation by oxidation of NADH in mitochondrial oxidative phosphorylation system. Theranostics, 2020, 10(26), 12044-12059.
[http://dx.doi.org/10.7150/thno.47901] [PMID: 33204328]
[165]
Curry, J.; Johnson, J.; Tassone, P.; Vidal, M.D.; Menezes, D.W.; Sprandio, J.; Mollaee, M.; Cotzia, P.; Birbe, R.; Lin, Z.; Gill, K.; Duddy, E.; Zhan, T.; Leiby, B.; Reyzer, M.; Cognetti, D.; Luginbuhl, A.; Tuluc, M.; Martinez-Outschoorn, U. Metformin effects on head and neck squamous carcinoma microenvironment: Window of opportunity trial. Laryngoscope, 2017, 127(8), 1808-1815.
[http://dx.doi.org/10.1002/lary.26489] [PMID: 28185288]
[166]
Galluzzi, L.; Kroemer, G. Potent immunosuppressive effects of the oncometabolite R -2-hydroxyglutarate. OncoImmunology, 2018, 7(12), e1528815.
[http://dx.doi.org/10.1080/2162402X.2018.1528815] [PMID: 30524910]
[167]
Ježek, P. 2-Hydroxyglutarate in cancer cells. Antioxid. Redox Signal., 2020, 33(13), 903-926.
[http://dx.doi.org/10.1089/ars.2019.7902] [PMID: 31847543]
[168]
Wang, Y.P.; Li, J.T.; Qu, J.; Yin, M.; Lei, Q.Y. Metabolite sensing and signaling in cancer. J. Biol. Chem., 2020, 295(33), 11938-11946.
[http://dx.doi.org/10.1074/jbc.REV119.007624] [PMID: 32641495]
[169]
Oh, S.; Cho, Y.; Chang, M.; Park, S.; Kwon, H. Metformin decreases 2-HG production through the MYC-PHGDH pathway in suppressing breast cancer cell proliferation. Metabolites, 2021, 11(8), 480.
[170]
Zhang, X.; Schönrogge, M.; Eichberg, J.; Wendt, E.H.U.; Kumstel, S.; Stenzel, J.; Lindner, T.; Jaster, R.; Krause, B.J.; Vollmar, B.; Zechner, D. Blocking autophagy in cancer-associated fibroblasts supports chemotherapy of pancreatic cancer cells. Front. Oncol., 2018, 8, 590.
[http://dx.doi.org/10.3389/fonc.2018.00590] [PMID: 30568920]
[171]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Rezaeyan, A.; Najafi, M. Abscopal effect in radioimmunotherapy. Int. Immunopharmacol., 2020, 85, 106663.
[http://dx.doi.org/10.1016/j.intimp.2020.106663] [PMID: 32521494]
[172]
Xue, J.; Li, L.; Li, N.; Li, F.; Qin, X.; Li, T.; Liu, M. Metformin suppresses cancer cell growth in endometrial carcinoma by inhibiting PD-L1. Eur. J. Pharmacol., 2019, 859, 172541.
[http://dx.doi.org/10.1016/j.ejphar.2019.172541] [PMID: 31319067]
[173]
Cha, J.H.; Yang, W.H.; Xia, W.; Wei, Y.; Chan, L.C.; Lim, S.O.; Li, C.W.; Kim, T.; Chang, S.S.; Lee, H.H.; Hsu, J.L.; Wang, H.L.; Kuo, C.W.; Chang, W.C.; Hadad, S.; Purdie, C.A.; McCoy, A.M.; Cai, S.; Tu, Y.; Litton, J.K.; Mittendorf, E.A.; Moulder, S.L.; Symmans, W.F.; Thompson, A.M.; Piwnica-Worms, H.; Chen, C.H.; Khoo, K.H.; Hung, M.C. Metformin promotes antitumor immunity via endoplasmic-reticulum-associated degradation of PD-L1. Mol. Cell, 2018, 71(4), 606-620.e7.
[http://dx.doi.org/10.1016/j.molcel.2018.07.030] [PMID: 30118680]
[174]
Han, Y.; Li, C.W.; Hsu, J.M.; Hsu, J.L.; Chan, L.C.; Tan, X.; He, G.J. Metformin reverses PARP inhibitors-induced epithelial-mesenchymal transition and PD-L1 upregulation in triple-negative breast cancer. Am. J. Cancer Res., 2019, 9(4), 800-815.
[PMID: 31106005]
[175]
Jiang, X.; Zhou, J.; Giobbie-Hurder, A.; Wargo, J.; Hodi, F.S. The activation of MAPK in melanoma cells resistant to BRAF inhibition promotes PD-L1 expression that is reversible by MEK and PI3K inhibition. Clin. Cancer Res., 2013, 19(3), 598-609.
[http://dx.doi.org/10.1158/1078-0432.CCR-12-2731] [PMID: 23095323]
[176]
Zhang, J.J.; Zhang, Q.S.; Li, Z.Q.; Zhou, J.W.; Du, J. Metformin attenuates PD-L1 expression through activating Hippo signaling pathway in colorectal cancer cells. Am. J. Transl. Res., 2019, 11(11), 6965-6976.
[PMID: 31814900]
[177]
Lu, Y.; Xin, D.; Guan, L.; Xu, M.; Yang, Y.; Chen, Y.; Yang, Y.; Wang-Gillam, A.; Wang, L.; Zong, S.; Wang, F. Metformin downregulates PD-L1 expression in esophageal squamous cell carcinoma by inhibiting IL-6 signaling pathway. Front. Oncol., 2021, 11, 762523.
[http://dx.doi.org/10.3389/fonc.2021.762523] [PMID: 34881181]
[178]
Wang, Y.; Hu, J.; Sun, Y.; Song, B.; Zhang, Y.; Lu, Y.; Ma, H. Metformin synergizes with PD-L1 monoclonal antibody enhancing tumor immune response in treating non-small cell lung cancer and its molecular mechanism investigation. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-9.
[http://dx.doi.org/10.1155/2022/5983959] [PMID: 36199547]
[179]
Goggi, J.L.; Hartimath, S.V.; Khanapur, S.; Ramasamy, B.; Chin, Z.F.; Cheng, P.; Chin, H.X.; Hwang, Y.Y.; Robins, E.G. Imaging memory T-cells stratifies response to adjuvant metformin combined with αPD-1 therapy. Int. J. Mol. Sci., 2022, 23(21), 12892.
[http://dx.doi.org/10.3390/ijms232112892] [PMID: 36361684]
[180]
Kim, Y.; Vagia, E.; Viveiros, P.; Kang, C.Y.; Lee, J.Y.; Gim, G.; Cho, S.; Choi, H.; Kim, L.; Park, I.; Choi, J.; Chae, Y.K. Overcoming acquired resistance to PD-1 inhibitor with the addition of metformin in small cell lung cancer (SCLC). Cancer Immunol. Immunother., 2021, 70(4), 961-965.
[http://dx.doi.org/10.1007/s00262-020-02703-8] [PMID: 33084943]
[181]
Ciccarese, C.; Iacovelli, R.; Buti, S.; Primi, F.; Astore, S.; Massari, F.; Ferrara, M.G.; Palermo, G.; Foschi, N.; Iacovelli, V.; Rossi, E.; Schinzari, G.; Bove, P.; Bassi, P.; Bria, E.; Tortora, G. Concurrent nivolumab and metformin in diabetic cancer patients: Is it safe and more active? Anticancer Res., 2022, 42(3), 1487-1493.
[http://dx.doi.org/10.21873/anticanres.15620] [PMID: 35220243]
[182]
Farran, B.; Switchenko, J.M.; Khalil, L.; Shaib, W.L.; Olson, B.; Ruggieri, A.; Wu, C.; Alese, O.B.; Diab, M.; Lesinski, G.B.; El-Rayes, B.; Akce, M. Abstract 3482: Correlative analysis of metformin and nivolumab combination in treatment-refractory microsatellite stable (MSS) metastatic colorectal cancer (mCRC). Cancer Res., 2022, 82(S12), 3482-3482.
[http://dx.doi.org/10.1158/1538-7445.AM2022-3482]
[183]
Wang, D.Y.; McQuade, J.L.; Rai, R.R.; Park, J.J.; Zhao, S.; Ye, F.; Beckermann, K.E.; Rubinstein, S.M.; Johnpulle, R.; Long, G.V.; Carlino, M.S.; Menzies, A.M.; Davies, M.A.; Johnson, D.B. The impact of nonsteroidal anti-inflammatory drugs, beta blockers, and metformin on the efficacy of anti-PD-1 therapy in advanced melanoma. Oncologist, 2020, 25(3), e602-e605.
[http://dx.doi.org/10.1634/theoncologist.2019-0518] [PMID: 32162820]
[184]
Zhou, H.; Liu, J.; Zhang, Y.; Zhang, L. Inflammatory bowel disease associated with the combination treatment of nivolumab and metformin: Data from the FDA adverse event reporting system. Cancer Chemother. Pharmacol., 2019, 83(3), 599-601.
[http://dx.doi.org/10.1007/s00280-018-03763-5] [PMID: 30623231]
[185]
Cai, S.; Chen, Z.; Wang, Y.; Wang, M.; Wu, J.; Tong, Y.; Chen, L.; Lu, C.; Yang, H. Reducing PD-L1 expression with a self-assembled nanodrug: An alternative to PD-L1 antibody for enhanced chemo-immunotherapy. Theranostics, 2021, 11(4), 1970-1981.
[http://dx.doi.org/10.7150/thno.45777] [PMID: 33408792]
[186]
Tu, X.; Qin, B.; Zhang, Y.; Zhang, C.; Kahila, M.; Nowsheen, S.; Yin, P.; Yuan, J.; Pei, H.; Li, H.; Yu, J.; Song, Z.; Zhou, Q.; Zhao, F.; Liu, J.; Zhang, C.; Dong, H.; Mutter, R.W.; Lou, Z. PD-L1 (B7-H1) competes with the rna exosome to regulate the DNA damage response and can be targeted to sensitize to radiation or chemotherapy. Mol. Cell, 2019, 74(6), 1215-1226.e4.
[http://dx.doi.org/10.1016/j.molcel.2019.04.005] [PMID: 31053471]
[187]
Zhou, Z.; Liu, Y.; Jiang, X.; Zheng, C.; Luo, W.; Xiang, X.; Qi, X.; Shen, J. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int. J. Biol. Macromol., 2023, 224, 797-809.
[http://dx.doi.org/10.1016/j.ijbiomac.2022.10.167] [PMID: 36283555]
[188]
Peng, M.; Mo, Y.; Wang, Y.; Wu, P.; Zhang, Y.; Xiong, F.; Guo, C.; Wu, X.; Li, Y.; Li, X.; Li, G.; Xiong, W.; Zeng, Z. Neoantigen vaccine: An emerging tumor immunotherapy. Mol. Cancer, 2019, 18(1), 128.
[http://dx.doi.org/10.1186/s12943-019-1055-6] [PMID: 31443694]
[189]
Munoz, L.E.; Huang, L.; Bommireddy, R.; Sharma, R.; Monterroza, L.; Guin, R.N.; Samaranayake, S.G.; Pack, C.D.; Ramachandiran, S.; Reddy, S.J.C.; Shanmugam, M.; Selvaraj, P. Metformin reduces PD-L1 on tumor cells and enhances the anti-tumor immune response generated by vaccine immunotherapy. J. Immunother. Cancer, 2021, 9(11), e002614.
[http://dx.doi.org/10.1136/jitc-2021-002614] [PMID: 34815353]
[190]
Kamanlı, A.F.; Yıldız, M.Z.; Özyol, E.; Deveci Ozkan, A.; Sozen Kucukkara, E.; Guney Eskiler, G. Investigation of LED-based photodynamic therapy efficiency on breast cancer cells. Lasers Med. Sci., 2021, 36(3), 563-569.
[http://dx.doi.org/10.1007/s10103-020-03061-8] [PMID: 32577931]
[191]
Cramer, G.M.; Moon, E.K.; Cengel, K.A.; Busch, T.M. Photodynamic therapy and immune checkpoint blockade. Photochem. Photobiol., 2020, 96(5), 954-961.
[http://dx.doi.org/10.1111/php.13300] [PMID: 32573787]
[192]
Xiong, W.; Qi, L.; Jiang, N.; Zhao, Q.; Chen, L.; Jiang, X.; Li, Y.; Zhou, Z.; Shen, J. Metformin liposome-mediated PD-L1 downregulation for amplifying the photodynamic immunotherapy efficacy. ACS Appl. Mater. Interfaces, 2021, 13(7), 8026-8041.
[http://dx.doi.org/10.1021/acsami.0c21743] [PMID: 33577301]
[193]
Sun, Y.; Fang, K.; Hu, X.; Yang, J.; Jiang, Z.; Feng, L.; Li, R.; Rao, Y.; Shi, S.; Dong, C. NIR-light-controlled G-quadruplex hydrogel for synergistically enhancing photodynamic therapy via sustained delivery of metformin and catalase-like activity in breast cancer. Mater. Today Bio, 2022, 16, 100375.
[http://dx.doi.org/10.1016/j.mtbio.2022.100375] [PMID: 35983175]
[194]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol., 2020, 87, 106807.
[http://dx.doi.org/10.1016/j.intimp.2020.106807] [PMID: 32683299]
[195]
Tojo, M.; Miyato, H.; Koinuma, K.; Horie, H.; Tsukui, H.; Kimura, Y.; Kaneko, Y.; Ohzawa, H.; Yamaguchi, H.; Yoshimura, K.; Lefor, A.K.; Sata, N.; Kitayama, J. Metformin combined with local irradiation provokes abscopal effects in a murine rectal cancer model. Sci. Rep., 2022, 12(1), 7290.
[http://dx.doi.org/10.1038/s41598-022-11236-2] [PMID: 35508498]
[196]
Zake, D.M.; Kurlovics, J.; Zaharenko, L.; Komasilovs, V.; Klovins, J.; Stalidzans, E. Physiologically based metformin pharmacokinetics model of mice and scale-up to humans for the estimation of concentrations in various tissues. PLoS One, 2021, 16(4), e0249594.
[http://dx.doi.org/10.1371/journal.pone.0249594] [PMID: 33826656]
[197]
Stambolic, V.; Woodgett, J.R.; Fantus, I.G.; Pritchard, K.I.; Goodwin, P.J. Utility of metformin in breast cancer treatment, is neoangiogenesis a risk factor? Breast Cancer Res. Treat., 2009, 114(2), 387-389.
[http://dx.doi.org/10.1007/s10549-008-0015-4] [PMID: 18438706]
[198]
Dowling, R.J.O.; Niraula, S.; Stambolic, V.; Goodwin, P.J. Metformin in cancer: Translational challenges. J. Mol. Endocrinol., 2012, 48(3), R31-R43.
[http://dx.doi.org/10.1530/JME-12-0007] [PMID: 22355097]
[199]
Liu, L.; Ulbrich, J.; Müller, J.; Wüstefeld, T.; Aeberhard, L.; Kress, T.R.; Muthalagu, N.; Rycak, L.; Rudalska, R.; Moll, R.; Kempa, S.; Zender, L.; Eilers, M.; Murphy, D.J. Deregulated MYC expression induces dependence upon AMPK-related kinase 5. Nature, 2012, 483(7391), 608-612.
[http://dx.doi.org/10.1038/nature10927] [PMID: 22460906]
[200]
Zadra, G.; Batista, J.L.; Loda, M. Dissecting the dual role of AMPK in Cancer: From experimental to human studies. Mol. Cancer Res., 2015, 13(7), 1059-1072.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0068] [PMID: 25956158]
[201]
Massie, C.E.; Lynch, A.; Ramos-Montoya, A.; Boren, J.; Stark, R.; Fazli, L.; Warren, A.; Scott, H.; Madhu, B.; Sharma, N.; Bon, H.; Zecchini, V.; Smith, D.M.; DeNicola, G.M.; Mathews, N.; Osborne, M.; Hadfield, J.; MacArthur, S.; Adryan, B.; Lyons, S.K.; Brindle, K.M.; Griffiths, J.; Gleave, M.E.; Rennie, P.S.; Neal, D.E.; Mills, I.G. The androgen receptor fuels prostate cancer by regulating central metabolism and biosynthesis. EMBO J., 2011, 30(13), 2719-2733.
[http://dx.doi.org/10.1038/emboj.2011.158] [PMID: 21602788]
[202]
Li, W.; Saud, S.M.; Young, M.R.; Chen, G.; Hua, B. Targeting AMPK for cancer prevention and treatment. Oncotarget, 2015, 6(10), 7365-7378.
[http://dx.doi.org/10.18632/oncotarget.3629] [PMID: 25812084]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy