Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Endless Journey of Adenosine Signaling in Cardioprotective Mechanism of Conditioning Techniques: Clinical Evidence

Author(s): Kuldeep Kumar, Nirmal Singh*, Harlokesh Narayan Yadav, Leonid Maslov and Amteshwar Singh Jaggi

Volume 19, Issue 6, 2023

Published on: 18 August, 2023

Article ID: e120623217880 Pages: 16

DOI: 10.2174/1573403X19666230612112259

Price: $65

Abstract

Myocardial ischemic injury is a primary cause of death among various cardiovascular disorders. The condition occurs due to an interrupted supply of blood and vital nutrients (necessary for normal cellular activities and viability) to the myocardium, eventually leading to damage. Restoration of blood supply to ischemic tissue is noted to cause even more lethal reperfusion injury. Various strategies, including some conditioning techniques, like preconditioning and postconditioning, have been developed to check the detrimental effects of reperfusion injury. Many endogenous substances have been proposed to act as initiators, mediators, and end effectors of these conditioning techniques. Substances, like adenosine, bradykinin, acetylcholine, angiotensin, norepinephrine, opioids, etc., have been reported to mediate cardioprotective activity. Among these agents, adenosine has been widely studied and suggested to have the most pronounced cardioprotective effects. The current review article highlights the role of adenosine signaling in the cardioprotective mechanism of conditioning techniques. The article also provides an insight into various clinical studies that substantiate the applicability of adenosine as a cardioprotective agent in myocardial reperfusion injury.

Graphical Abstract

[1]
W.H.O. Cardiovascular diseases (CVDs) Fact sheet. 2019. Available from : https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[2]
Roger VL, Go AS, Lloyd-Jones DM, et al. Executive summary: Heart disease and stroke statistics-2012 update: A report from the American Heart Association. Circulation 2012; 125(1): 188-97.
[http://dx.doi.org/10.1161/CIR.0b013e3182456d46] [PMID: 22215894]
[3]
Moran AE, Forouzanfar MH, Roth GA, et al. Temporal trends in ischemic heart disease mortality in 21 world regions, 1980 to 2010: The adenosine, adenosine receptors and myocardial protection: An updated overview. Cardiovasc Res 2014; 52: 25-39.
[4]
Randhawa PK, Bali A, Jaggi AS. RIPC for multiorgan salvage in clinical settings: Evolution of concept, evidences and mechanisms. Eur J Pharmacol 2015; 746: 317-32.
[http://dx.doi.org/10.1016/j.ejphar.2014.08.016] [PMID: 25176179]
[5]
Kumar K, Singh N, Jaggi AS, Maslov L. Clinical applicability of conditioning techniques in ischemia-reperfusion injury: A review of the literature. Curr Cardiol Rev 2021; 17(3): 306-18.
[http://dx.doi.org/10.2174/1573403X16999200817170619] [PMID: 33109063]
[6]
Iliodromitis EK, Andreadou I, Iliodromitis K, Dagres N. Ischemic and postischemic conditioning of the myocardium in clinical practice: Challenges, expectations and obstacles. Cardiology 2014; 129(2): 117-25.
[http://dx.doi.org/10.1159/000362499] [PMID: 25227478]
[7]
Papageorgiou N, Briasoulis A, Tousoulis D. Ischemia-reperfusion injury: Complex pathophysiology with elusive treatment. Hellenic J Cardiol 2018; 59(6): 329-30.
[http://dx.doi.org/10.1016/j.hjc.2018.11.002] [PMID: 30448621]
[8]
Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest 2013; 123(1): 92-100.
[http://dx.doi.org/10.1172/JCI62874] [PMID: 23281415]
[9]
Williams TM, Waksman R, De Silva K, Jacques A, Mahmoudi M. Ischemic preconditioning-an unfulfilled promise. Cardiovasc Revasc Med 2015; 16(2): 101-8.
[http://dx.doi.org/10.1016/j.carrev.2014.12.010] [PMID: 25681256]
[10]
Li J, Vootukuri S, Shang Y, et al. RUC-4: A novel αIIbβ3 antagonist for prehospital therapy of myocardial infarction. Arterioscler Thromb Vasc Biol 2014; 34(10): 2321-9.
[http://dx.doi.org/10.1161/ATVBAHA.114.303724] [PMID: 25147334]
[11]
Bulluck H, Yellon DM, Hausenloy DJ. Reducing myocardial infarct size: Challenges and future opportunities. Heart 2016; 102(5): 341-8.
[http://dx.doi.org/10.1136/heartjnl-2015-307855] [PMID: 26674987]
[12]
Heusch G, Libby P, Gersh B, et al. Cardiovascular remodelling in coronary artery disease and heart failure. Lancet 2014; 383(9932): 1933-43.
[http://dx.doi.org/10.1016/S0140-6736(14)60107-0] [PMID: 24831770]
[13]
Kloner RA. Current state of clinical translation of cardioprotective agents for acute myocardial infarction. Circ Res 2013; 113(4): 451-63.
[http://dx.doi.org/10.1161/CIRCRESAHA.112.300627] [PMID: 23908332]
[14]
Donato M, Evelson P, Gelpi RJ. Protecting the heart from ischemia/reperfusion injury. Curr Opin Cardiol 2017; 32(6): 784-90.
[http://dx.doi.org/10.1097/HCO.0000000000000447] [PMID: 28902715]
[15]
Chen R, Li W, Qiu Z, et al. Ischemic postconditioning-mediated DJ-1 activation mitigate intestinal mucosa injury induced by myocardial ischemia reperfusion in rats through Keap1/Nrf2 pathway. Front Mol Biosci 2021; 8: 655619.
[http://dx.doi.org/10.3389/fmolb.2021.655619] [PMID: 33996908]
[16]
Hausenloy DJ, Yellon DM. Cardioprotective growth factors. Cardiovasc Res 2009; 83(2): 179-94.
[http://dx.doi.org/10.1093/cvr/cvp062] [PMID: 19218286]
[17]
Yu Y, Jia XJ, Zong QF, et al. Remote ischemic postconditioning protects the heart by upregulating ALDH2 expression levels through the PI3K/Akt signaling pathway. Mol Med Rep 2014; 10(1): 536-42.
[http://dx.doi.org/10.3892/mmr.2014.2156] [PMID: 24736969]
[18]
Zaugg M, Lucchinetti E, Uecker M, Pasch T, Schaub MC. Anaesthetics and cardiac preconditioning. Part I. Signalling and cytoprotective mechanisms. Br J Anaesth 2003; 91(4): 551-65.
[http://dx.doi.org/10.1093/bja/aeg205] [PMID: 14504159]
[19]
Gross ER, Gross GJ. Ischemic preconditioning and myocardial infarction: An update and perspective. Drug Discov Today Dis Mech 2007; 4(3): 165-74.
[http://dx.doi.org/10.1016/j.ddmec.2007.10.005] [PMID: 18701939]
[20]
Cohen MV, Yang XM, Liu GS, Heusch G, Downey JM. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial K(ATP) channels. Circ Res 2001; 89(3): 273-8.
[http://dx.doi.org/10.1161/hh1501.094266] [PMID: 11485978]
[21]
Krieg T, Cui L, Qin Q, Cohen MV, Downey JM. Mitochondrial ROS generation following acetylcholine-induced EGF receptor transactivation requires metalloproteinase cleavage of proHB-EGF. J Mol Cell Cardiol 2004; 36(3): 435-43.
[http://dx.doi.org/10.1016/j.yjmcc.2003.12.013] [PMID: 15010282]
[22]
Sharma A, Singh M. Possible mechanism of cardioprotective effect of angiotensin preconditioning in isolated rat heart. Eur J Pharmacol 2000; 406(1): 85-92.
[http://dx.doi.org/10.1016/S0014-2999(00)00582-3] [PMID: 11011038]
[23]
Schultz JE, Rose E, Yao Z, Gross GJ. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol 1995; 268(5 Pt 2): H2157-61.
[PMID: 7771566]
[24]
Parikh V, Singh M. Possible role of cardiac mast cells in norepinephrine-induced myocardial preconditioning. Methods Find Exp Clin Pharmacol 1999; 21(4): 269-74.
[http://dx.doi.org/10.1358/mf.1999.21.4.538177] [PMID: 10399134]
[25]
Penna C, Mognetti B, Tullio F, et al. The platelet activating factor triggers preconditioning-like cardioprotective effect via mitochondrial K-ATP channels and redox-sensible signaling. J Physiol Pharmacol 2008; 59(1): 47-54.
[PMID: 18441387]
[26]
Sukhodub A, Du Q. Jovanović S, Jovanović A. Nicotinamide-rich diet protects the heart against ischaemia–reperfusion in mice: A crucial role for cardiac SUR2A. Pharmacol Res 2010; 61(6): 564-70.
[http://dx.doi.org/10.1016/j.phrs.2010.01.008] [PMID: 20083200]
[27]
Baghelai K, Graham LJ, Wechsler AS, Jakoi ER. Phenylephrine induces delayed cardioprotection against necrosis without amelioration of stunning. Ann Thorac Surg 1999; 68(4): 1219-24.
[http://dx.doi.org/10.1016/S0003-4975(99)00979-0] [PMID: 10543482]
[28]
Schorlemmer A, Matter ML, Shohet RV. Cardioprotective signaling by endothelin. Trends Cardiovasc Med 2008; 18(7): 233-9.
[http://dx.doi.org/10.1016/j.tcm.2008.11.005] [PMID: 19232951]
[29]
Smith CCT, Mocanu MM, Davidson SM, Wynne AM, Simpkin JC, Yellon DM. Leptin, the obesity-associated hormone, exhibits direct cardioprotective effects. Br J Pharmacol 2006; 149(1): 5-13.
[http://dx.doi.org/10.1038/sj.bjp.0706834] [PMID: 16847434]
[30]
Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM. Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci 1995; 92(17): 8031-5.
[http://dx.doi.org/10.1073/pnas.92.17.8031] [PMID: 7644533]
[31]
Nishikimi T, Maeda N, Matsuoka H. The role of natriuretic peptides in cardioprotection. Cardiovasc Res 2006; 69(2): 318-28.
[http://dx.doi.org/10.1016/j.cardiores.2005.10.001] [PMID: 16289003]
[32]
Lawrence KM, Latchman DS. The urocortins: Mechanisms of cardioprotection and therapeutic potential. Mini Rev Med Chem 2006; 6(10): 1119-26.
[http://dx.doi.org/10.2174/138955706778560111] [PMID: 17073712]
[33]
Ludwig LM, Patel HH, Gross GJ, Kersten JR, Pagel PS, Warltier DC. Morphine enhances pharmacological preconditioning by isoflurane: Role of mitochondrial K(ATP) channels and opioid receptors. Anesthesiology 2003; 98(3): 705-11.
[http://dx.doi.org/10.1097/00000542-200303000-00019] [PMID: 12606915]
[34]
da Silva R, Lucchinetti E, Pasch T, Schaub MC, Zaugg M. Ischemic but not pharmacological preconditioning elicits a gene expression profile similar to unprotected myocardium. Physiol Genomics 2004; 20(1): 117-30.
[http://dx.doi.org/10.1152/physiolgenomics.00166.2004] [PMID: 15494475]
[35]
Bolte C, Liao S, Gross G, Schultz JE. Remote preconditioning-endocrine factors in organ protection against ischemic injury. Endocr Metab Immune Disord Drug Targets 2007; 7(3): 167-75.
[http://dx.doi.org/10.2174/187153007781662585] [PMID: 17897043]
[36]
Bolli R, Marbán E. Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 1999; 79(2): 609-34.
[http://dx.doi.org/10.1152/physrev.1999.79.2.609] [PMID: 10221990]
[37]
Maxwell SRJ, Lip GYH. Reperfusion injury: A review of the pathophysiology, clinical manifestations and therapeutic options. Int J Cardiol 1997; 58(2): 95-117.
[http://dx.doi.org/10.1016/S0167-5273(96)02854-9] [PMID: 9049675]
[38]
Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000; 190(3): 255-66.
[http://dx.doi.org/10.1002/(SICI)1096-9896(200002)190:3<255:AID-PATH526>3.0.CO;2-6] [PMID: 10685060]
[39]
Toyokuni S. Reactive oxygen species‐induced molecular damage and its application in pathology. Pathol Int 1999; 49(2): 91-102.
[http://dx.doi.org/10.1046/j.1440-1827.1999.00829.x] [PMID: 10355961]
[40]
Szocs K. Endothelial dysfunction and reactive oxygen species production in ischemia/reperfusion and nitrate tolerance. Gen Physiol Biophys 2004; 23(3): 265-95.
[PMID: 15638116]
[41]
Bertuglia S, Giusti A, Del Soldato P. Antioxidant activity of nitro derivative of aspirin against ischemia-reperfusion in hamster cheek pouch microcirculation. Am J Physiol Gastrointest Liver Physiol 2004; 286(3): G437-43.
[http://dx.doi.org/10.1152/ajpgi.00339.2003] [PMID: 14563672]
[42]
Mustoe T. Understanding chronic wounds: A unifying hypothesis on their pathogenesis and implications for therapy. Am J Surg 2004; 187(5): S65-70.
[http://dx.doi.org/10.1016/S0002-9610(03)00306-4] [PMID: 15147994]
[43]
Jordan J, Zhao ZQ, Vinten-Johansen J. The role of neutrophils in myocardial ischemia–reperfusion injury. Cardiovasc Res 1999; 43(4): 860-78.
[http://dx.doi.org/10.1016/S0008-6363(99)00187-X] [PMID: 10615413]
[44]
Collard CD, Gelman S. Pathophysiology, clinical manifestations, and prevention of ischemia-reperfusion injury. Anesthesiology 2001; 94(6): 1133-8.
[http://dx.doi.org/10.1097/00000542-200106000-00030] [PMID: 11465607]
[45]
Contreras JL, Vilatoba M, Eckstein C, Bilbao G, Anthony TJ, Eckhoff DE. Caspase-8 and caspase-3 small interfering RNA decreases ischemia/reperfusion injury to the liver in mice. Surgery 2004; 136(2): 390-400.
[http://dx.doi.org/10.1016/j.surg.2004.05.015] [PMID: 15300206]
[46]
Chen M, Won DJ, Krajewski S, Gottlieb RA. Calpain and mitochondria in ischemia/reperfusion injury. J Biol Chem 2002; 277(32): 29181-6.
[http://dx.doi.org/10.1074/jbc.M204951200] [PMID: 12042324]
[47]
Aktan AO, Yalcin AS. Ischemia-reperfusion injury, reactive oxygen metabolites, and the surgeon. Turk J Med Sci 1998; 28: 1-5.
[48]
Zhang M, Xu YJ, Saini HK, Turan B, Liu PP, Dhalla NS. Pentoxifylline attenuates cardiac dysfunction and reduces TNF-α level in ischemic-reperfused heart. Am J Physiol Heart Circ Physiol 2005; 289(2): H832-9.
[http://dx.doi.org/10.1152/ajpheart.00178.2005] [PMID: 15833806]
[49]
Gysembergh A, Margonari H, Loufoua J, et al. Stretch-induced protection shares a common mechanism with ischemic preconditioning in rabbit heart. Am J Physiol 1998; 274(3): H955-64.
[PMID: 9530209]
[50]
Tissier R, Ghaleh B, Cohen MV, Downey JM, Berdeaux A. Myocardial protection with mild hypothermia. Cardiovasc Res 2012; 94(2): 217-25.
[http://dx.doi.org/10.1093/cvr/cvr315] [PMID: 22131353]
[51]
Marber MS, Latchman DS, Walker JM, Yellon DM. Cardiac stress protein elevation 24 hours after brief ischemia or heat stress is associated with resistance to myocardial infarction. Circulation 1993; 88(3): 1264-72.
[http://dx.doi.org/10.1161/01.CIR.88.3.1264] [PMID: 8353888]
[52]
Ashraf M, Suleiman J, Ahmad M. Ca2+ preconditioning elicits a unique protection against the Ca2+ paradox injury in rat heart. Role of adenosine. Fixed. Circ Res 1994; 74(2): 360-7.
[http://dx.doi.org/10.1161/01.RES.74.2.360] [PMID: 8293574]
[53]
Miyawaki H, Zhou X, Ashraf M. Calcium preconditioning elicits strong protection against ischemic injury via protein kinase C signaling pathway. Circ Res 1996; 79(1): 137-46.
[http://dx.doi.org/10.1161/01.RES.79.1.137] [PMID: 8925561]
[54]
Korichneva I, Hoyos B, Chua R, Levi E, Hammerling U. Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J Biol Chem 2002; 277(46): 44327-31.
[http://dx.doi.org/10.1074/jbc.M205634200] [PMID: 12213816]
[55]
Schulz R, Kelm M, Heusch G. Nitric oxide in myocardial ischemia/reperfusion injury. Cardiovasc Res 2004; 61(3): 402-13.
[http://dx.doi.org/10.1016/j.cardiores.2003.09.019] [PMID: 14962472]
[56]
Rassaf T, Poll LW, Brouzos P, et al. Positive effects of nitric oxide on left ventricular function in humans. Eur Heart J 2006; 27(14): 1699-705.
[http://dx.doi.org/10.1093/eurheartj/ehl096] [PMID: 16782717]
[57]
Heusch G, Post H, Michel MC, Kelm M, Schulz R. Endogenous nitric oxide and myocardial adaptation to ischemia. Circ Res 2000; 87(2): 146-52.
[http://dx.doi.org/10.1161/01.RES.87.2.146] [PMID: 10903999]
[58]
Heinzel FR, Gres P, Boengler K, et al. Inducible nitric oxide synthase expression and cardiomyocyte dysfunction during sustained moderate ischemia in pigs. Circ Res 2008; 103(10): 1120-7.
[http://dx.doi.org/10.1161/CIRCRESAHA.108.186015] [PMID: 18818404]
[59]
Nakano A, Liu GS, Heusch G, Downey JM, Cohen MV. Exogenous nitric oxide can trigger a preconditioned state through a free radical mechanism, but endogenous nitric oxide is not a trigger of classical ischemic preconditioning. J Mol Cell Cardiol 2000; 32(7): 1159-67.
[http://dx.doi.org/10.1006/jmcc.2000.1152] [PMID: 10860760]
[60]
Penna C, Cappello S, Mancardi D, et al. Post–conditioning reduces infarct size in the isolated rat heart: Role of coronary flow and pressure and the nitric oxide/cGMP pathway. Basic Res Cardiol 2006; 101(2): 168-79.
[http://dx.doi.org/10.1007/s00395-005-0543-6] [PMID: 16132172]
[61]
Rassaf T, Totzeck M, Hendgen-Cotta UB, Shiva S, Heusch G, Kelm M. Circulating nitrite contributes to cardioprotection by remote ischemic preconditioning. Circ Res 2014; 114(10): 1601-10.
[http://dx.doi.org/10.1161/CIRCRESAHA.114.303822] [PMID: 24643960]
[62]
Andreadou I, Iliodromitis EK, Rassaf T, Schulz R, Papapetropoulos A, Ferdinandy P. The role of gasotransmitters NO, H S and CO in myocardial ischaemia/reperfusion injury and cardioprotection by preconditioning, postconditioning and remote conditioning. Br J Pharmacol 2014; 172(6): 1587-606.
[http://dx.doi.org/10.1111/bph.12811] [PMID: 24923364]
[63]
Schulz R, Post H, Vahlhaus C, Heusch G. Ischemic preconditioning in pigs: A graded phenomenon: Its relation to adenosine and bradykinin. Circulation 1998; 98(10): 1022-9.
[http://dx.doi.org/10.1161/01.CIR.98.10.1022] [PMID: 9737523]
[64]
Headrick JP, Ashton KJ. Rose’Meyer RB, Peart JN. Cardiovascular adenosine receptors: Expression, actions and interactions. Pharmacol Ther 2013; 140(1): 92-111.
[http://dx.doi.org/10.1016/j.pharmthera.2013.06.002] [PMID: 23764371]
[65]
Kokkonen JO, Kuoppala A, Saarinen J, Lindstedt KA, Kovanen PT. Kallidin- and bradykinin-degrading pathways in human heart: Degradation of kallidin by aminopeptidase M-like activity and bradykinin by neutral endopeptidase. Circulation 1999; 99(15): 1984-90.
[http://dx.doi.org/10.1161/01.CIR.99.15.1984] [PMID: 10209002]
[66]
Kokkonen J, Lindstedt KA, Kuoppala A, Kovanen PT. Kinin-degrading pathways in the human heart. Trends Cardiovasc Med 2000; 10(1): 42-5.
[http://dx.doi.org/10.1016/S1050-1738(00)00034-7] [PMID: 11150728]
[67]
Heusch G, Boengler K, Schulz R. Cardioprotection. Circulation 2008; 118(19): 1915-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.805242] [PMID: 18981312]
[68]
Jalowy A, Schulz R, Dörge H, Behrends M, Heusch G. Infarct size reduction by AT1-receptor blockade through a signal cascade of AT2-receptor activation, bradykinin and prostaglandins in pigs. J Am Coll Cardiol 1998; 32(6): 1787-96.
[http://dx.doi.org/10.1016/S0735-1097(98)00441-0] [PMID: 9822110]
[69]
Penna C, Mancardi D, Tullio F, Pagliaro P. Postconditioning and intermittent bradykinin induced cardioprotection require cyclooxygenase activation and prostacyclin release during reperfusion. Basic Res Cardiol 2008; 103(4): 368-77.
[http://dx.doi.org/10.1007/s00395-007-0695-7] [PMID: 18188493]
[70]
Krieg T, Qin Q, Philipp S, Alexeyev MF, Cohen MV, Downey JM. Acetylcholine and bradykinin trigger preconditioning in the heart through a pathway that includes Akt and NOS. Am J Physiol Heart Circ Physiol 2004; 287(6): H2606-11.
[http://dx.doi.org/10.1152/ajpheart.00600.2004] [PMID: 15331366]
[71]
Dawn B. Preconditioning by angiotensin II: A tale of more than two kinases. J Mol Cell Cardiol 2006; 41(2): 223-5.
[http://dx.doi.org/10.1016/j.yjmcc.2006.05.005] [PMID: 16793059]
[72]
Hide EJ, Piper J, Thiemermann C. Endothelin-1 -induced reduction of myocardial infarct size by activation of ATP-sensitive potassium channels in a rabbit model of myocardial ischaemia and reperfusion. Br J Pharmacol 1995; 116(6): 2597-602.
[http://dx.doi.org/10.1111/j.1476-5381.1995.tb17213.x] [PMID: 8590976]
[73]
Erikson JM, Velasco CE. Endothelin-1 and myocardial preconditioning. Am Heart J 1996; 132(1): 84-90.
[http://dx.doi.org/10.1016/S0002-8703(96)90394-4] [PMID: 8701880]
[74]
Bankwala Z, Hale SL, Kloner RA. Alpha-adrenoceptor stimulation with exogenous norepinephrine or release of endogenous catecholamines mimics ischemic preconditioning. Circulation 1994; 90(2): 1023-8.
[http://dx.doi.org/10.1161/01.CIR.90.2.1023] [PMID: 8044915]
[75]
Kudej RK, Shen YT, Peppas AP, et al. Obligatory role of cardiac nerves and alpha1-adrenergic receptors for the second window of ischemic preconditioning in conscious pigs. Circ Res 2006; 99(11): 1270-6.
[76]
Salie R, Moolman JA, Lochner A. The mechanism of beta-adrenergic preconditioning: Roles for adenosine and ROS during triggering and mediation. Basic Res Cardiol 2012; 107(5): 281.
[http://dx.doi.org/10.1007/s00395-012-0281-5] [PMID: 22797560]
[77]
Kitakaze M, Hori M, Morioka T, et al. Alpha 1-adrenoceptor activation mediates the infarct size-limiting effect of ischemic preconditioning through augmentation of 5'-nucleotidase activity. J Clin Invest 1994; 93(5): 2197-205.
[http://dx.doi.org/10.1172/JCI117216] [PMID: 8182151]
[78]
Ikeda Y, Miura T, Sakamoto J, et al. Activation of ERK and suppression of calcineurin are interacting mechanisms of cardioprotection afforded by δ-opioid receptor activation. Basic Res Cardiol 2006; 101(5): 418-26.
[http://dx.doi.org/10.1007/s00395-006-0595-2] [PMID: 16619106]
[79]
Shimizu M, Tropak M, Diaz RJ, et al. Transient limb ischaemia remotely preconditions through a humoral mechanism acting directly on the myocardium: Evidence suggesting cross-species protection. Clin Sci 2009; 117(5): 191-200.
[http://dx.doi.org/10.1042/CS20080523] [PMID: 19175358]
[80]
Hamid SA, Baxter GF. Adrenomedullin limits reperfusion injury in experimental myocardial infarction. Basic Res Cardiol 2005; 100(5): 387-96.
[http://dx.doi.org/10.1007/s00395-005-0538-3] [PMID: 16010601]
[81]
D’Souza SP, Yellon DM, Martin C, et al. B-type natriuretic peptide limits infarct size in rat isolated hearts via K ATP channel opening. Am J Physiol Heart Circ Physiol 2003; 284(5): H1592-600.
[http://dx.doi.org/10.1152/ajpheart.00902.2002] [PMID: 12521930]
[82]
Yang XM, Philipp S, Downey JM, Cohen MV. Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol 2006; 101(4): 311-8.
[http://dx.doi.org/10.1007/s00395-006-0587-2] [PMID: 16604440]
[83]
Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol Heart Circ Physiol 2002; 283(4): H1481-8.
[http://dx.doi.org/10.1152/ajpheart.01089.2001] [PMID: 12234800]
[84]
Smith CCT, Dixon RA, Wynne AM, et al. Leptin-induced cardioprotection involves JAK/STAT signaling that may be linked to the mitochondrial permeability transition pore. Am J Physiol Heart Circ Physiol 2010; 299(4): H1265-70.
[http://dx.doi.org/10.1152/ajpheart.00092.2010] [PMID: 20656889]
[85]
Burley DS, Baxter GF. B-type natriuretic peptide at early reperfusion limits infarct size in the rat isolated heart. Basic Res Cardiol 2007; 102(6): 529-41.
[http://dx.doi.org/10.1007/s00395-007-0672-1] [PMID: 17896117]
[86]
Penna C, Pasqua T, Perrelli MG, Pagliaro P, Cerra MC, Angelone T. Postconditioning with glucagon like peptide-2 reduces ischemia/reperfusion injury in isolated rat hearts: Role of survival kinases and mitochondrial KATP channels. Basic Res Cardiol 2012; 107(4): 272.
[http://dx.doi.org/10.1007/s00395-012-0272-6] [PMID: 22699364]
[87]
Hausenloy DJ, Whittington HJ, Wynne AM, et al. Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc Diabetol 2013; 12(1): 154.
[http://dx.doi.org/10.1186/1475-2840-12-154] [PMID: 24148218]
[88]
Lu G, Ashraf M, Haider KH. Insulin-like growth factor-1 preconditioning accentuates intrinsic survival mechanism in stem cells to resist ischemic injury by orchestrating protein kinase cα-erk1/2 activation. Antioxid Redox Signal 2012; 16(3): 217-27.
[http://dx.doi.org/10.1089/ars.2011.4112] [PMID: 21923556]
[89]
Htun P, Ito WD, Hoefer IE, Schaper J, Schaper W. Intramyocardial infusion of FGF-1 mimics ischemic preconditioning in pig myocardium. J Mol Cell Cardiol 1998; 30(4): 867-77.
[http://dx.doi.org/10.1006/jmcc.1998.0654] [PMID: 9602436]
[90]
Kardami E, Detillieux K, Ma X, et al. Fibroblast growth factor-2 and cardioprotection. Heart Fail Rev 2007; 12(3-4): 267-77.
[http://dx.doi.org/10.1007/s10741-007-9027-0] [PMID: 17516168]
[91]
Lecour S, Suleman N, Deuchar GA, et al. Pharmacological preconditioning with tumor necrosis factor-alpha activates signal transducer and activator of transcription-3 at reperfusion without involving classic prosurvival kinases (Akt and extracellular signal-regulated kinase). Circulation 2005; 112(25): 3911-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.581058] [PMID: 16344382]
[92]
Smith R, Suleman N, McCarthy J, Sack MN. Classic ischemic but not pharmacologic preconditioning is abrogated following genetic ablation of the TNFα gene. Cardiovasc Res 2002; 55(3): 553-60.
[http://dx.doi.org/10.1016/S0008-6363(02)00283-3] [PMID: 12160952]
[93]
Lacerda L, Somers S, Opie LH, Lecour S. Ischaemic postconditioning protects against reperfusion injury via the SAFE pathway. Cardiovasc Res 2009; 84(2): 201-8.
[http://dx.doi.org/10.1093/cvr/cvp274] [PMID: 19666677]
[94]
Dawn B, Guo Y, Rezazadeh A, et al. Tumor necrosis factor-? does not modulate ischemia/reperfusion injury in naïve myocardium but is essential for the development of late preconditioning. J Mol Cell Cardiol 2004; 37(1): 51-61.
[http://dx.doi.org/10.1016/j.yjmcc.2004.03.012] [PMID: 15242735]
[95]
Eltzschig HK, Warner DS, Warner MA. Adenosine: An old drug newly discovered. Anesthesiology 2009; 111(4): 904-15.
[http://dx.doi.org/10.1097/ALN.0b013e3181b060f2] [PMID: 19741501]
[96]
Layland J, Carrick D, Lee M, Oldroyd K, Berry C. Adenosine. JACC Cardiovasc Interv 2014; 7(6): 581-91.
[http://dx.doi.org/10.1016/j.jcin.2014.02.009] [PMID: 24835328]
[97]
McIntosh VJ, Lasley RD. Adenosine receptor-mediated cardioprotection: Are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 2012; 17(1): 21-33.
[http://dx.doi.org/10.1177/1074248410396877] [PMID: 21335481]
[98]
Busse H, Bitzinger D, Höcherl K, et al. Adenosine A2A and A2B receptor substantially attenuate ischemia/reperfusion injury in septic rat hearts. Cardiovasc Drugs Ther 2016; 30(6): 551-8.
[http://dx.doi.org/10.1007/s10557-016-6693-y] [PMID: 27757725]
[99]
Zimmermann H. Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedebergs Arch Pharmacol 2000; 362(4-5): 299-309.
[http://dx.doi.org/10.1007/s002100000309] [PMID: 11111825]
[100]
Guieu R, Deharo JC, Maille B, et al. Adenosine and the cardiovascular system: The good and the bad. J Clin Med 2020; 9(5): 1366.
[http://dx.doi.org/10.3390/jcm9051366] [PMID: 32384746]
[101]
Forman MB, Stone GW, Jackson EK. Role of adenosine as adjunctive therapy in acute myocardial infarction. Cardiovasc Drug Rev 2006; 24(2): 116-47.
[http://dx.doi.org/10.1111/j.1527-3466.2006.00116.x] [PMID: 16961725]
[102]
Forman MB, Velasco CE. Role of adenosine in the treatment of myocardial stunning. Cardiovasc Drugs Ther 1991; 5(5): 901-8.
[http://dx.doi.org/10.1007/BF00053551] [PMID: 1756136]
[103]
Dubey RK, Gillespie DG, Jackson EKA. (2B) adenosine receptors stimulate growth of porcine and rat arterial endothelial cells. Hypertension 2002; 39(2): 530-5.
[http://dx.doi.org/10.1161/hy0202.103075] [PMID: 11882603]
[104]
Montesinos MC, Shaw JP, Yee H, Shamamian P, Cronstein BN. Adenosine A(2A) receptor activation promotes wound neovascularization by stimulating angiogenesis and vasculogenesis. Am J Pathol 2004; 164(6): 1887-92.
[http://dx.doi.org/10.1016/S0002-9440(10)63749-2] [PMID: 15161625]
[105]
Feoktistov I, Ryzhov S, Goldstein AE, Biaggioni I. Mast cell mediated stimulation of angiogenesis: Cooperative interaction between A2B and A3 adenosine receptors. Circ Res 2003; 92: 485-92.
[106]
Sabouni M, Ramagopal M, Jamal Mustafa S. Relaxation by adenosine and its analogs of potassium-contracted human coronary arteries. Naunyn Schmiedebergs Arch Pharmacol 1990; 341(4): 388-90.
[http://dx.doi.org/10.1007/BF00180667] [PMID: 2333104]
[107]
Burnstock G, Ralevic V. Purinergic signaling and blood vessels in health and disease. Pharmacol Rev 2014; 66(1): 102-92.
[http://dx.doi.org/10.1124/pr.113.008029] [PMID: 24335194]
[108]
Talukder MAH, Morrison RR, Ledent C, Mustafa SJ. Endogenous adenosine increases coronary flow by activation of both A2A and A2B receptors in mice. J Cardiovasc Pharmacol 2003; 41(4): 562-70.
[http://dx.doi.org/10.1097/00005344-200304000-00008] [PMID: 12658057]
[109]
Hein TW, Wang W, Zoghi B, Muthuchamy M, Kuo L. Functional and molecular characterization of receptor subtypes mediating coronary microvascular dilation to adenosine. J Mol Cell Cardiol 2001; 33(2): 271-82.
[http://dx.doi.org/10.1006/jmcc.2000.1298] [PMID: 11162132]
[110]
Arsyad A, Dobson GP. Adenosine relaxation in isolated rat aortic rings and possible roles of smooth muscle Kv channels, KATP channels and A2A receptors. BMC Pharmacol Toxicol 2016; 17(1): 23.
[http://dx.doi.org/10.1186/s40360-016-0067-8] [PMID: 27211886]
[111]
Labazi H, Teng B, Zhou Z, Mustafa SJ. Enhanced A2A adenosine receptor-mediated increase in coronary flow in type I diabetic mice. J Mol Cell Cardiol 2016; 90: 30-7.
[http://dx.doi.org/10.1016/j.yjmcc.2015.11.033] [PMID: 26654777]
[112]
Hein TW, Kuo L. cAMP-independent dilation of coronary arterioles to adenosine: Role of nitric oxide, G proteins, and K(ATP) channels. Circ Res 1999; 85(7): 634-42.
[http://dx.doi.org/10.1161/01.RES.85.7.634] [PMID: 10506488]
[113]
McGeoch RJ, Oldroyd KG. Pharmacological options for inducing maximal hyperaemia during studies of coronary physiology. Catheter Cardiovasc Interv 2008; 71(2): 198-204.
[http://dx.doi.org/10.1002/ccd.21307] [PMID: 18327838]
[114]
Godo S, Shimokawa H. Endothelial Functions. Arterioscler Thromb Vasc Biol 2017; 37(9): e108-14.
[http://dx.doi.org/10.1161/ATVBAHA.117.309813] [PMID: 28835487]
[115]
Li J, Fenton RA, Wheeler HB, et al. Adenosine A2A receptors increase arterial endothelial cell nitric oxide. J Surg Res 1998; 80(2): 357-64.
[http://dx.doi.org/10.1006/jsre.1998.5439] [PMID: 9878338]
[116]
Koeppen M, Eckle T, Eltzschig HK. Interplay of hypoxia and A2B adenosine receptors in tissue protection. Adv Pharmacol 2011; 61: 145-86.
[http://dx.doi.org/10.1016/B978-0-12-385526-8.00006-0] [PMID: 21586359]
[117]
Bynoe MS, Viret C, Yan A, Kim DG. Adenosine receptor signaling: A key to opening the blood–brain door. Fluids Barriers CNS 2015; 12(1): 20.
[http://dx.doi.org/10.1186/s12987-015-0017-7] [PMID: 26330053]
[118]
Eltzschig HK, Bonney SK, Eckle T. Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends Mol Med 2013; 19(6): 345-54.
[http://dx.doi.org/10.1016/j.molmed.2013.02.005] [PMID: 23540714]
[119]
Grenz A, Kim JH, Bauerle JD, Tak E, Eltzschig HK, Clambey ET. Adora2b adenosine receptor signaling protects during acute kidney injury via inhibition of neutrophil-dependent TNF-α release. J Immunol 2012; 189(9): 4566-73.
[http://dx.doi.org/10.4049/jimmunol.1201651] [PMID: 23028059]
[120]
Heusch G. Adenosine and maximum coronary vasodilation in humans: Myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol 2010; 105(1): 1-5.
[http://dx.doi.org/10.1007/s00395-009-0074-7] [PMID: 19941145]
[121]
De Marco C, Charron T, Rousseau G. Adenosine in acute myocardial infarction-associated reperfusion injury: Does it still have a role? Front Pharmacol 2022; 13: 856747.
[http://dx.doi.org/10.3389/fphar.2022.856747] [PMID: 35645815]
[122]
Vinten-Johansen J, Thourani VH, Ronson RS, et al. Broad-spectrum cardioprotection with adenosine. Ann Thorac Surg 1999; 68(5): 1942-8.
[http://dx.doi.org/10.1016/S0003-4975(99)01018-8] [PMID: 10585108]
[123]
Fenton RA, Shea LG, Doddi C, Dobson JG Jr. Myocardial adenosine A 1 -receptor-mediated adenoprotection involves phospholipase C, PKC-ε and p38 MAPK, but not HSP27. Am J Physiol Heart Circ Physiol 2010; 298(6): H1671-8.
[http://dx.doi.org/10.1152/ajpheart.01028.2009] [PMID: 20363896]
[124]
Borea PA, Varani K, Vincenzi F, et al. The A3 adenosine receptor: History and perspectives. Pharmacol Rev 2015; 67(1): 74-102.
[http://dx.doi.org/10.1124/pr.113.008540] [PMID: 25387804]
[125]
Schulte G, Fredholm BB. Signalling from adenosine receptors to mitogen-activated protein kinases. Cell Signal 2003; 15(9): 813-27.
[http://dx.doi.org/10.1016/S0898-6568(03)00058-5] [PMID: 12834807]
[126]
Schulte G, Fredholm BB. Human adenosine A(1), A(2A), A(2B), and A(3) receptors expressed in Chinese hamster ovary cells all mediate the phosphorylation of extracellular-regulated kinase 1/2. Mol Pharmacol 2000; 58(3): 477-82.
[http://dx.doi.org/10.1124/mol.58.3.477] [PMID: 10953039]
[127]
Borea PA, Gessi S, Merighi S, Vincenzi F, Varani K. Pharmacology of adenosine receptors: The state of the art. Physiol Rev 2018; 98(3): 1591-625.
[http://dx.doi.org/10.1152/physrev.00049.2017] [PMID: 29848236]
[128]
Haskó G, Linden J, Cronstein B, Pacher P. Adenosine receptors: Therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discov 2008; 7(9): 759-70.
[http://dx.doi.org/10.1038/nrd2638] [PMID: 18758473]
[129]
Fredholm BB, Arslan G, Halldner L, et al. Adenosine receptor signaling in vitro and in vivo. Drug Dev Res 2001; 52(1-2): 274-82.
[http://dx.doi.org/10.1002/ddr.1124]
[130]
Dunwiddie TV, Masino SA. The role and regulation of adenosine in the central nervous system. Annu Rev Neurosci 2001; 24(1): 31-55.
[http://dx.doi.org/10.1146/annurev.neuro.24.1.31] [PMID: 11283304]
[131]
Marala RB, Mustafa SJ. Immunological characterization of adenosine A2A receptors in human and porcine cardiovascular tissues. J Pharmacol Exp Ther 1998; 286(2): 1051-7.
[PMID: 9694968]
[132]
Kilpatrick EL, Narayan P, Mentzer RM Jr, Lasley RD. Cardiac myocyte adenosine A2a receptor activation fails to alter cAMP or contractility: Role of receptor localization. Am J Physiol Heart Circ Physiol 2002; 282(3): H1035-40.
[http://dx.doi.org/10.1152/ajpheart.00808.2001] [PMID: 11834501]
[133]
Kin H, Zatta A, Lofye M, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res 2005; 67(1): 124-33.
[http://dx.doi.org/10.1016/j.cardiores.2005.02.015] [PMID: 15949476]
[134]
Peart JN, Headrick JP. Adenosinergic cardioprotection: Multiple receptors, multiple pathways. Pharmacol Ther 2007; 114(2): 208-21.
[http://dx.doi.org/10.1016/j.pharmthera.2007.02.004] [PMID: 17408751]
[135]
Toombs CF, McGee S, Johnston WE, Vinten-Johansen J. Myocardial protective effects of adenosine. Infarct size reduction with pretreatment and continued receptor stimulation during ischemia. Circulation 1992; 86(3): 986-94.
[http://dx.doi.org/10.1161/01.CIR.86.3.986] [PMID: 1516210]
[136]
Rothermel BA, Hill JA. Adenosine A3 receptor and cardioprotection: Enticing, enigmatic, elusive. Circulation 2008; 118(17): 1691-3.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.810101] [PMID: 18936336]
[137]
Hausenloy D, Yellon DM. New directions for protecting the heart against ischaemia–reperfusion injury: Targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res 2004; 61(3): 448-60.
[http://dx.doi.org/10.1016/j.cardiores.2003.09.024] [PMID: 14962476]
[138]
Ely SW, Berne RM. Protective effects of adenosine in myocardial ischemia. Circulation 1992; 85(3): 893-904.
[http://dx.doi.org/10.1161/01.CIR.85.3.893] [PMID: 1537125]
[139]
Shneyvays V, Leshem D, Zinman T, Mamedova LK, Jacobson KA, Shainberg A. Role of adenosine A1 and A3 receptors in regulation of cardiomyocyte homeostasis after mitochondrial respiratory chain injury. Am J Physiol Heart Circ Physiol 2005; 288(6): H2792-801.
[http://dx.doi.org/10.1152/ajpheart.01157.2004] [PMID: 15681707]
[140]
Peart J, Flood A, Linden J, Matherne GP, Headrick JP. Adenosine-mediated cardioprotection in ischemic-reperfused mouse heart. J Cardiovasc Pharmacol 2002; 39(1): 117-29.
[http://dx.doi.org/10.1097/00005344-200201000-00013] [PMID: 11743234]
[141]
Germack R, Griffin M, Dickenson J. Activation of protein kinase B by adenosine A and A receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol 2004; 37(5): 989-99.
[http://dx.doi.org/10.1016/j.yjmcc.2004.08.001] [PMID: 15522276]
[142]
Headrick JP, Gauthier NS, Morrison R, Matherne GP. Cardioprotection by KATP channels in wild-type hearts and hearts overexpressing A 1 -adenosine receptors. Am J Physiol Heart Circ Physiol 2000; 279(4): H1690-7.
[http://dx.doi.org/10.1152/ajpheart.2000.279.4.H1690] [PMID: 11009456]
[143]
Paez DT, Garces M, Calabró V, et al. Adenosine A 1 receptors and mitochondria: Targets of remote ischemic preconditioning. Am J Physiol Heart Circ Physiol 2019; 316(3): H743-50.
[http://dx.doi.org/10.1152/ajpheart.00071.2018] [PMID: 30681368]
[144]
Xiang F, Huang Y, Zhang D, Chu Z, Zhang J, Zhang Q. Adenosine A 1 receptor activation reduces opening of mitochondrial permeability transition pores in hypoxic cardiomyocytes. Clin Exp Pharmacol Physiol 2010; 37(3): 343-9.
[http://dx.doi.org/10.1111/j.1440-1681.2009.05300.x] [PMID: 19793110]
[145]
Liang BT. Protein kinase C-dependent activation of KATP channel enhances adenosine-induced cardioprotection. Biochem J 1998; 336(2): 337-43.
[http://dx.doi.org/10.1042/bj3360337] [PMID: 9820809]
[146]
Yang Z, Sun W, Hu K. Adenosine A1 receptors selectively target protein kinase C isoforms to the caveolin-rich plasma membrane in cardiac myocytes. Biochim Biophys Acta Mol Cell Res 2009; 1793(12): 1868-75.
[http://dx.doi.org/10.1016/j.bbamcr.2009.10.007] [PMID: 19879903]
[147]
Borst MM, Simonis G, Röthele J, Gerlach E, Marquetant R, Strasser RH. Blockade of A 1 adenosine receptors prevents the ischaemia-induced sensitisation of adenylyl cyclase: Evidence for a protein kinase C-mediated pathway. Basic Res Cardiol 1999; 94(6): 472-80.
[http://dx.doi.org/10.1007/s003950050163] [PMID: 10651159]
[148]
Li Y, Sato T. Dual signaling via protein kinase C and phosphatidylinositol 3′-kinase/Akt contributes to bradykinin B2 receptor-induced cardioprotection in guinea pig hearts. J Mol Cell Cardiol 2001; 33(11): 2047-53.
[http://dx.doi.org/10.1006/jmcc.2001.1455] [PMID: 11708848]
[149]
Qin Q, Downey JM, Cohen MV. Acetylcholine but not adenosine triggers preconditioning through PI3-kinase and a tyrosine kinase. Am J Physiol Heart Circ Physiol 2003; 284(2): H727-34.
[http://dx.doi.org/10.1152/ajpheart.00476.2002] [PMID: 12388236]
[150]
Germack R, Dickenson JM. Characterization of ERK1/2 signalling pathways induced by adenosine receptor subtypes in newborn rat cardiomyocytes. Br J Pharmacol 2004; 141(2): 329-39.
[http://dx.doi.org/10.1038/sj.bjp.0705614] [PMID: 14751870]
[151]
Kirchhoff SR, Gupta S, Knowlton AA. Cytosolic heat shock protein 60, apoptosis, and myocardial injury. Circulation 2002; 105(24): 2899-904.
[http://dx.doi.org/10.1161/01.CIR.0000019403.35847.23] [PMID: 12070120]
[152]
Hu C, Yang J, Qi Z, et al. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm 2022; 3(3): e161.
[http://dx.doi.org/10.1002/mco2.161]
[153]
Lankford AR, Cerniway RJ, Regan SE, Crawford MM, Byford AM, Matherne GP. Mechanisms of cardiac protection with Overexpression of A1 adenosine receptors. Drug Dev Res 2003; 58(4): 439-46.
[http://dx.doi.org/10.1002/ddr.10189]
[154]
Yoshimura Y, Kristo G, Keith BJ, Jahania SA, Mentzer RM Jr, Lasley RD. The p38 MAPK inhibitor SB203580 blocks adenosine A(1) receptor-induced attenuation of in vivo myocardial stunning. Cardiovasc Drugs Ther 2004; 18(6): 433-40.
[http://dx.doi.org/10.1007/s10557-004-6220-4] [PMID: 15770430]
[155]
Ballard-Croft C, Kristo G, Yoshimura Y, et al. Acute adenosine preconditioning is mediated by p38 MAPK activation in discrete subcellular compartments. Am J Physiol Heart Circ Physiol 2005; 288(3): H1359-66.
[http://dx.doi.org/10.1152/ajpheart.01006.2004] [PMID: 15539417]
[156]
Sitkovsky MV. Use of the A2A adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochem Pharmacol 2003; 65(4): 493-501.
[http://dx.doi.org/10.1016/S0006-2952(02)01548-4] [PMID: 12566076]
[157]
Yang Z, Day YJ, Toufektsian MC, et al. Infarct-sparing effect of A2A-adenosine receptor activation is due primarily to its action on lymphocytes. Circulation 2005; 111(17): 2190-7.
[http://dx.doi.org/10.1161/01.CIR.0000163586.62253.A5] [PMID: 15851591]
[158]
Trevethick MA, Mantell SJ, Stuart EF, Barnard A, Wright KN, Yeadon M. Treating lung inflammation with agonists of the adenosine A2A receptor: Promises, problems and potential solutions. Br J Pharmacol 2008; 155(4): 463-74.
[http://dx.doi.org/10.1038/bjp.2008.329] [PMID: 18846036]
[159]
Blackburn MR, Vance CO, Morschl E, Wilson CN. Adenosine receptors and inflammation. In: Adenosine receptors in health and disease. Berlin, Heidelberg: Springer 2009; pp. 215-69.
[http://dx.doi.org/10.1007/978-3-540-89615-9_8]
[160]
Linden J. Regulation of leukocyte function by adenosine receptors. Adv Pharmacol 2011; 61: 95-114.
[http://dx.doi.org/10.1016/B978-0-12-385526-8.00004-7] [PMID: 21586357]
[161]
Dobson J Jr, Fenton RA. Adenosine A2 receptor function in rat ventricular myocytes. Cardiovasc Res 1997; 34(2): 337-47.
[http://dx.doi.org/10.1016/S0008-6363(97)00023-0] [PMID: 9205548]
[162]
Boknik P, Eskandar J, Hofmann B, Zimmermann N, Neumann J, Gergs U. Role of cardiac A2A receptors under normal and pathophysiological conditions. Front Pharmacol 2021; 11: 627838.
[http://dx.doi.org/10.3389/fphar.2020.627838] [PMID: 33574762]
[163]
Belardinelli L, Shryock JC, Snowdy S, et al. The A2A adenosine receptor mediates coronary vasodilation. J Pharmacol Exp Ther 1998; 284(3): 1066-73.
[PMID: 9495868]
[164]
Zhao ZQ, Budde JM, Morris C, et al. Adenosine attenuates reperfusion-induced apoptotic cell death by modulating expression of Bcl-2 and Bax proteins. J Mol Cell Cardiol 2001; 33(1): 57-68.
[http://dx.doi.org/10.1006/jmcc.2000.1275] [PMID: 11133223]
[165]
Xia Y, He F, Moukeila YMB, et al. Adenosine A2A receptor regulates autophagy flux and apoptosis to alleviate ischemia-reperfusion injury via the cAMP/PKA signaling pathway. Front Cardiovasc Med 2022; 9: 755619.
[http://dx.doi.org/10.3389/fcvm.2022.755619] [PMID: 35571159]
[166]
Rork TH, Wallace KL, Kennedy DP, Marshall MA, Lankford AR, Linden J. Adenosine A2A receptor activation reduces infarct size in the isolated, perfused mouse heart by inhibiting resident cardiac mast cell degranulation. Am J Physiol Heart Circ Physiol 2008; 295(5): H1825-33.
[http://dx.doi.org/10.1152/ajpheart.495.2008] [PMID: 18757481]
[167]
Sanjani MS, Teng B, Krahn T, Tilley S, Ledent C, Mustafa SJ. Contributions of A 2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Am J Physiol Heart Circ Physiol 2011; 301(6): H2322-33.
[http://dx.doi.org/10.1152/ajpheart.00052.2011] [PMID: 21949117]
[168]
Feoktistov I, Biaggioni I, Cronstein BN. Adenosine receptors in wound healing, fibrosis and angiogenesis. In: Wilson C, Mustafa S, Eds. Adenosine Receptors in Health and Disease Handbook of Experimental Pharmacology. Berlin, Heidelberg: Springer 2009; p. 193.
[http://dx.doi.org/10.1007/978-3-540-89615-9_13]
[169]
Du X, Ou X, Song T, et al. Adenosine A2B receptor stimulates angiogenesis by inducing VEGF and eNOS in human microvascular endothelial cells. Exp Biol Med 2015; 240(11): 1472-9.
[http://dx.doi.org/10.1177/1535370215584939] [PMID: 25966978]
[170]
Sorrentino C, Miele L, Porta A, Pinto A, Morello S. Myeloid-derived suppressor cells contribute to A2B adenosine receptor-induced VEGF production and angiogenesis in a mouse melanoma model. Oncotarget 2015; 6(29): 27478-89.
[http://dx.doi.org/10.18632/oncotarget.4393] [PMID: 26317647]
[171]
Karmouty-Quintana H, Molina JG, Philip K, et al. The antifibrotic effect of A2B adenosine receptor antagonism in a mouse model of dermal fibrosis. Arthritis Rheumatol 2018; 70(10): 1673-84.
[http://dx.doi.org/10.1002/art.40554] [PMID: 29771006]
[172]
Certal M, Vinhas A, Pinheiro AR, et al. Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts. Cell Calcium 2015; 58(5): 518-33.
[http://dx.doi.org/10.1016/j.ceca.2015.08.004] [PMID: 26324417]
[173]
Wakeno M, Minamino T, Seguchi O, et al. Long-term stimulation of adenosine A2b receptors begun after myocardial infarction prevents cardiac remodeling in rats. Circulation 2006; 114(18): 1923-32.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.106.630087] [PMID: 17043167]
[174]
Eltzschig HK. Extracellular adenosine signaling in molecular medicine. J Mol Med 2013; 91(2): 141-6.
[http://dx.doi.org/10.1007/s00109-013-0999-z] [PMID: 23338058]
[175]
Liang BT, Jacobson KA. A physiological role of the adenosine A 3 receptor: Sustained cardioprotection. Proc Natl Acad Sci 1998; 95(12): 6995-9.
[http://dx.doi.org/10.1073/pnas.95.12.6995] [PMID: 9618527]
[176]
Zhao TC, Kukreja RC. Late preconditioning elicited by activation of adenosine A(3) receptor in heart: Role of NF- kappa B, iNOS and mitochondrial K(ATP) channel. J Mol Cell Cardiol 2002; 34(3): 263-77.
[http://dx.doi.org/10.1006/jmcc.2001.1510] [PMID: 11945020]
[177]
Liu Y, Ytrehus K, Downey JM. Evidence that translocation of protein kinase C is a key event during ischemic preconditioning of rabbit myocardium. J Mol Cell Cardiol 1994; 26(5): 661-8.
[http://dx.doi.org/10.1006/jmcc.1994.1078] [PMID: 8072020]
[178]
Koda K, Salazar-Rodriguez M, Corti F, et al. Aldehyde dehydrogenase activation prevents reperfusion arrhythmias by inhibiting local renin release from cardiac mast cells. Circulation 2010; 122(8): 771-81.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.952481] [PMID: 20697027]
[179]
Tracey W, Magee W, Masamune H, Oleynek JJ, Hill RJ. Selective activation of adenosine A3 receptors with N6-(3-chlorobenzyl)-5′- N-methylcarboxamidoadenosine (CB-MECA) provides cardioprotection via KATP channel activation. Cardiovasc Res 1998; 40(1): 138-45.
[http://dx.doi.org/10.1016/S0008-6363(98)00112-6] [PMID: 9876326]
[180]
Wan TC, Ge ZD, Tampo A, et al. The A3 adenosine receptor agonist CP-532,903 [N6-(2,5-dichlorobenzyl)-3′-aminoadenosine-5′-N-methylcarboxamide] protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther 2008; 324(1): 234-43.
[http://dx.doi.org/10.1124/jpet.107.127480] [PMID: 17906066]
[181]
Jang Eun L, Gary B, Bruce TL. A novel cardioprotective role of RhoA: New signaling mechanism for adenosine. FASEB J 2001; 15(11): 1886-94.
[http://dx.doi.org/10.1096/fj.01-0212com] [PMID: 11532968]
[182]
Mozzicato S, Joshi BV, Jacobson KA, Liang BT. Role of direct RhoA‐phospholipase D interaction in mediating adenosine‐induced protection from cardiac ischemia. FASEB J 2004; 18(2): 1-13.
[http://dx.doi.org/10.1096/fj.03-0592fje] [PMID: 14688204]
[183]
Grygier M, Araszkiewicz A, Lesiak M, Grajek S. Effect of new method of intracoronary adenosine injection during primary percutaneous coronary intervention on microvascular reperfusion injury - clinical outcome and 1-year follow-up. Cardiology 2013; 124(3): 199-206.
[http://dx.doi.org/10.1159/000346876] [PMID: 23548697]
[184]
Stoel MG, Marques KMJ, de Cock CC, Bronzwaer JGF, Birgelen C, Zijlstra F. High dose adenosine for suboptimal myocardial reperfusion after primary PCI: A randomized placebo-controlled pilot study. Catheter Cardiovasc Interv 2008; 71(3): 283-9.
[http://dx.doi.org/10.1002/ccd.21334] [PMID: 17985384]
[185]
Wang J, Chen YD, Zhi G, et al. Beneficial effect of adenosine on myocardial perfusion in patients treated with primary percutaneous coronary intervention for acute myocardial infarction. Clin Exp Pharmacol Physiol 2012; 39(3): 247-52.
[http://dx.doi.org/10.1111/j.1440-1681.2012.05668.x] [PMID: 22214231]
[186]
Jin Z, Duan W, Chen M, et al. The myocardial protective effects of adenosine pretreatment in children undergoing cardiac surgery: A randomized controlled clinical trial. Eur J Cardiothorac Surg 2011; 39(5): e90-6.
[http://dx.doi.org/10.1016/j.ejcts.2010.12.052] [PMID: 21342773]
[187]
Mahaffey KW, Puma JA, Barbagelata NA, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction. J Am Coll Cardiol 1999; 34(6): 1711-20.
[http://dx.doi.org/10.1016/S0735-1097(99)00418-0] [PMID: 10577561]
[188]
Marzilli M, Orsini E, Marraccini P, Testa R. Beneficial effects of intracoronary adenosine as an adjunct to primary angioplasty in acute myocardial infarction. Circulation 2000; 101(18): 2154-9.
[http://dx.doi.org/10.1161/01.CIR.101.18.2154] [PMID: 10801755]
[189]
Claeys MJ, Bosmans J, De Ceuninck M, et al. Effect of intracoronary adenosine infusion during coronary intervention on myocardial reperfusion injury in patients with acute myocardial infarction. Am J Cardiol 2004; 94(1): 9-13.
[http://dx.doi.org/10.1016/j.amjcard.2004.03.021] [PMID: 15219500]
[190]
Micari A, Belcik TA, Balcells EA, et al. Improvement in microvascular reflow and reduction of infarct size with adenosine in patients undergoing primary coronary stenting. Am J Cardiol 2005; 96(10): 1410-5.
[http://dx.doi.org/10.1016/j.amjcard.2005.06.090] [PMID: 16275189]
[191]
Ahlsson A, Sobrosa C, Kaijser L, Jansson E, Bomfim V. Adenosine in cold blood cardioplegia - a placebo-controlled study. Interact Cardiovasc Thorac Surg 2012; 14(1): 48-55.
[http://dx.doi.org/10.1093/icvts/ivr027] [PMID: 22108937]
[192]
Desmet W, Bogaert J, Dubois C, et al. High-dose intracoronary adenosine for myocardial salvage in patients with acute ST-segment elevation myocardial infarction. Eur Heart J 2011; 32(7): 867-77.
[http://dx.doi.org/10.1093/eurheartj/ehq492] [PMID: 21196444]
[193]
Quintana M, Hjemdahl P, Sollevi A, et al. Left ventricular function and cardiovascular events following adjuvant therapy with adenosine in acute myocardial infarction treated with thrombolysis. Eur J Clin Pharmacol 2003; 59(1): 1-9.
[http://dx.doi.org/10.1007/s00228-003-0564-8] [PMID: 12743668]
[194]
Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW. A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 2005; 45(11): 1775-80.
[http://dx.doi.org/10.1016/j.jacc.2005.02.061] [PMID: 15936605]
[195]
Shalaby A, Rinne T, Järvinen O, et al. Initial results of a clinical study: Adenosine enhanced cardioprotection and its effect on cardiomyocytes apoptosis during coronary artery bypass grafting. Eur J Cardiothorac Surg 2008; 33(4): 639-44.
[http://dx.doi.org/10.1016/j.ejcts.2007.12.049] [PMID: 18308580]
[196]
Fokkema ML, Vlaar PJ, Vogelzang M, et al. Effect of high-dose intracoronary adenosine administration during primary percutaneous coronary intervention in acute myocardial infarction: A randomized controlled trial. Circ Cardiovasc Interv 2009; 2(4): 323-9.
[http://dx.doi.org/10.1161/CIRCINTERVENTIONS.109.858977.109.858977] [PMID: 20031735]
[197]
Garcia-Dorado D, García-del-Blanco B, Otaegui I, et al. Intracoronary injection of adenosine before reperfusion in patients with ST-segment elevation myocardial infarction: A randomized controlled clinical trial. Int J Cardiol 2014; 177(3): 935-41.
[http://dx.doi.org/10.1016/j.ijcard.2014.09.203] [PMID: 25449504]
[198]
Greene SJ, Sabbah HN, Butler J, et al. Partial adenosine A1 receptor agonism: A potential new therapeutic strategy for heart failure. Heart Fail Rev 2016; 21(1): 95-102.
[http://dx.doi.org/10.1007/s10741-015-9522-7] [PMID: 26701329]
[199]
Voors AA, Shah SJ, Bax JJ, et al. Rationale and design of the phase 2b clinical trials to study the effects of the partial adenosine A1-receptor agonist neladenoson bialanate in patients with chronic heart failure with reduced (PANTHEON) and preserved (PANACHE) ejection fraction. Eur J Heart Fail 2018; 20(11): 1601-10.
[http://dx.doi.org/10.1002/ejhf.1295] [PMID: 30225882]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy