Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Does Bi-exponential Fitting Perform better than Mono-exponential Fitting in IVIM-DWI? An Assessment of Renal Pathological Injury of IgA Nephropathy

Author(s): Wei Mao, Xiaoqiang Ding, Yuqin Ding, Caixia Fu, Mengsu Zeng and Jianjun Zhou*

Volume 20, 2024

Published on: 24 August, 2023

Article ID: e270623218301 Pages: 11

DOI: 10.2174/1573405620666230627103919

Price: $65

Abstract

Background: Chronic kidney disease has become one of the world's major public health problems, immunoglobulin A (IgA) nephropathy is a common pathological type of CKD. Delaying the progression of IgA nephropathy has currently become the main clinical treatment strategy, precise evaluation of renal pathological injury during follow-up of patients with IgA nephropathy is important. Therefore, it is imperative to develop an accurate and non-invasive imaging technique for effective follow-up of renal pathological injury in patients with IgA nephropathy.

Objective: To investigate the clinical value of intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) in assessing renal pathological injury in patients with immunoglobulin A (IgA) nephropathy compared with a mono-exponential model.

Methods: Altogether, 80 patients with IgA nephropathy were divided into the mild (41 cases) andmoderate–severe (m–s) renal injury groups (39 cases) according to pathology scores, and 20 healthy volunteers were recruited as controls. All participants underwent IVIM-DWI of the kidneys, and renal parenchymal apparent diffusion coefficient (ADC), pure molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) values were measured. One-way analysis of variance, receiver operating characteristic (ROC) curve analysis, and Pearson correlation analysis were performed for all the DWI-derived parameters.

Results: The DWI-derived parameters of the m–s renal injury group were significantly lower than those of the mild renal injury and control groups (P < 0.01). The ROC analysis revealed that f had the largest area under the ROC curve for differentiation between the m–s and mild renal injury groups and between the m–s renal injury and control groups. The f had the largest correlation coefficient with renal pathology scores (r=−0.81), followed by the D* (−0.69), ADC (−0.54), and D values (−0.53), respectively (all P<0.01).

Conclusion: IVIM-DWI demonstrated better diagnostic performance than the mono-exponential model in assessing renal pathological injury in patients with IgA nephropathy.

[1]
Gupta T, Paul N, Kolte D, et al. Association of chronic renal insufficiency with in-hospital outcomes after percutaneous coronary intervention. J Am Heart Assoc 2015; 4(6): e002069.
[http://dx.doi.org/10.1161/JAHA.115.002069] [PMID: 26080814]
[2]
Onuigbo MAC, Agbasi N. Chronic kidney disease prediction is an inexact science: The concept of “progressors” and “nonprogressors”. World J Nephrol 2014; 3(3): 31-49.
[http://dx.doi.org/10.5527/wjn.v3.i3.31] [PMID: 25332895]
[3]
D’Amico G. Influence of clinical and histological features on actuarial renal survival in adult patients with idiopathic IgA nephropathy, membranous nephropathy, and membranoproliferative glomerulonephritis: survey of the recent literature. Am J Kidney Dis 1992; 20(4): 315-23.
[http://dx.doi.org/10.1016/S0272-6386(12)70293-7] [PMID: 1415198]
[4]
Johnston PA, Brown JS, Braumholtz DA, Davison AM. Clinico-pathological correlations and long-term follow-up of 253 United Kingdom patients with IgA nephropathy. A report from the MRC Glomerulonephritis Registry. Q J Med 1992; 84(304): 619-27.
[PMID: 1484940]
[5]
Li PKT, Ho KKL, Szeto CC, Yu L, Lai FMM. Prognostic indicators of IgA nephropathy in the Chinese—clinical and pathological perspectives. Nephrol Dial Transplant 2002; 17(1): 64-9.
[http://dx.doi.org/10.1093/ndt/17.1.64] [PMID: 11773464]
[6]
Cagnoli L. Instructions and implementations for percutaneous renal biopsy. Guidelines for the therapy of glomerular nephropaties. G Ital Nefrol 2003; 20 (Suppl. 24): S3-S47.
[PMID: 14666502]
[7]
Jiang SHT, Karpe KM, Talaulikar GS. Safety and predictors of complications of renal biopsy in the outpatient setting. Clin Nephrol 2011; 76(12): 464-9.
[http://dx.doi.org/10.5414/CN107128] [PMID: 22105449]
[8]
Parrish AE. Complications of percutaneous renal biopsy: A review of 37 years’ experience. Clin Nephrol 1992; 38(3): 135-41.
[PMID: 1395165]
[9]
Li Q, Wang D, Zhu X, Shen K, Xu F, Chen Y. Combination of renal apparent diffusion coefficient and renal parenchymal volume for better assessment of split renal function in chronic kidney disease. Eur J Radiol 2018; 108: 194-200.
[http://dx.doi.org/10.1016/j.ejrad.2018.10.002] [PMID: 30396655]
[10]
Xu X, Palmer SL, Lin X, et al. Diffusion-weighted imaging and pathology of chronic kidney disease: initial study. Abdom Radiol 2018; 43(7): 1749-55.
[http://dx.doi.org/10.1007/s00261-017-1362-6] [PMID: 29110054]
[11]
Pozzessere C, Castaños Gutiérrez SL, Corona-Villalobos CP, et al. Diffusion-weighted magnetic resonance imaging in distinguishing between mucin-producing and serous pancreatic cysts. J Comput Assist Tomogr 2016; 40(4): 505-12.
[http://dx.doi.org/10.1097/RCT.0000000000000403] [PMID: 27023856]
[12]
Kakite S, Dyvorne HA, Lee KM, Jajamovich GH, Knight-Greenfield A, Taouli B. Hepatocellular carcinoma: IVIM diffusion quantification for prediction of tumor necrosis compared to enhancement ratios. Eur J Radiol Open 2016; 3: 1-7.
[http://dx.doi.org/10.1016/j.ejro.2015.11.002] [PMID: 27069971]
[13]
Shiroishi MS, Boxerman JL, Pope WB. Physiologic MRI for assessment of response to therapy and prognosis in glioblastoma. Neuro-oncol 2016; 18(4): 467-78.
[http://dx.doi.org/10.1093/neuonc/nov179] [PMID: 26364321]
[14]
Li Q, Li J, Zhang L, Chen Y, Zhang M, Yan F. Diffusion-weighted imaging in assessing renal pathology of chronic kidney disease: A preliminary clinical study. Eur J Radiol 2014; 83(5): 756-62.
[http://dx.doi.org/10.1016/j.ejrad.2014.01.024] [PMID: 24581595]
[15]
Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M. Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168(2): 497-505.
[http://dx.doi.org/10.1148/radiology.168.2.3393671] [PMID: 3393671]
[16]
Zhang Q, Yu Z, Zeng S, et al. Use of intravoxel incoherent motion imaging to monitor a rat kidney chronic allograft damage model. BMC Nephrol 2019; 20(1): 364.
[http://dx.doi.org/10.1186/s12882-019-1545-1] [PMID: 31601196]
[17]
Hu G, Yang Z, Liang W, et al. Intravoxel incoherent motion and arterial spin labeling MRI analysis of reversible unilateral ureteral obstruction in rats. J Magn Reson Imaging 2019; 50(1): 288-96.
[http://dx.doi.org/10.1002/jmri.26536] [PMID: 30328247]
[18]
Woo S, Cho JY, Kim SY, Kim SH. Intravoxel incoherent motion MRI-derived parameters and T2* relaxation time for noninvasive assessment of renal fibrosis: An experimental study in a rabbit model of unilateral ureter obstruction. Magn Reson Imaging 2018; 51: 104-12.
[http://dx.doi.org/10.1016/j.mri.2018.04.018] [PMID: 29738802]
[19]
Cai XR, Yu J, Zhou QC, Du B, Feng YZ, Liu X. Use of intravoxel incoherent motion MRI to assess renal fibrosis in a rat model of unilateral ureteral obstruction. J Magn Reson Imaging 2016; 44(3): 698-706.
[http://dx.doi.org/10.1002/jmri.25172] [PMID: 26841951]
[20]
Ding Y, Tan Q, Mao W, et al. Differentiating between malignant and benign renal tumors: Do IVIM and diffusion kurtosis imaging perform better than DWI? Eur Radiol 2019; 29(12): 6930-9.
[http://dx.doi.org/10.1007/s00330-019-06240-6] [PMID: 31161315]
[21]
Jin YN, Zhang Y, Cheng JL, Zheng DD, Hu Y. Monoexponential, Biexponential, and stretched‐exponential models using diffusion‐weighted imaging: A quantitative differentiation of breast lesions at 3.0T. J Magn Reson Imaging 2019; 50(5): 1461-7.
[http://dx.doi.org/10.1002/jmri.26729] [PMID: 30919518]
[22]
Zhang H, Wang P, Shi D, et al. Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes. Eur Radiol 2022; 32(5): 2988-97.
[http://dx.doi.org/10.1007/s00330-021-08415-6] [PMID: 35031840]
[23]
Feng YZ, Chen XQ, Yu J, et al. Intravoxel incoherent motion (IVIM) at 3.0 T: Evaluation of early renal function changes in type 2 diabetic patients. Abdom Radiol (NY) 2018; 43(10): 2764-73.
[http://dx.doi.org/10.1007/s00261-018-1555-7] [PMID: 29525883]
[24]
Ding J, Chen J, Jiang Z, Zhou H, Di J, Xing W. Assessment of renal dysfunction with diffusion-weighted imaging: Comparing intra-voxel incoherent motion (IVIM) with a mono-exponential model. Acta Radiol 2016; 57(4): 507-12.
[http://dx.doi.org/10.1177/0284185115595658] [PMID: 26189976]
[25]
Cheng ZY, Feng YZ, Hu JJ, et al. Intravoxel incoherent motion imaging of the kidney: The application in patients with hyperuricemia. J Magn Reson Imaging 2020; 51(3): 833-40.
[http://dx.doi.org/10.1002/jmri.26861] [PMID: 31318112]
[26]
Luciani A, Vignaud A, Cavet M, et al. Liver cirrhosis: Intravoxel incoherent motion MR imaging-pilot study. Radiology 2008; 249(3): 891-9.
[http://dx.doi.org/10.1148/radiol.2493080080] [PMID: 19011186]
[27]
Katafuchi R, Kiyoshi Y, Oh Y, et al. Glomerular score as a prognosticator in IgA nephropathy: Its usefulness and limitation. Clin Nephrol 1998; 49(1): 1-8.
[PMID: 9491278]
[28]
DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: A nonparametric approach. Biometrics 1988; 44(3): 837-45.
[http://dx.doi.org/10.2307/2531595] [PMID: 3203132]
[29]
Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977; 33(1): 159-74.
[http://dx.doi.org/10.2307/2529310] [PMID: 843571]
[30]
Xu X, Fang W, Ling H, Chai W, Chen K. Diffusion-weighted MR imaging of kidneys in patients with chronic kidney disease: initial study. Eur Radiol 2010; 20(4): 978-83.
[http://dx.doi.org/10.1007/s00330-009-1619-8] [PMID: 19789876]
[31]
Haque ME, Franklin T, Bokhary U, et al. Longitudinal changes in MRI markers in a reversible unilateral ureteral obstruction mouse model: Preliminary experience. J Magn Reson Imaging 2014; 39(4): 835-41.
[http://dx.doi.org/10.1002/jmri.24235] [PMID: 24151096]
[32]
Jiang J, Fu Y, Hu X, et al. The value of diffusion-weighted imaging based on monoexponential and biexponential models for the diagnosis of benign and malignant lung nodules and masses. Br J Radiol 2020; 93(1110): 20190400.
[http://dx.doi.org/10.1259/bjr.20190400] [PMID: 32163295]
[33]
Zhu SC, Liu YH, Wei Y, et al. Intravoxel incoherent motion diffusion-weighted magnetic resonance imaging for predicting histological grade of hepatocellular carcinoma: Comparison with conventional diffusion-weighted imaging. World J Gastroenterol 2018; 24(8): 929-40.
[http://dx.doi.org/10.3748/wjg.v24.i8.929] [PMID: 29491686]
[34]
Lim HK, Jee WH, Jung JY, et al. Intravoxel incoherent motion diffusion-weighted MR imaging for differentiation of benign and malignant musculoskeletal tumours at 3 T. Br J Radiol 2017; 91(1082): 20170636.
[http://dx.doi.org/10.1259/bjr.20170636] [PMID: 29144153]
[35]
Wan Q, Deng Y, Lei Q, et al. Differentiating between malignant and benign solid solitary pulmonary lesions: Are intravoxel incoherent motion and diffusion kurtosis imaging superior to conventional diffusion-weighted imaging? Eur Radiol 2019; 29(3): 1607-15.
[http://dx.doi.org/10.1007/s00330-018-5714-6] [PMID: 30255258]
[36]
Zhang JL, Sigmund EE, Chandarana H, et al. Variability of renal apparent diffusion coefficients: Limitations of the monoexponential model for diffusion quantification. Radiology 2010; 254(3): 783-92.
[http://dx.doi.org/10.1148/radiol.09090891] [PMID: 20089719]
[37]
Hashim E, Yuen DA, Kirpalani A. Reduced flow in delayed graft function as assessed by IVIM is associated with time to recovery following kidney transplantation. J Magn Reson Imaging 2021; 53(1): 108-17.
[http://dx.doi.org/10.1002/jmri.27245] [PMID: 32602206]
[38]
Chen L, Ren T, Zuo P, Fu Y, Xia S, Shen W. Detecting impaired function of renal allografts at the early stage after transplantation using intravoxel incoherent motion imaging. Acta Radiol 2019; 60(8): 1039-47.
[http://dx.doi.org/10.1177/0284185118810979] [PMID: 30450922]
[39]
Zeng S, Liang L, Zhang Q, et al. Using functional magnetic resonance imaging to evaluate an acute allograft rejection model in rats. Magn Reson Imaging 2019; 58: 24-31.
[http://dx.doi.org/10.1016/j.mri.2019.01.006] [PMID: 30630071]
[40]
Henkelman RM, Neil JJ, Xiang QS. A quantitative interpretation of IVIM measurements of vascular perfusion in the rat brain. Magn Reson Med 1994; 32(4): 464-9.
[http://dx.doi.org/10.1002/mrm.1910320407] [PMID: 7997111]
[41]
Henkelman RM. Does IVIM measure classical perfusion? Magn Reson Med 1990; 16(3): 470-5.
[http://dx.doi.org/10.1002/mrm.1910160313] [PMID: 2077337]
[42]
Liu Z, Xu Y, Zhang J, et al. Chronic kidney disease: Pathological and functional assessment with diffusion tensor imaging at 3T MR. Eur Radiol 2015; 25(3): 652-60.
[http://dx.doi.org/10.1007/s00330-014-3461-x] [PMID: 25304821]
[43]
Wu HH, Jia HR, Zhang Y, Liu L, Xu DB, Sun HR. Monitoring the progression of renal fibrosis by T2-weighted signal intensity and diffusion weighted magnetic resonance imaging in cisplatin induced rat models. Chin Med J 2015; 128(5): 626-31.
[http://dx.doi.org/10.4103/0366-6999.151660] [PMID: 25698194]
[44]
Hennedige T, Koh TS, Hartono S, et al. Intravoxel incoherent imaging of renal fibrosis induced in a murine model of unilateral ureteral obstruction. Magn Reson Imaging 2015; 33(10): 1324-8.
[http://dx.doi.org/10.1016/j.mri.2015.07.012] [PMID: 26248270]
[45]
Choi JS, Kim MJ, Chung YE, et al. Comparison of breathhold, navigator-triggered, and free-breathing diffusion-weighted MRI for focal hepatic lesions. J Magn Reson Imaging 2013; 38(1): 109-18.
[http://dx.doi.org/10.1002/jmri.23949] [PMID: 23188562]
[46]
Herek D, Karabulut N, Kocyıgıt A, Yagcı AB. Evaluation of free breathing versus breath hold diffusion weighted imaging in terms Apparent Diffusion Coefficient (ADC) and Signal-to-Noise Ratio (SNR) values for solid abdominal organs. Pol Przegl Radiol Med Nukl 2016; 81: 502-6.
[http://dx.doi.org/10.12659/PJR.895868] [PMID: 27822326]
[47]
Takayama Y, Nishie A, Asayama Y, et al. Image quality and diagnostic performance of free-breathing diffusion-weighted imaging for hepatocellular carcinoma. World J Hepatol 2017; 9(14): 657-66.
[http://dx.doi.org/10.4254/wjh.v9.i14.657] [PMID: 28588750]
[48]
Swerkersson S, Grundberg O, Kölbeck K, Carlberg A, Nyrén S, Skorpil M. Optimizing diffusion-weighted magnetic resonance imaging for evaluation of lung tumors: A comparison of respiratory triggered and free breathing techniques. Eur J Radiol Open 2018; 5: 189-93.
[http://dx.doi.org/10.1016/j.ejro.2018.10.003] [PMID: 30450371]
[49]
Morin CE, Dillman JR, Serai SD, Trout AT, Tkach JA, Wang H. Comparison of standard breath-held, free-breathing, and compressed sensing 2D gradient-recalled echo mr elastography techniques for evaluating liver stiffness. AJR Am J Roentgenol 2018; 211(6): W279-87.
[http://dx.doi.org/10.2214/AJR.18.19761] [PMID: 30300003]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy