Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

The Application of Nucleic Acid Nanomaterials in the Treatment of Mitochondrial Dysfunction

Author(s): Lan Yao, Qing Hai* and Tao Zhang*

Volume 24, Issue 5, 2023

Published on: 13 July, 2023

Page: [393 - 403] Pages: 11

DOI: 10.2174/1389200224666230614115655

Price: $65

Abstract

Mitochondrial dysfunction is considered highly related to the development and progression of diseases, including cancer, metabolism disturbance, and neurodegeneration. Traditional pharmacological approach for mitochondrial dysfunction treatment has off-target and dose-dependent side effects, which leads to the emergence of mitochondrial gene therapy by regulating coding or noncoding genes by using nucleic acid sequences such as oligonucleotides, peptide nucleic acids, rRNA, siRNA, etc. To avoid size heterogeneity and potential cytotoxicity of the traditional delivery vehicle like liposome, framework nucleic acids have shown promising potentials. First, special spatial structure like tetrahedron allows entry into cells without transfection reagents. Second, the nature of nucleic acid provides the editability of framework structure, more sites and methods for drug loading and targeted sequences linking, providing efficient transportation and accurate targeting to mitochondria. Third, controllable size leads a possibility to go through biological barrier such as the blood-brain barrier, reaching the central nervous system to reverse mitochondria-related neurodegeneration. In addition, it's biocompatibility and physiological environmental stability open up the possibility of in vivo treatments for mitochondrial dysfunction. Furthermore, we discuss the challenges and opportunities of framework nucleic acids-based delivery systems in mitochondrial dysfunction.

« Previous
Graphical Abstract

[1]
Friedman, J.R.; Nunnari, J. Mitochondrial form and function. Nature, 2014, 505(7483), 335-343.
[http://dx.doi.org/10.1038/nature12985] [PMID: 24429632]
[2]
Bock, F.J.; Tait, S.W.G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol., 2020, 21(2), 85-100.
[http://dx.doi.org/10.1038/s41580-019-0173-8] [PMID: 31636403]
[3]
Wong, Y.C.; Ysselstein, D.; Krainc, D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature, 2018, 554(7692), 382-386.
[http://dx.doi.org/10.1038/nature25486] [PMID: 29364868]
[4]
Chen, Y.; Sheng, Z.H. Kinesin-1–syntaphilin coupling mediates activity-dependent regulation of axonal mitochondrial transport. J. Cell Biol., 2013, 202(2), 351-364.
[http://dx.doi.org/10.1083/jcb.201302040] [PMID: 23857772]
[5]
Ding, W.X.; Yin, X.M. Mitophagy: Mechanisms, pathophysiological roles, and analysis. bchm, 2012, 393(7), 547-564.
[http://dx.doi.org/10.1515/hsz-2012-0119] [PMID: 22944659]
[6]
Youle, R.J.; Narendra, D.P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol., 2011, 12(1), 9-14.
[http://dx.doi.org/10.1038/nrm3028] [PMID: 21179058]
[7]
Wang, X.L.; Feng, S.T.; Wang, Z.Z.; Chen, N.H.; Zhang, Y. Role of mitophagy in mitochondrial quality control: Mechanisms and potential implications for neurodegenerative diseases. Pharmacol. Res., 2021, 165105433
[http://dx.doi.org/10.1016/j.phrs.2021.105433] [PMID: 33454337]
[8]
Anzell, A.R.; Fogo, G.M.; Gurm, Z.; Raghunayakula, S.; Wider, J.M.; Maheras, K.J.; Emaus, K.J.; Bryson, T.D.; Wang, M.; Neumar, R.W.; Przyklenk, K.; Sanderson, T.H. Mitochondrial fission and mitophagy are independent mechanisms regulating ischemia/reperfusion injury in primary neurons. Cell Death Dis., 2021, 12(5), 475.
[http://dx.doi.org/10.1038/s41419-021-03752-2] [PMID: 33980811]
[9]
Ogrodnik, M.; Miwa, S.; Tchkonia, T.; Tiniakos, D.; Wilson, C.L.; Lahat, A.; Day, C.P.; Burt, A.; Palmer, A.; Anstee, Q.M.; Grellscheid, S.N.; Hoeijmakers, J.H.J.; Barnhoorn, S.; Mann, D.A.; Bird, T.G.; Vermeij, W.P.; Kirkland, J.L.; Passos, J.F.; von Zglinicki, T.; Jurk, D. Cellular senescence drives age-dependent hepatic steatosis. Nat. Commun., 2017, 8(1), 15691.
[http://dx.doi.org/10.1038/ncomms15691] [PMID: 28608850]
[10]
Mehta, A.R.; Gregory, J.M.; Dando, O.; Carter, R.N.; Burr, K.; Nanda, J.; Story, D.; McDade, K.; Smith, C.; Morton, N.M.; Mahad, D.J.; Hardingham, G.E.; Chandran, S.; Selvaraj, B.T. Mitochondrial bioenergetic deficits in C9orf72 amyotrophic lateral sclerosis motor neurons cause dysfunctional axonal homeostasis. Acta Neuropathol., 2021, 141(2), 257-279.
[http://dx.doi.org/10.1007/s00401-020-02252-5] [PMID: 33398403]
[11]
Cassim, S. Vučetić M.; Ždralević M.; Pouyssegur, J. Warburg and beyond: The power of mitochondrial metabolism to collaborate or replace fermentative glycolysis in cancer. Cancers, 2020, 12(5), 1119.
[http://dx.doi.org/10.3390/cancers12051119] [PMID: 32365833]
[12]
Grünewald, A.; Kumar, K.R.; Sue, C.M. New insights into the complex role of mitochondria in Parkinson’s disease. Prog. Neurobiol., 2019, 177, 73-93.
[http://dx.doi.org/10.1016/j.pneurobio.2018.09.003] [PMID: 30219247]
[13]
Lleonart, M.E.; Grodzicki, R.; Graifer, D.M.; Lyakhovich, A. Mitochondrial dysfunction and potential anticancer therapy. Med. Res. Rev., 2017, 37(6), 1275-1298.
[http://dx.doi.org/10.1002/med.21459] [PMID: 28682452]
[14]
Prakash, Y.S.; Pabelick, C.M.; Sieck, G.C. Mitochondrial dysfunction in airway disease. Chest, 2017, 152(3), 618-626.
[http://dx.doi.org/10.1016/j.chest.2017.03.020] [PMID: 28336486]
[15]
Wen, R.; Banik, B.; Pathak, R. K.; Kumar, A.; Kolishetti, N.; Dhar, S. Nanotechnology inspired tools for mitochondrial dysfunction related diseases. Adv Drug Deliv Rev, 2016, 99(Pt A), 52-69.
[http://dx.doi.org/10.1016/j.addr.2015.12.024]
[16]
Kulkarni, J.A.; Witzigmann, D.; Thomson, S.B.; Chen, S.; Leavitt, B.R.; Cullis, P.R.; van der Meel, R. The current landscape of nucleic acid therapeutics. Nat. Nanotechnol., 2021, 16(6), 630-643.
[http://dx.doi.org/10.1038/s41565-021-00898-0] [PMID: 34059811]
[17]
Vaughan, H.J.; Green, J.J.; Tzeng, S.Y. Cancer‐targeting nanoparticles for combinatorial nucleic acid delivery. Adv. Mater., 2020, 32(13)1901081
[http://dx.doi.org/10.1002/adma.201901081] [PMID: 31222852]
[18]
Gao, K.; Cheng, M.; Zuo, X.; Lin, J.; Hoogewijs, K.; Murphy, M.P.; Fu, X.D.; Zhang, X. Active RNA interference in mitochondria. Cell Res., 2021, 31(2), 219-228.
[http://dx.doi.org/10.1038/s41422-020-00394-5] [PMID: 32807841]
[19]
Verechshagina, N.A.; Konstantinov, Y.M.; Kamenski, P.A.; Mazunin, I.O. Import of proteins and nucleic acids into mitochondria. Biochemistry, 2018, 83(6), 643-661.
[http://dx.doi.org/10.1134/S0006297918060032] [PMID: 30195322]
[20]
Goodchild, J.; Kim, B.; Zamecnik, P.C. The clearance and degradation of oligodeoxynucleotides following intravenous injection into rabbits. Antisense Res. Dev., 1991, 1(2), 153-160.
[http://dx.doi.org/10.1089/ard.1991.1.153] [PMID: 1841657]
[21]
Deleavey, G.F.; Damha, M.J. Designing chemically modified oligonucleotides for targeted gene silencing. Chem. Biol., 2012, 19(8), 937-954.
[http://dx.doi.org/10.1016/j.chembiol.2012.07.011] [PMID: 22921062]
[22]
Shen, W.; De Hoyos, C.L.; Migawa, M.T.; Vickers, T.A.; Sun, H.; Low, A.; Bell, T.A., III; Rahdar, M.; Mukhopadhyay, S.; Hart, C.E.; Bell, M.; Riney, S.; Murray, S.F.; Greenlee, S.; Crooke, R.M.; Liang, X.; Seth, P.P.; Crooke, S.T. Chemical modification of PS-ASO therapeutics reduces cellular protein-binding and improves the therapeutic index. Nat. Biotechnol., 2019, 37(6), 640-650.
[http://dx.doi.org/10.1038/s41587-019-0106-2] [PMID: 31036929]
[23]
Manoharan, M. 2'-Carbohydrate modifications in antisense oligonucleotide therapy: Importance of conformation, configuration and conjugation. Biochim. Biophys. Acta Gene Struct. Expr., 1999, 1489(1), 117-130.
[http://dx.doi.org/10.1016/S0167-4781(99)00138-4] [PMID: 10807002]
[24]
Springer, A.D.; Dowdy, S.F. GalNAc-siRNA conjugates: Leading the way for delivery of RNAi therapeutics. Nucleic Acid Ther., 2018, 28(3), 109-118.
[http://dx.doi.org/10.1089/nat.2018.0736] [PMID: 29792572]
[25]
McNally, E.M.; Leverson, B.D. Better living through peptide-conjugated chemistry: Next-generation antisense oligonucleotides. J. Clin. Invest., 2019, 129(11), 4570-4571.
[http://dx.doi.org/10.1172/JCI131933] [PMID: 31566581]
[26]
McClorey, G.; Banerjee, S. Cell-penetrating peptides to enhance delivery of oligonucleotide-based therapeutics. Biomedicines, 2018, 6(2), 51.
[http://dx.doi.org/10.3390/biomedicines6020051] [PMID: 29734750]
[27]
Finkel, R.S.; Mercuri, E.; Darras, B.T.; Connolly, A.M.; Kuntz, N.L.; Kirschner, J.; Chiriboga, C.A.; Saito, K.; Servais, L.; Tizzano, E.; Topaloglu, H.; Tulinius, M.; Montes, J.; Glanzman, A.M.; Bishop, K.; Zhong, Z.J.; Gheuens, S.; Bennett, C.F.; Schneider, E.; Farwell, W.; De Vivo, D.C.; Group, E.S. Nusinersen versus sham control in infantile-onset spinal muscular atrophy. N. Engl. J. Med., 2017, 377(18), 1723-1732.
[http://dx.doi.org/10.1056/NEJMoa1702752] [PMID: 29091570]
[28]
Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; Shieh, P.B.; Tulinius, M.; Mazzone, E.S.; Montes, J.; Bishop, K.M.; Yang, Q.; Foster, R.; Gheuens, S.; Bennett, C.F.; Farwell, W.; Schneider, E.; De Vivo, D.C.; Finkel, R.S.; Group, C.S. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med., 2018, 378(7), 625-635.
[http://dx.doi.org/10.1056/NEJMoa1710504] [PMID: 29443664]
[29]
Sun, L.; Li, P.; Ju, X.; Rao, J.; Huang, W.; Ren, L.; Zhang, S.; Xiong, T.; Xu, K.; Zhou, X.; Gong, M.; Miska, E.; Ding, Q.; Wang, J.; Zhang, Q.C. In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs. Cell, 2021, 184(7), 1865-1883.e20.
[http://dx.doi.org/10.1016/j.cell.2021.02.008] [PMID: 33636127]
[30]
Wallace, D.C. A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: A dawn for evolutionary medicine. Annu. Rev. Genet., 2005, 39(1), 359-407.
[http://dx.doi.org/10.1146/annurev.genet.39.110304.095751] [PMID: 16285865]
[31]
Russell, O.; Turnbull, D. Mitochondrial DNA disease—molecular insights and potential routes to a cure. Exp. Cell Res., 2014, 325(1), 38-43.
[http://dx.doi.org/10.1016/j.yexcr.2014.03.012] [PMID: 24675282]
[32]
Gorman, G.S.; Chinnery, P.F.; DiMauro, S.; Hirano, M.; Koga, Y.; McFarland, R.; Suomalainen, A.; Thorburn, D.R.; Zeviani, M.; Turnbull, D.M. Mitochondrial diseases. Nat. Rev. Dis. Primers, 2016, 2(1), 16080.
[http://dx.doi.org/10.1038/nrdp.2016.80] [PMID: 27775730]
[33]
Alexeyev, M.F.; Venediktova, N.; Pastukh, V.; Shokolenko, I.; Bonilla, G.; Wilson, G.L. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther., 2008, 15(7), 516-523.
[http://dx.doi.org/10.1038/gt.2008.11] [PMID: 18256697]
[34]
Reddy, P.; Ocampo, A.; Suzuki, K.; Luo, J.; Bacman, S.R.; Williams, S.L.; Sugawara, A.; Okamura, D.; Tsunekawa, Y.; Wu, J.; Lam, D.; Xiong, X.; Montserrat, N.; Esteban, C.R.; Liu, G.H.; Sancho-Martinez, I.; Manau, D.; Civico, S.; Cardellach, F.; del Mar O’Callaghan, M.; Campistol, J.; Zhao, H.; Campistol, J.M.; Moraes, C.T.; Izpisua Belmonte, J.C. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell, 2015, 161(3), 459-469.
[http://dx.doi.org/10.1016/j.cell.2015.03.051] [PMID: 25910206]
[35]
Gammage, P.A.; Rorbach, J.; Vincent, A.I.; Rebar, E.J.; Minczuk, M. Mitochondrially targeted ZFN s for selective degradation of pathogenic mitochondrial genomes bearing large‐scale deletions or point mutations. EMBO Mol. Med., 2014, 6(4), 458-466.
[http://dx.doi.org/10.1002/emmm.201303672] [PMID: 24567072]
[36]
Bacman, S.R.; Williams, S.L.; Pinto, M.; Peralta, S.; Moraes, C.T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nat. Med., 2013, 19(9), 1111-1113.
[http://dx.doi.org/10.1038/nm.3261] [PMID: 23913125]
[37]
Yang, Y.; Wu, H.; Kang, X.; Liang, Y.; Lan, T.; Li, T.; Tan, T.; Peng, J.; Zhang, Q.; An, G.; Liu, Y.; Yu, Q.; Ma, Z.; Lian, Y.; Soh, B.S.; Chen, Q.; Liu, P.; Chen, Y.; Sun, X.; Li, R.; Zhen, X.; Liu, P.; Yu, Y.; Li, X.; Fan, Y. Targeted elimination of mutant mitochondrial DNA in MELAS-iPSCs by mitoTALENs. Protein Cell, 2018, 9(3), 283-297.
[http://dx.doi.org/10.1007/s13238-017-0499-y] [PMID: 29318513]
[38]
McCann, B.J.; Cox, A.; Gammage, P.A.; Stewart, J.B.; Zernicka-Goetz, M.; Minczuk, M. Delivery of mtZFNs into early mouse embryos. Methods Mol. Biol., 2018, 1867, 215-228.
[http://dx.doi.org/10.1007/978-1-4939-8799-3_16] [PMID: 30155826]
[39]
Zekonyte, U.; Bacman, S.R.; Smith, J.; Shoop, W.; Pereira, C.V.; Tomberlin, G.; Stewart, J.; Jantz, D.; Moraes, C.T. Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nat. Commun., 2021, 12(1), 3210.
[http://dx.doi.org/10.1038/s41467-021-23561-7] [PMID: 34050192]
[40]
Wang, B.; Lv, X.; Wang, Y.; Wang, Z.; Liu, Q.; Lu, B.; Liu, Y.; Gu, F. CRISPR/Cas9-mediated mutagenesis at microhomologous regions of human mitochondrial genome. Sci. China Life Sci., 2021, 64(9), 1463-1472.
[http://dx.doi.org/10.1007/s11427-020-1819-8] [PMID: 33420919]
[41]
Taylor, R.W.; Chinnery, P.F.; Turnbull, D.M.; Lightowlers, R.N. Selective inhibition of mutant human mitochondrial DNA replication in vitro by peptide nucleic acids. Nat. Genet., 1997, 15(2), 212-215.
[http://dx.doi.org/10.1038/ng0297-212] [PMID: 9020853]
[42]
Comte, C.; Tonin, Y.; Heckel-Mager, A.M.; Boucheham, A.; Smirnov, A.; Auré, K.; Lombès, A.; Martin, R.P.; Entelis, N.; Tarassov, I. Mitochondrial targeting of recombinant RNAs modulates the level of a heteroplasmic mutation in human mitochondrial DNA associated with Kearns Sayre Syndrome. Nucleic Acids Res., 2013, 41(1), 418-433.
[http://dx.doi.org/10.1093/nar/gks965] [PMID: 23087375]
[43]
Loutre, R.; Heckel, A.M.; Jeandard, D.; Tarassov, I.; Entelis, N. Anti-replicative recombinant 5S rRNA molecules can modulate the mtDNA heteroplasmy in a glucose-dependent manner. PLoS One, 2018, 13(6)e0199258
[http://dx.doi.org/10.1371/journal.pone.0199258] [PMID: 29912984]
[44]
Chan, D.C. Mitochondria: Dynamic organelles in disease, aging, and development. Cell, 2006, 125(7), 1241-1252.
[http://dx.doi.org/10.1016/j.cell.2006.06.010] [PMID: 16814712]
[45]
Yamada, Y.; Maruyama, M.; Kita, T.; Usami, S.; Kitajiri, S.; Harashima, H. The use of a MITO-Porter to deliver exogenous therapeutic RNA to a mitochondrial disease’s cell with a A1555G mutation in the mitochondrial 12S rRNA gene results in an increase in mitochondrial respiratory activity. Mitochondrion, 2020, 55, 134-144.
[http://dx.doi.org/10.1016/j.mito.2020.09.008] [PMID: 33035688]
[46]
Yamada, Y.; Somiya, K.; Miyauchi, A.; Osaka, H.; Harashima, H. Validation of a mitochondrial RNA therapeutic strategy using fibroblasts from a Leigh syndrome patient with a mutation in the mitochondrial ND3 gene. Sci. Rep., 2020, 10(1), 7511.
[http://dx.doi.org/10.1038/s41598-020-64322-8] [PMID: 32371897]
[47]
Kawamura, E.; Maruyama, M.; Abe, J.; Sudo, A.; Takeda, A.; Takada, S.; Yokota, T.; Kinugawa, S.; Harashima, H.; Yamada, Y. Validation of gene therapy for mutant mitochondria by delivering mitochondrial RNA using a MITO-porter. Mol. Ther. Nucleic Acids, 2020, 20, 687-698.
[http://dx.doi.org/10.1016/j.omtn.2020.04.004] [PMID: 32388194]
[48]
Furukawa, R.; Yamada, Y.; Kawamura, E.; Harashima, H. Mitochondrial delivery of antisense RNA by MITO-Porter results in mitochondrial RNA knockdown, and has a functional impact on mitochondria. Biomaterials, 2015, 57, 107-115.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.022] [PMID: 25913255]
[49]
Kawamura, E.; Hibino, M.; Harashima, H.; Yamada, Y. Targeted mitochondrial delivery of antisense RNA-containing nanoparticles by a MITO-Porter for safe and efficient mitochondrial gene silencing. Mitochondrion, 2019, 49, 178-188.
[http://dx.doi.org/10.1016/j.mito.2019.08.004] [PMID: 31472283]
[50]
Cruz-Zaragoza, L.D.; Dennerlein, S.; Linden, A.; Yousefi, R.; Lavdovskaia, E.; Aich, A.; Falk, R.R.; Gomkale, R.; Schöndorf, T.; Bohnsack, M.T.; Richter-Dennerlein, R.; Urlaub, H.; Rehling, P. An in vitro system to silence mitochondrial gene expression. Cell, 2021, 184(23), 5824-5837.e15.
[http://dx.doi.org/10.1016/j.cell.2021.09.033] [PMID: 34672953]
[51]
Chan, D.C. Mitochondrial dynamics and its involvement in Disease. Annu. Rev. Pathol., 2020, 15(1), 235-259.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032711] [PMID: 31585519]
[52]
Garcia, D.A.; Powers, A.F.; Bell, T.A., III; Guo, S.; Aghajan, M. Antisense oligonucleotide-mediated silencing of mitochondrial fusion and fission factors modulates mitochondrial dynamics and rescues mitochondrial dysfunction. Nucleic Acid Ther., 2022, 32(1), 51-65.
[http://dx.doi.org/10.1089/nat.2021.0029] [PMID: 34698563]
[53]
Siira, S.J.; Rossetti, G.; Richman, T.R.; Perks, K.; Ermer, J.A.; Kuznetsova, I.; Hughes, L.; Shearwood, A.M.J.; Viola, H.M.; Hool, L.C.; Rackham, O.; Filipovska, A. Concerted regulation of mitochondrial and nuclear non‐coding RNA s by a dual‐targeted RN ase Z. EMBO Rep., 2018, 19(10)e46198
[http://dx.doi.org/10.15252/embr.201846198] [PMID: 30126926]
[54]
Zhao, Y.; Sun, L.; Wang, R.R.; Hu, J.F.; Cui, J. The effects of mitochondria-associated long noncoding RNAs in cancer mitochondria: New players in an old arena. Crit. Rev. Oncol. Hematol., 2018, 131, 76-82.
[http://dx.doi.org/10.1016/j.critrevonc.2018.08.005] [PMID: 30293709]
[55]
Varas-Godoy, M.; Lladser, A.; Farfan, N.; Villota, C.; Villegas, J.; Tapia, J.C.; Burzio, L.O.; Burzio, V.A.; Valenzuela, P.D.T. In vivo knockdown of antisense non-coding mitochondrial RNAs by a lentiviral-encoded shRNA inhibits melanoma tumor growth and lung colonization. Pigment Cell Melanoma Res., 2018, 31(1), 64-72.
[http://dx.doi.org/10.1111/pcmr.12615] [PMID: 28707763]
[56]
Borgna, V.; Villegas, J.; Burzio, V.A.; Belmar, S.; Araya, M.; Jeldes, E.; Lobos-González, L.; Silva, V.; Villota, C.; Oliveira-Cruz, L.; Lopez, C.; Socias, T.; Castillo, O.; Burzio, L.O. Mitochondrial ASncmtRNA-1 and ASncmtRNA-2 as potent targets to inhibit tumor growth and metastasis in the RenCa murine renal adenocarcinoma model. Oncotarget, 2017, 8(27), 43692-43708.
[http://dx.doi.org/10.18632/oncotarget.18460] [PMID: 28620146]
[57]
Vidaurre, S.; Fitzpatrick, C.; Burzio, V.A.; Briones, M.; Villota, C.; Villegas, J.; Echenique, J.; Oliveira-Cruz, L.; Araya, M.; Borgna, V.; Socías, T.; Lopez, C.; Avila, R.; Burzio, L.O. Down-regulation of the antisense mitochondrial non-coding RNAs (ncRNAs) is a unique vulnerability of cancer cells and a potential target for cancer therapy. J. Biol. Chem., 2014, 289(39), 27182-27198.
[http://dx.doi.org/10.1074/jbc.M114.558841] [PMID: 25100722]
[58]
Lobos-González, L.; Silva, V.; Araya, M.; Restovic, F.; Echenique, J.; Oliveira-Cruz, L.; Fitzpatrick, C.; Briones, M.; Villegas, J.; Villota, C.; Vidaurre, S.; Borgna, V.; Socias, M.; Valenzuela, S.; Lopez, C.; Socias, T.; Varas, M.; Díaz, J.; Burzio, L.O.; Burzio, V.A. Targeting antisense mitochondrial ncRNAs inhibits murine melanoma tumor growth and metastasis through reduction in survival and invasion factors. Oncotarget, 2016, 7(36), 58331-58350.
[http://dx.doi.org/10.18632/oncotarget.11110] [PMID: 27507060]
[59]
Lobos-González, L.; Bustos, R.; Campos, A.; Silva, V.; Silva, V.; Jeldes, E.; Salomon, C.; Varas-Godoy, M.; Cáceres-Verschae, A.; Duran, E.; Vera, T.; Ezquer, F.; Ezquer, M.; Burzio, V.A.; Villegas, J. Exosomes released upon mitochondrial ASncmtRNA knockdown reduce tumorigenic properties of malignant breast cancer cells. Sci. Rep., 2020, 10(1), 343.
[http://dx.doi.org/10.1038/s41598-019-57018-1] [PMID: 31941923]
[60]
Wilusz, J.E.A. 360° view of circular RNAs: From biogenesis to functions. Wiley Interdiscip. Rev. RNA, 2018, 9(4)e1478
[http://dx.doi.org/10.1002/wrna.1478] [PMID: 29655315]
[61]
Kristensen, L.S.; Andersen, M.S.; Stagsted, L.V.W.; Ebbesen, K.K.; Hansen, T.B.; Kjems, J. The biogenesis, biology and characterization of circular RNAs. Nat. Rev. Genet., 2019, 20(11), 675-691.
[http://dx.doi.org/10.1038/s41576-019-0158-7] [PMID: 31395983]
[62]
Zhao, Q.; Liu, J.; Deng, H.; Ma, R.; Liao, J.Y.; Liang, H.; Hu, J.; Li, J.; Guo, Z.; Cai, J.; Xu, X.; Gao, Z.; Su, S. Targeting mitochondria-located circRNA SCAR alleviates NASH via reducing mROS output. Cell, 2020, 183(1), 76-93.e22.
[http://dx.doi.org/10.1016/j.cell.2020.08.009] [PMID: 32931733]
[63]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[64]
Yuan, P.; Mao, X.; Wu, X.; Liew, S.S.; Li, L.; Yao, S.Q. Mitochondria‐targeting, intracellular delivery of native proteins using biodegradable silica nanoparticles. Angew. Chem. Int. Ed., 2019, 58(23), 7657-7661.
[http://dx.doi.org/10.1002/anie.201901699] [PMID: 30994955]
[65]
Zhang, J.; Li, C.; Xue, Q.; Yin, X.; Li, Y.; He, W.; Chen, X.; Zhang, J.; Reis, R.L.; Wang, Y. An efficient carbon‐based drug delivery system for cancer therapy through the nucleus targeting and mitochondria mediated apoptotic pathway. Small Methods, 2021, 5(12)2100539
[http://dx.doi.org/10.1002/smtd.202100539] [PMID: 34928029]
[66]
Velichkovska, M.; Surnar, B.; Nair, M.; Dhar, S.; Toborek, M. Targeted mitochondrial COQ10 delivery attenuates antiretroviral-drug-induced senescence of neural progenitor cells. Mol. Pharm., 2019, 16(2), 724-736.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01014] [PMID: 30592424]
[67]
Liu, H.N.; Guo, N.N.; Wang, T.T.; Guo, W.W.; Lin, M.T.; Huang-Fu, M.Y.; Vakili, M.R.; Xu, W.H.; Chen, J.J.; Wei, Q.C.; Han, M.; Lavasanifar, A.; Gao, J.Q. Mitochondrial targeted doxorubicin-triphenylphosphonium delivered by hyaluronic acid modified and ph responsive nanocarriers to breast tumor: In vitro and in vivo studies. Mol. Pharm., 2018, 15(3), 882-891.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00793] [PMID: 29357260]
[68]
Abe, J.; Yamada, Y.; Takeda, A.; Harashima, H. Cardiac progenitor cells activated by mitochondrial delivery of resveratrol enhance the survival of a doxorubicin-induced cardiomyopathy mouse model via the mitochondrial activation of a damaged myocardium. J. Control. Release, 2018, 269, 177-188.
[http://dx.doi.org/10.1016/j.jconrel.2017.11.024] [PMID: 29146241]
[69]
Katayama, T.; Kinugawa, S.; Takada, S.; Furihata, T.; Fukushima, A.; Yokota, T.; Anzai, T.; Hibino, M.; Harashima, H.; Yamada, Y. A mitochondrial delivery system using liposome-based nanocarriers that target myoblast cells. Mitochondrion, 2019, 49, 66-72.
[http://dx.doi.org/10.1016/j.mito.2019.07.005] [PMID: 31326598]
[70]
Yamada, Y.; Tabata, M.; Yasuzaki, Y.; Nomura, M.; Shibata, A.; Ibayashi, Y.; Taniguchi, Y.; Sasaki, S.; Harashima, H. A nanocarrier system for the delivery of nucleic acids targeted to a pancreatic beta cell line. Biomaterials, 2014, 35(24), 6430-6438.
[http://dx.doi.org/10.1016/j.biomaterials.2014.04.017] [PMID: 24816283]
[71]
Tan, X.; Jia, F.; Wang, P.; Zhang, K. Nucleic acid-based drug delivery strategies. J. Control. Release, 2020, 323, 240-252.
[http://dx.doi.org/10.1016/j.jconrel.2020.03.040] [PMID: 32272123]
[72]
Banerjee, A.; Bhatia, D.; Saminathan, A.; Chakraborty, S.; Kar, S.; Krishnan, Y. Controlled release of encapsulated cargo from a DNA icosahedron using a chemical trigger. Angew. Chem. Int. Ed., 2013, 52(27), 6854-6857.
[http://dx.doi.org/10.1002/anie.201302759] [PMID: 23716499]
[73]
Li, J.; Pei, H.; Zhu, B.; Liang, L.; Wei, M.; He, Y.; Chen, N.; Li, D.; Huang, Q.; Fan, C. Self-assembled multivalent DNA nanostructures for noninvasive intracellular delivery of immunostimulatory CpG oligonucleotides. ACS Nano, 2011, 5(11), 8783-8789.
[http://dx.doi.org/10.1021/nn202774x] [PMID: 21988181]
[74]
Walsh, A.S.; Yin, H.; Erben, C.M.; Wood, M.J.A.; Turberfield, A.J. DNA cage delivery to mammalian cells. ACS Nano, 2011, 5(7), 5427-5432.
[http://dx.doi.org/10.1021/nn2005574] [PMID: 21696187]
[75]
Wang, Z.; Song, L.; Liu, Q.; Tian, R.; Shang, Y.; Liu, F.; Liu, S.; Zhao, S.; Han, Z.; Sun, J.; Jiang, Q.; Ding, B. A tubular DNA nanodevice as a siRNA/Chemo‐drug co‐delivery vehicle for combined cancer therapy. Angew. Chem. Int. Ed., 2021, 60(5), 2594-2598.
[http://dx.doi.org/10.1002/anie.202009842] [PMID: 33089613]
[76]
Hu, Q.; Li, H.; Wang, L.; Gu, H.; Fan, C. DNA nanotechnology-enabled drug delivery systems. Chem. Rev., 2019, 119(10), 6459-6506.
[http://dx.doi.org/10.1021/acs.chemrev.7b00663] [PMID: 29465222]
[77]
Zhang, Q.; Jiang, Q.; Li, N.; Dai, L.; Liu, Q.; Song, L.; Wang, J.; Li, Y.; Tian, J.; Ding, B.; Du, Y. DNA origami as an in vivo drug delivery vehicle for cancer therapy. ACS Nano, 2014, 8(7), 6633-6643.
[http://dx.doi.org/10.1021/nn502058j] [PMID: 24963790]
[78]
Zhu, G.; Zheng, J.; Song, E.; Donovan, M.; Zhang, K.; Liu, C.; Tan, W. Self-assembled, aptamer-tethered DNA nanotrains for targeted transport of molecular drugs in cancer theranostics. Proc. Natl. Acad. Sci., 2013, 110(20), 7998-8003.
[http://dx.doi.org/10.1073/pnas.1220817110] [PMID: 23630258]
[79]
Lee, H.; Lytton-Jean, A.K.R.; Chen, Y.; Love, K.T.; Park, A.I.; Karagiannis, E.D.; Sehgal, A.; Querbes, W.; Zurenko, C.S.; Jayaraman, M.; Peng, C.G.; Charisse, K.; Borodovsky, A.; Manoharan, M.; Donahoe, J.S.; Truelove, J.; Nahrendorf, M.; Langer, R.; Anderson, D.G. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat. Nanotechnol., 2012, 7(6), 389-393.
[http://dx.doi.org/10.1038/nnano.2012.73] [PMID: 22659608]
[80]
Modi, S.; Nizak, C.; Surana, S.; Halder, S.; Krishnan, Y. Two DNA nanomachines map pH changes along intersecting endocytic pathways inside the same cell. Nat. Nanotechnol., 2013, 8(6), 459-467.
[http://dx.doi.org/10.1038/nnano.2013.92] [PMID: 23708428]
[81]
Liu, J.; Chen, Y.; Li, G.; Zhang, P.; Jin, C.; Zeng, L.; Ji, L.; Chao, H. Ruthenium(II) polypyridyl complexes as mitochondria-targeted two-photon photodynamic anticancer agents. Biomaterials, 2015, 56, 140-153.
[http://dx.doi.org/10.1016/j.biomaterials.2015.04.002] [PMID: 25934287]
[82]
Smirnov, A.V.; Entelis, N.S.; Krasheninnikov, I.A.; Martin, R.; Tarassov, I.A. Specific features of 5S rRNA structure — Its interactions with macromolecules and possible functions. Biochemistry, 2008, 73(13), 1418-1437.
[http://dx.doi.org/10.1134/S000629790813004X] [PMID: 19216709]
[83]
Smirnov, A.; Entelis, N.; Martin, R.P.; Tarassov, I. Biological significance of 5S rRNA import into human mitochondria: Role of ribosomal protein MRP-L18. Genes Dev., 2011, 25(12), 1289-1305.
[http://dx.doi.org/10.1101/gad.624711] [PMID: 21685364]
[84]
Schneider, A. Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu. Rev. Biochem., 2011, 80(1), 1033-1053.
[http://dx.doi.org/10.1146/annurev-biochem-060109-092838] [PMID: 21417719]
[85]
Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol., 2012, 65(2), 157-170.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01567.x] [PMID: 23278683]
[86]
Jiang, T.; Zhou, L.; Liu, H.; Zhang, P.; Liu, G.; Gong, P.; Li, C.; Tan, W.; Chen, J.; Cai, L. Monitorable mitochondria-targeting DNAtrain for image-guided synergistic cancer therapy. Anal. Chem., 2019, 91(11), 6996-7000.
[http://dx.doi.org/10.1021/acs.analchem.9b01777] [PMID: 31088071]
[87]
Liu, J.; Ding, G.; Chen, S.; Xue, C.; Chen, M.; Wu, X.; Yuan, Q.; Zheng, J.; Yang, R. Multifunctional programmable DNA nanotrain for activatable hypoxia imaging and mitochondrion-targeted enhanced photodynamic therapy. ACS Appl. Mater. Interfaces, 2021, 13(8), 9681-9690.
[http://dx.doi.org/10.1021/acsami.0c21681] [PMID: 33606499]
[88]
Yang, R.; Fang, X.L.; Zhen, Q.; Chen, Q.Y.; Feng, C. Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN. Colloids Surf. B Biointerfaces, 2019, 182110405
[http://dx.doi.org/10.1016/j.colsurfb.2019.110405] [PMID: 31377611]
[89]
Keum, J.W.; Bermudez, H. Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem. Commun., 2009, (45), 7036-7038.
[http://dx.doi.org/10.1039/b917661f] [PMID: 19904386]
[90]
Shih, W.M.; Quispe, J.D.; Joyce, G.F.A. 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron. Nature, 2004, 427(6975), 618-621.
[http://dx.doi.org/10.1038/nature02307] [PMID: 14961116]
[91]
Rothemund, P.W.K. Folding DNA to create nanoscale shapes and patterns. Nature, 2006, 440(7082), 297-302.
[http://dx.doi.org/10.1038/nature04586] [PMID: 16541064]
[92]
Goodman, R.P.; Schaap, I.A.T.; Tardin, C.F.; Erben, C.M.; Berry, R.M.; Schmidt, C.F.; Turberfield, A.J. Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication. Science, 2005, 310(5754), 1661-1665.
[http://dx.doi.org/10.1126/science.1120367] [PMID: 16339440]
[93]
Choi, C.H.J.; Hao, L.; Narayan, S.P.; Auyeung, E.; Mirkin, C.A. Mechanism for the endocytosis of spherical nucleic acid nanoparticle conjugates. Proc. Natl. Acad. Sci., 2013, 110(19), 7625-7630.
[http://dx.doi.org/10.1073/pnas.1305804110] [PMID: 23613589]
[94]
Liang, L.; Li, J.; Li, Q.; Huang, Q.; Shi, J.; Yan, H.; Fan, C. Single-particle tracking and modulation of cell entry pathways of a tetrahedral DNA nanostructure in live cells. Angew. Chem. Int. Ed., 2014, 53(30), 7745-7750.
[http://dx.doi.org/10.1002/anie.201403236] [PMID: 24827912]
[95]
Chan, M.S.; Lo, P.K. Nanoneedle-assisted delivery of site-selective peptide-functionalized DNA nanocages for targeting mitochondria and nuclei. Small, 2014, 10(7), 1255-1260.
[http://dx.doi.org/10.1002/smll.201302993] [PMID: 24323905]
[96]
Qin, X.; Xiao, L.; Li, N.; Hou, C.; Li, W.; Li, J.; Yan, N.; Lin, Y. Tetrahedral framework nucleic acids-based delivery of microRNA-155 inhibits choroidal neovascularization by regulating the polarization of macrophages. Bioact. Mater., 2022, 14, 134-144.
[http://dx.doi.org/10.1016/j.bioactmat.2021.11.031] [PMID: 35310341]
[97]
Ma, W.; Yang, Y.; Zhu, J.; Jia, W.; Zhang, T.; Liu, Z.; Chen, X.; Lin, Y. Biomimetic nanoerythrosome‐coated aptamer–DNA tetrahedron/maytansine conjugates: pH‐Responsive and targeted cytotoxicity for HER2‐positive breast cancer. Adv. Mater., 2022, 34(46)2109609
[http://dx.doi.org/10.1002/adma.202109609] [PMID: 35064993]
[98]
Li, S.; Liu, Y.; Tian, T.; Zhang, T.; Lin, S.; Zhou, M.; Zhang, X.; Lin, Y.; Cai, X. Bioswitchable delivery of microRNA by framework nucleic acids: Application to bone regeneration. Small, 2021, 17(47)2104359
[http://dx.doi.org/10.1002/smll.202104359] [PMID: 34716653]
[99]
Green, C.M.; Hastman, D.A.; Mathur, D.; Susumu, K.; Oh, E.; Medintz, I.L.; Díaz, S.A. Direct and efficient conjugation of quantum dots to DNA nanostructures with Peptide-PNA. ACS Nano, 2021, 15(5), 9101-9110.
[http://dx.doi.org/10.1021/acsnano.1c02296] [PMID: 33955735]
[100]
Zhang, T.; Tian, T.; Lin, Y. Functionalizing framework nucleic-acid-based nanostructures for biomedical application. Adv. Mater., 2021, 34(46)e2107820
[http://dx.doi.org/10.1002/adma.202107820] [PMID: 34787933]
[101]
Gao, Y.; Chen, X.; Tian, T.; Zhang, T.; Gao, S.; Zhang, X.; Yao, Y.; Lin, Y.; Cai, X. A lysosome‐activated tetrahedral nanobox for encapsulated siRNA delivery. Adv. Mater., 2022, 34(46)2201731
[http://dx.doi.org/10.1002/adma.202201731] [PMID: 35511782]
[102]
Li, J.; Yao, Y.; Wang, Y.; Xu, J.; Zhao, D.; Liu, M.; Shi, S.; Lin, Y. Modulation of the crosstalk between schwann cells and macrophages for nerve regeneration: A therapeutic strategy based on a multifunctional tetrahedral framework nucleic acids system. Adv. Mater., 2022, 34(46)2202513
[http://dx.doi.org/10.1002/adma.202202513] [PMID: 35483031]
[103]
Zhang, B.; Tian, T.; Xiao, D.; Gao, S.; Cai, X.; Lin, Y. Facilitating in situ tumor imaging with a tetrahedral DNA framework‐enhanced hybridization chain reaction probe. Adv. Funct. Mater., 2022, 32(16)2109728
[http://dx.doi.org/10.1002/adfm.202109728]
[104]
Zhang, M.; Zhang, X.; Tian, T.; Zhang, Q.; Wen, Y.; Zhu, J.; Xiao, D.; Cui, W.; Lin, Y. Anti-inflammatory activity of curcumin-loaded tetrahedral framework nucleic acids on acute gouty arthritis. Bioact. Mater., 2022, 8, 368-380.
[http://dx.doi.org/10.1016/j.bioactmat.2021.06.003] [PMID: 34541407]
[105]
Chai, X.; Fan, Z.; Yu, M.M.; Zhao, J.; Li, L. A redox-activatable DNA nanodevice for spatially-selective, AND-gated imaging of ATP and glutathione in mitochondria. Nano Lett., 2021, 21(23), 10047-10053.
[http://dx.doi.org/10.1021/acs.nanolett.1c03732] [PMID: 34807619]
[106]
Luo, L.; Wang, M.; Zhou, Y.; Xiang, D.; Wang, Q.; Huang, J.; Liu, J.; Yang, X.; Wang, K. Ratiometric fluorescent DNA nanostructure for mitochondrial ATP imaging in living cells based on hybridization chain reaction. Anal. Chem., 2021, 93(17), 6715-6722.
[http://dx.doi.org/10.1021/acs.analchem.1c00176] [PMID: 33887142]
[107]
Liu, J.; Yang, L.; Xue, C.; Huang, G.; Chen, S.; Zheng, J.; Yang, R. Reductase and light programmatical gated DNA nanodevice for spatiotemporally controlled imaging of biomolecules in subcellular organelles under hypoxic conditions. ACS Appl. Mater. Interfaces, 2021, 13(29), 33894-33904.
[http://dx.doi.org/10.1021/acsami.1c08979] [PMID: 34275283]
[108]
Wu, T.; Liu, Q.; Cao, Y.; Tian, R.; Liu, J.; Ding, B. Multifunctional double-bundle DNA tetrahedron for efficient regulation of gene expression. ACS Appl. Mater. Interfaces, 2020, 12(29), 32461-32467.
[http://dx.doi.org/10.1021/acsami.0c08886] [PMID: 32613824]
[109]
He, Y.; Ye, T.; Su, M.; Zhang, C.; Ribbe, A.E.; Jiang, W.; Mao, C. Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature, 2008, 452(7184), 198-201.
[http://dx.doi.org/10.1038/nature06597] [PMID: 18337818]
[110]
Yan, J.; Chen, J.; Zhang, N.; Yang, Y.; Zhu, W.; Li, L.; He, B. Mitochondria-targeted tetrahedral DNA nanostructures for doxorubicin delivery and enhancement of apoptosis. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(3), 492-503.
[http://dx.doi.org/10.1039/C9TB02266J] [PMID: 31840727]
[111]
Wu, T.; Liu, Q.; Cao, Y.; Tian, R.; Liu, J.; Ding, B. Multifunctional double-bundle DNA tetrahedron for efficient regulation of gene expression. ACS Appl. Mater. Interfaces, 2020, 12(29), 32461-32467.
[112]
Li, F.; Liu, Y.; Dong, Y.; Chu, Y.; Song, N.; Yang, D. Dynamic assembly of DNA nanostructures in living cells for mitochondrial interference. J. Am. Chem. Soc., 2022, 144(10), 4667-4677.
[http://dx.doi.org/10.1021/jacs.2c00823] [PMID: 35254064]
[113]
Liu, Z.; Pei, H.; Zhang, L.; Tian, Y. Mitochondria-targeted DNA nanoprobe for real-time imaging and simultaneous quantification of Ca 2+ and pH in neurons. ACS Nano, 2018, 12(12), 12357-12368.
[http://dx.doi.org/10.1021/acsnano.8b06322] [PMID: 30418752]
[114]
Zhou, M.; Zhang, T.; Zhang, B.; Zhang, X.; Gao, S.; Zhang, T.; Li, S.; Cai, X.; Lin, Y. A DNA nanostructure-based neuroprotectant against neuronal apoptosis via inhibiting toll-like receptor 2 signaling pathway in acute ischemic stroke. ACS Nano, 2021, 16(1), 1456-1470.
[http://dx.doi.org/10.1021/acsnano.1c09626] [PMID: 34967217]
[115]
Tian, T.; Li, J.; Xie, C.; Sun, Y.; Lei, H.; Liu, X.; Xia, J.; Shi, J.; Wang, L.; Lu, W.; Fan, C. Targeted imaging of brain tumors with a framework nucleic acid probe. ACS Appl. Mater. Interfaces, 2018, 10(4), 3414-3420.
[http://dx.doi.org/10.1021/acsami.7b17927] [PMID: 29299920]
[116]
Zhu, J.; Yang, Y.; Ma, W.; Wang, Y.; Chen, L.; Xiong, H.; Yin, C.; He, Z.; Fu, W.; Xu, R.; Lin, Y. Antiepilepticus effects of tetrahedral framework nucleic acid via inhibition of gliosis-induced downregulation of glutamine synthetase and increased AMPAR internalization in the postsynaptic membrane. Nano Lett., 2022, 22(6), 2381-2390.
[http://dx.doi.org/10.1021/acs.nanolett.2c00025] [PMID: 35266400]
[117]
Ma, W.; Shao, X.; Zhao, D.; Li, Q.; Liu, M.; Zhou, T.; Xie, X.; Mao, C.; Zhang, Y.; Lin, Y. Self-assembled tetrahedral DNA nanostructures promote neural stem cell proliferation and neuronal differentiation. ACS Appl. Mater. Interfaces, 2018, 10(9), 7892-7900.
[http://dx.doi.org/10.1021/acsami.8b00833] [PMID: 29424522]
[118]
Shao, X.; Ma, W.; Xie, X.; Li, Q.; Lin, S.; Zhang, T.; Lin, Y. Neuroprotective effect of tetrahedral DNA nanostructures in a cell model of Alzheimer’s Disease. ACS Appl. Mater. Interfaces, 2018, 10(28), 23682-23692.
[http://dx.doi.org/10.1021/acsami.8b07827] [PMID: 29927573]
[119]
Saminathan, A.; Zajac, M.; Anees, P.; Krishnan, Y. Organelle-level precision with next-generation targeting technologies. Nat. Rev. Mater., 2021, 7(5), 355-371.
[http://dx.doi.org/10.1038/s41578-021-00396-8]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy