Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

An Insight into the Correlation between Phenolic Content and In vitro Antioxidant Activity of Calocybe Indica Extracts

Author(s): Trung Hieu Le*, Thi Hong Chuong Nguyen, Quang Man Nguyen*, Lam Son Le, Thi Van Thi Tran, Dang Giang Chau Nguyen, Minh Nhung Nguyen, Xuan Anh Vu Ho, Viet Thang Nguyen, Chinh Chien Nguyen* and Quyet Van Le*

Volume 20, Issue 12, 2023

Published on: 13 July, 2023

Page: [1105 - 1113] Pages: 9

DOI: 10.2174/1570178620666230609114535

Price: $65

Abstract

Calocybe indica has been considered an essential herb, exhibiting a strong antioxidant capability. To this point, the phenolic compounds could be the primary constituent inducing such high activity. However, the phenolic-antioxidant activity correlation still needs to be understood. This study attempted to shed light on the direct linkage between phenolic compounds and antioxidant activity of the Vietnam-grown Calocybe indica for the first time. It turns out that the total amount of phenolic content is 97.67 μg/g, which is exceptionally high in the methanol extract. Gallic acid, quercetin, quercitrin, and hesperidin account for 49.02 ± 0.18 μg/g, 15.36 ± 0.24, 18.71 ± 0.32, and 14.58 ± 0.28 μg/g of such activity, respectively. Such antioxidants result in an extraordinary performance in DPPH and ABTS evaluations. Indeed, the total antioxidant capacity ranges from 59.67±0.78 to 91.26±1.57 mg GA/g or from 75.25±0.32 to 88.17±0.64 μmol AS/g, corresponding to the contents of phenolics from 24.92 ±0.24 to 35.28 ± 0.33 mg GAE/g. Furthermore, flavonoid compounds have been quantified to range from 14.63 ± 0.17 to 23.88 ± 0.10 mg QUE/g. These results imply the prominence of Calocybe indica for biomedical applications.

[1]
Patel, S.; Goyal, A. 3 Biotech, 2012, 2, 1-15.
[2]
Muszyńska, B.; Grzywacz-Kisielewska, A.; Kała, K.; Gdula-Argasińska. J. Food Chem., 2018, 243, 373-381.
[http://dx.doi.org/10.1016/j.foodchem.2017.09.149] [PMID: 29146352]
[3]
Cardwell, G.; Bornman, J.; James, A.; Black, L. Nutrients, 2018, 10(10), 1498.
[http://dx.doi.org/10.3390/nu10101498] [PMID: 30322118]
[4]
Lu, H.; Lou, H.; Hu, J.; Liu, Z.; Chen, Q. Compr. Rev. Food Sci. Food Saf., 2020, 19(5), 2333-2356.
[http://dx.doi.org/10.1111/1541-4337.12602] [PMID: 33336985]
[5]
Podkowa, A.; Kryczyk-Poprawa, A.; Opoka, W. Muszyńska. B. Eur. Food Res. Technol., 2021, 247(3), 513-533.
[http://dx.doi.org/10.1007/s00217-020-03646-1]
[6]
Acharya, K. Int. J. Pharmtech. Res., 2011, 3(4), 2162-2168.
[7]
Mowsumi, F.R.; Rahaman, A.; Sarker, N.C.; Choudhury, B.K.; Hossain, S. World J. Pharm. Pharm. Sci., 2015, 4.
[8]
Mishra, K.K.; Pal, R.S.; Arunkumar, R. Int. J. Med. Mushrooms, 2014, 16(6), 555-567.
[http://dx.doi.org/10.1615/IntJMedMushrooms.v16.i6.50] [PMID: 25404220]
[9]
Ghosh, S.K.; Bera, T.; Pal, S. Middle East J. Cancer, 2020, 11, 454-468.
[10]
Indira, M.; Venkateswarulu, T.; Peele, K.A.; Bobby, M.N.; Krupanidhi, S. 3 Biotech, 2019, 9, 1-11.
[11]
Kumar, S.; Sharma, V.; Shirur, M.; Kamal, S. Mushroom Res., 2017, 26, 21-39.
[12]
Subbiah, K.A.; Balan, V. Mycobiology, 2015, 43(3), 184-194.
[http://dx.doi.org/10.5941/MYCO.2015.43.3.184] [PMID: 26539033]
[13]
Govindan, S.; Johnson, E.E.R.; Christopher, J.; Shanmugam, J.; Thirumalairaj, V. Gopalan. J. Exp. Toxicol. Pathol., 2016, 68(6), 329-334.
[http://dx.doi.org/10.1016/j.etp.2016.04.001] [PMID: 27174669]
[14]
Rathore, H.; Sharma, A.; Prasad, S.; Sharma, S. J. Biosci. Bioeng., 2018, 126(4), 482-487.
[http://dx.doi.org/10.1016/j.jbiosc.2018.04.010] [PMID: 29773477]
[15]
Nataraj, A.; Govindan, S.; Ramani, P.; Subbaiah, K.A.; Sathianarayanan, S.; Venkidasamy, B.; Thiruvengadam, M.; Rebezov, M.; Shariati, M.A.; Lorenzo, J.M.; Pateiro, M. Antioxidants, 2022, 11(9), 1694.
[http://dx.doi.org/10.3390/antiox11091694] [PMID: 36139769]
[16]
Maity, K.; Kar Mandal, E.; Maity, S.; Gantait, S.K.; Das, D.; Maiti, S.; Maiti, T.K.; Sikdar, S.R.; Islam, S.S. Int. J. Biol. Macromol., 2011, 48(2), 304-310.
[http://dx.doi.org/10.1016/j.ijbiomac.2010.12.003] [PMID: 21145916]
[17]
Shashikant, M.; Bains, A.; Chawla, P.; Sharma, M.; Kaushik, R.; Kandi, S.; Kuhad, R.C. Int. J. Food Microbiol., 2022, 376, 109741.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2022.109741] [PMID: 35671594]
[18]
Thanyacharoen, T.; Chuysinuan, P.; Techasakul, S.; Nooeaid, P.; Ummartyotin, S. Int. J. Biol. Macromol., 2018, 107(Pt A), 363-370.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.09.002] [PMID: 28870747]
[19]
Alavi Rafiee, S.; Farhoosh, R.; Sharif, A. Eur. J. Lipid Sci. Technol., 2018, 120, 1800319.
[http://dx.doi.org/10.1002/ejlt.201800319]
[20]
Zheng, Y.Z.; Deng, G.; Liang, Q.; Chen, D.F.; Guo, R.; Lai, R.C. Sci. Rep., 2017, 7(1), 7543.
[http://dx.doi.org/10.1038/s41598-017-08024-8] [PMID: 28790397]
[21]
Tzankova, V.; Aluani, D.; Kondeva-Burdina, M.; Yordanov, Y.; Odzhakov, F.; Apostolov, A.; Yoncheva, K. Biomed. Pharmacother., 2017, 92, 569-579.
[http://dx.doi.org/10.1016/j.biopha.2017.05.008] [PMID: 28577496]
[22]
Estruel-Amades, S.; Massot-Cladera, M.; Garcia-Cerdà, P.; Pérez-Cano, F.; Franch, À.; Castell, M.; Camps-Bossacoma, M. Nutrients, 2019, 11(4), 783.
[http://dx.doi.org/10.3390/nu11040783] [PMID: 30987366]
[23]
Cao, R.; Zhao, Y.; Zhou, Z.; Zhao, X. J. Sci. Food Agric., 2018, 98(6), 2422-2427.
[http://dx.doi.org/10.1002/jsfa.8734] [PMID: 29023808]
[24]
Abdelaziz, R.M.; Abdelazem, A.Z.; Hashem, K.S.; Attia, Y.A. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(8), 1405-1417.
[http://dx.doi.org/10.1007/s00210-020-01843-z] [PMID: 32103295]
[25]
Atun, S.; Innayati, A.N.; Herlambang, H.; Handayani, S. J. Phys., 2019, 2019, 012024.
[26]
Liu, G.; Yu, R.; Lan, T.; Liu, Z.; Zhang, P.; Liang, R. RSC Advances, 2019, 9(46), 27060-27068.
[http://dx.doi.org/10.1039/C9RA05664E] [PMID: 35528580]
[27]
Rahdar, A.; Hasanein, P.; Bilal, M.; Beyzaei, H.; Kyzas, G.Z. Life Sci., 2021, 276, 119420.
[http://dx.doi.org/10.1016/j.lfs.2021.119420] [PMID: 33785340]
[28]
Peng, Z.; Gong, X.; Yang, Y.; Huang, L.; Zhang, Q.; Zhang, P.; Wan, R.; Zhang, B. Int. Immunopharmacol., 2017, 52, 281-289.
[http://dx.doi.org/10.1016/j.intimp.2017.09.022] [PMID: 28963941]
[29]
Kim, D.H.; Khan, H.; Ullah, H.; Hassan, S.T.S.; Šmejkal, K.; Efferth, T.; Mahomoodally, M.F.; Xu, S.; Habtemariam, S.; Filosa, R.; Lagoa, R.; Rengasamy, K.R.R. Pharmacol. Res., 2019, 147, 104346.
[http://dx.doi.org/10.1016/j.phrs.2019.104346] [PMID: 31295570]
[30]
Vafadar, A.; Shabaninejad, Z.; Movahedpour, A.; Fallahi, F.; Taghavipour, M.; Ghasemi, Y.; Akbari, M.; Shafiee, A.; Hajighadimi, S.; Moradizarmehri, S.; Razi, E.; Savardashtaki, A.; Mirzaei, H. Cell Biosci., 2020, 10(1), 32.
[http://dx.doi.org/10.1186/s13578-020-00397-0] [PMID: 32175075]
[31]
Babujanarthanam, R.; Kavitha, P.; Mahadeva Rao, U.S.; Pandian, M.R. Mol. Cell. Biochem., 2011, 358(1-2), 121-129.
[http://dx.doi.org/10.1007/s11010-011-0927-x] [PMID: 21713411]
[32]
Truong, V.L.; Ko, S.Y.; Jun, M.; Jeong, W.S. Nutrients, 2016, 8(7), 431.
[http://dx.doi.org/10.3390/nu8070431] [PMID: 27428996]
[33]
Balakrishnan, A.; Menon, V.P. Fundam. Clin. Pharmacol., 2007, 21(5), 535-546.
[http://dx.doi.org/10.1111/j.1472-8206.2007.00477.x] [PMID: 17868207]
[34]
Selvaraj, P.; Pugalendi, K.V. Redox Rep., 2010, 15(5), 217-223.
[http://dx.doi.org/10.1179/135100010X12826446921509] [PMID: 21062537]
[35]
Lee, H.; Lee, W.; Chang, S.; Lee, G.Y. Int. J. Mol. Sci., 2015, 16(8), 18384-18395.
[http://dx.doi.org/10.3390/ijms160818384] [PMID: 26262610]
[36]
Velderrain-Rodríguez, G.; Torres-Moreno, H.; Villegas-Ochoa, M.; Ayala-Zavala, J.; Robles-Zepeda, R.; Wall-Medrano, A.; González-Aguilar, G. Molecules, 2018, 23(3), 695.
[http://dx.doi.org/10.3390/molecules23030695] [PMID: 29562699]
[37]
You, B.R.; Moon, H.J.; Han, Y.H.; Park, W.H. Food Chem. Toxicol., 2010, 48(5), 1334-1340.
[http://dx.doi.org/10.1016/j.fct.2010.02.034] [PMID: 20197077]
[38]
Kohansal, P.; Rajai, N.; Dehpour, A.R.; Rashidian, A.; Shafaroodi, H. Fundam. Clin. Pharmacol., 2019, 33(4), 405-411.
[http://dx.doi.org/10.1111/fcp.12451] [PMID: 30720886]
[39]
Asci, H.; Ozmen, O.; Ellidag, H.Y.; Aydin, B.; Bas, E.; Yilmaz, N. J. Food Drug Anal., 2017, 25, 890-897.
[40]
Dasgupta, N.; De, B. Food Chem., 2004, 88(2), 219-224.
[http://dx.doi.org/10.1016/j.foodchem.2004.01.036]
[41]
Nair, V.D.; Panneerselvam, R.; Gopi, R. Ind. Crops Prod., 2012, 39, 17-25.
[http://dx.doi.org/10.1016/j.indcrop.2012.02.006]
[42]
Jayaprakasha, G.K.; Selvi, T.; Sakariah, K.K. Food Res. Int., 2003, 36(2), 117-122.
[http://dx.doi.org/10.1016/S0963-9969(02)00116-3]
[43]
Rathore, H.; Sharma, A.; Prasad, S.; Kumar, A.; Sharma, S.; Singh, A. Waste Biomass Valoriz., 2020, 11(3), 807-815.
[http://dx.doi.org/10.1007/s12649-018-0416-5]
[44]
Wang, J.; Kan, L.; Nie, S.; Chen, H.; Cui, S.W.; Phillips, A.O.; Phillips, G.O.; Li, Y.; Xie, M. Lebensm. Wiss. Technol., 2015, 63(1), 2-7.
[http://dx.doi.org/10.1016/j.lwt.2015.03.109]
[45]
Vamanu, E. Molecules, 2012, 17(4), 3653-3671.
[http://dx.doi.org/10.3390/molecules17043653] [PMID: 22450678]
[46]
Karadag, A.; Ozcelik, B.; Saner, S. Food Anal. Methods, 2009, 2(1), 41-60.
[http://dx.doi.org/10.1007/s12161-008-9067-7]
[47]
Babu, D.R.; Rao, G.N. J. Food Sci. Technol., 2013, 50(2), 301-308.
[http://dx.doi.org/10.1007/s13197-011-0338-8] [PMID: 24425920]
[48]
Materska, M.; Perucka, I. J. Agric. Food Chem., 2005, 53(5), 1750-1756.
[http://dx.doi.org/10.1021/jf035331k] [PMID: 15740069]
[49]
Le, H.T.; Thi, T.T.V.; Nam, P.C.; Son, L.L.; Vo, Q.V. Lett. Org. Chem., 2018, 15(11), 972-980.
[http://dx.doi.org/10.2174/1570178615666180328160929]
[50]
Villaño, D.; Fernández-Pachón, M.S.; Moyá, M.L.; Troncoso, A.M.; García-Parrilla, M.C. Talanta, 2007, 71(1), 230-235.
[http://dx.doi.org/10.1016/j.talanta.2006.03.050] [PMID: 19071293]
[51]
Çayan, F.; Deveci, E.; Tel-Çayan, G.; Duru, M.E. Food Measure, 2020, 14, 1690-1698.
[52]
Kuhr, S.; Engelhardt, U.H. Z. Lebensm. Unters. Forsch., 1991, 192(6), 526-529.
[http://dx.doi.org/10.1007/BF01202507]
[53]
Wang, H.; Provan, G.J.; Helliwell, K. J. Pharm. Biomed. Anal., 2003, 33(4), 539-544.
[http://dx.doi.org/10.1016/S0731-7085(03)00303-0] [PMID: 14623578]
[54]
Hieu, L.T.; Thi, T.T.; Son, L.L.; Nhung, N.M.; Diep, H.T.N.; Mechler, A.; Vo, Q.V. Lett. Org. Chem., 2021, 18, 128-133.
[55]
Wong, S.; Leong, L.; Williamkoh, J. Food Chem., 2006, 99(4), 775-783.
[http://dx.doi.org/10.1016/j.foodchem.2005.07.058]
[56]
Fu, L.; Xu, B.T.; Gan, R.Y.; Zhang, Y.; Xu, X.R.; Xia, E.Q.; Li, H.B. Int. J. Mol. Sci., 2011, 12(4), 2112-2124.
[http://dx.doi.org/10.3390/ijms12042112] [PMID: 21731430]
[57]
Ribarova, F.; Atanassova, M.J. Univ. Chemical Technol. Metallurgy, 2005, 40, 255-260.
[58]
Neto, J.R.L. J. Med. Plants Res., 2016, 10, 409-416.
[59]
Megala, J.; Geetha, A. Food Chem., 2010, 121(4), 1120-1128.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.059]
[60]
Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Free Radic. Biol. Med., 1999, 26(9-10), 1231-1237.
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[61]
Shen, M.; Zhang, Q.; Qin, L.; Yan, B. J. Anal. Methods Chem., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/8860776] [PMID: 34094615]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy