Generic placeholder image

Letters in Organic Chemistry

Editor-in-Chief

ISSN (Print): 1570-1786
ISSN (Online): 1875-6255

Research Article

Ionic liquid Supported Quinuclidine Catalyzed Morita-Baylis-Hillman Reaction

Author(s): Vivek Srivastava*

Volume 20, Issue 12, 2023

Published on: 14 July, 2023

Page: [1095 - 1104] Pages: 10

DOI: 10.2174/1570178620666230608122516

Price: $65

Abstract

The Morita-Baylis-Hillman (MBH) reaction is an important method for forming carboncarbon bonds between carbonyl-containing compounds and activated olefins. However, the slow reaction rate with electron-rich electrophilic partners has limited its wider use. To overcome this drawback, the effects of pyridinium-based ionic liquids mediated quinuclidine catalytic system for MBH reactions were studied. The method is simple, involving neat and open-flask conditions, and is compatible with a wide range of reagents. We offered general pyridinium-based ionic liquids-mediated quinuclidine catalysis mechanism that is responsible for the observed rate increase. The synthetic versatility of the MBH adducts is demonstrated by the synthesis of important building blocks for the natural product (-)-sitophilure. The authors anticipate that this pyridinium-based ionic liquids-mediated quinuclidine protocol could serve as a general methodology for the MBH reaction. In summary, the study presents a simple and effective method to enhance the reaction rate of the MBH reaction. The authors believe this method has the potential for broader applications and may contribute to developing new synthetic strategies for organic synthesis. We successfully recycled the catalytic system up to 7 runs without losing any catalytic activity.

Next »
Graphical Abstract

[1]
Robiette, R.; Aggarwal, V.K.; Harvey, J.N. J. Am. Chem. Soc., 2007, 129(50), 15513-15525.
[http://dx.doi.org/10.1021/ja0717865] [PMID: 18041831]
[2]
Camilo, N.S.; Santos, H.; Zeoly, L.A.; Fernandes, F.S.; Rodrigues, M.T.; Silva, T.S.; Lima, S.R.; Serafim, J.C.; de Oliveira, A.S.B.; Carpanez, A.G.; Amarante, G.W.; Coelho, F. Eur. J. Org. Chem., 2022, 2022(9), e202101448.
[http://dx.doi.org/10.1002/ejoc.202101448]
[3]
Basavaiah, D.; Naganaboina, R.T. New J. Chem., 2018, 42(17), 14036-14066.
[http://dx.doi.org/10.1039/C8NJ02483A]
[4]
Kaye, P.T. Adv. Heterocycl. Chem., 2019, 127, 101-152.
[http://dx.doi.org/10.1016/bs.aihch.2018.09.003]
[5]
Basavaiah, D.; Rao, A.J.; Satyanarayana, T. Chem. Rev., 2003, 103(3), 811-892.
[http://dx.doi.org/10.1021/cr010043d] [PMID: 12630854]
[6]
Zhao, L.; Qu, Y.; Zhang, F.; Ma, D.; Gao, H.; Gan, L.; Zhang, H.; Zhang, S.; Fang, J. J. Med. Chem., 2022, 65(8), 6056-6069.
[http://dx.doi.org/10.1021/acs.jmedchem.1c01940] [PMID: 35427109]
[7]
Jindal, G.; Kaur, N.; Kumar, S. Adv. Org. Synth., 2018, 8, 224-254.
[http://dx.doi.org/10.2174/9781681085647118080008]
[8]
Bhowmik, S.; Batra, S. Curr. Org. Chem., 2015, 18(24), 3078-3119.
[http://dx.doi.org/10.2174/1385272819666141125003114]
[9]
de Souza, R.; de Souza, A.; Fernandez, T.; Silva, A.; Pereira, V.; Esteves, P.; Vasconcellos, M.; Antunes, O. Lett. Org. Chem., 2008, 5(5), 379-382.
[http://dx.doi.org/10.2174/157017808784872052]
[10]
Santos, M.; Coelho, F.; Lima-Junior, C.; Vasconcellos, M. Curr. Org. Synth., 2015, 12(6), 830-852.
[http://dx.doi.org/10.2174/157017941206150828114416]
[11]
Nelson, G.L.; Williams, M.J.; Jonnalagadda, S.; Alam, M.A.; Mereddy, G.; Johnson, J.L.; Jonnalagadda, S.K. Int. J. Med. Chem., 2018, 2018, 1-8.
[http://dx.doi.org/10.1155/2018/5758076] [PMID: 30410798]
[12]
Carrasco-Sanchez, V.; Simirgiotis, M.; Santos, L. Molecules, 2009, 14(10), 3989-4021.
[http://dx.doi.org/10.3390/molecules14103989] [PMID: 19924044]
[13]
Bharadwaj, K.C. ChemistrySelect, 2017, 2(19), 5384-5389.
[http://dx.doi.org/10.1002/slct.201701081]
[14]
Kinoshita, H.; Osamura, T.; Kinoshita, S.; Iwamura, T.; Watanabe, S.; Kataoka, T.; Tanabe, G.; Muraoka, O. J. Org. Chem., 2003, 68(19), 7532-7534.
[http://dx.doi.org/10.1021/jo0348470] [PMID: 12968914]
[15]
Patra, A.; Batra, S.; Joshi, B.S.; Roy, R.; Kundu, B.; Bhaduri, A.P. J. Org. Chem., 2002, 67(16), 5783-5788.
[http://dx.doi.org/10.1021/jo020199t] [PMID: 12153281]
[16]
Ahmed, N.; Pathe, G.K.; Jheeta, S. RSC Advances, 2015, 5(77), 63095-63103.
[http://dx.doi.org/10.1039/C5RA10499H]
[17]
Bugaenko, D.I.; Karchava, A.V.; Yurovskaya, M.A. Chem. Heterocycl. Compd., 2020, 56(2), 128-144.
[http://dx.doi.org/10.1007/s10593-020-02636-1]
[18]
Aggarwal, V.K.; Mereu, A. Chem. Commun. (Camb.), 1999, 2311-2312.
[http://dx.doi.org/10.1039/a907754e]
[19]
Kudo, K.; Akagawa, K.; Sakamoto, S. Synlett, 2011, 2011(6), 817-820.
[http://dx.doi.org/10.1055/s-0030-1259683]
[20]
Isenegger, P.G.; Bächle, F.; Pfaltz, A. Chemistry, 2016, 22(49), 17595-17599.
[http://dx.doi.org/10.1002/chem.201604616] [PMID: 27775188]
[21]
Wei, R.B.; Li, H.L.; Liang, Y.; Zang, Y.R. J. Biomed. Sci. Eng., 2009, 2(5), 318-322.
[http://dx.doi.org/10.4236/jbise.2009.25047]
[22]
Bogale, Y.; Neelaiah Babu, G. Curr. Res. Green Sustainable Chem., 2021, 4, 100069.
[http://dx.doi.org/10.1016/j.crgsc.2021.100069]
[23]
Li, B.; Leng, K.; Zhang, Y.; Dynes, J.J.; Wang, J.; Hu, Y.; Ma, D.; Shi, Z.; Zhu, L.; Zhang, D.; Sun, Y.; Chrzanowski, M.; Ma, S. J. Am. Chem. Soc., 2015, 137(12), 4243-4248.
[http://dx.doi.org/10.1021/jacs.5b01352] [PMID: 25773275]
[24]
Pimentel, R.L.G.; da Silva, R.B.; Vasconcellos, M.L.A.A.; Lima-Junior, C.G.; da Silva, F.F. J. Mol. Struct., 2022, 1263, 133133.
[http://dx.doi.org/10.1016/j.molstruc.2022.133133]
[25]
Coman, S.; Florea, M.; Cocu, F.; Pârvulescu, V.I.; Jacobs, P.A.; Danumah, C.; Kaliaguine, S. Chem. Commun. (Camb.), 1999, 2175-2176.
[http://dx.doi.org/10.1039/a907119i]
[26]
Furukawa, Y.; Ogura, M. J. Am. Chem. Soc., 2014, 136(1), 119-121.
[http://dx.doi.org/10.1021/ja410781z] [PMID: 24354494]
[27]
Shi, Y.L.; Shi, M. Eur. J. Org. Chem., 2007, 2007(18), 2905-2916.
[http://dx.doi.org/10.1002/ejoc.200700030]
[28]
Mato, R.; Manzano, R.; Reyes, E.; Carrillo, L.; Uria, U.; Vicario, J.L. J. Am. Chem. Soc., 2019, 141(24), 9495-9499.
[http://dx.doi.org/10.1021/jacs.9b03679] [PMID: 31140796]
[29]
Leadbeater, N.E.; Van Der Pol, C. J. Chem. Soc. Perkin., 2001, 2831-2835.
[30]
Gautam, P.; Upadhyay, P.R.; Srivastava, V. Catal. Lett., 2019, 149(6), 1464-1475.
[http://dx.doi.org/10.1007/s10562-019-02773-z]
[31]
Upadhyay, P.R.; Srivastava, V. RSC Advances, 2016, 6(48), 42297-42306.
[http://dx.doi.org/10.1039/C6RA03660K]
[32]
Srivastava, V. Catal. Lett., 2014, 144(12), 2221-2226.
[http://dx.doi.org/10.1007/s10562-014-1392-4]
[33]
Srivastava, V. Catal. Surv. Asia, 2021, 25(2), 192-205.
[http://dx.doi.org/10.1007/s10563-021-09325-9]
[34]
Sowmiah, S.; Cheng, I.C.; Chu, Y-H. Curr. Org. Synth., 2012, 9, 74-95.
[http://dx.doi.org/10.2174/157017912798889116]
[35]
Liu, B.; Jin, N. Curr. Org. Chem., 2016, 20(20), 2109-2116.
[http://dx.doi.org/10.2174/1385272820666160527101844]
[36]
Maria Siedlecka, E.; Czerwicka, M.; Stolte, S.; Stepnowski, P. Curr. Org. Chem., 2011, 15(12), 1974-1991.
[http://dx.doi.org/10.2174/138527211795703630]
[37]
Ali, I.; Alothman, Z.A.; Alwarthan, A.; Aboul-Enein, H.Y. Applications of ionic liquids in chemical science; Novel Developments in Pharmaceutical and Biomedical Analysisc, 2018, pp. 382-412.
[http://dx.doi.org/10.2174/9781681085746118020012]
[38]
Harjani, J.; Naik, P.; Nara, S.; Salunkhe, M. Curr. Org. Synth., 2007, 4(4), 354-369.
[http://dx.doi.org/10.2174/157017907782408806]
[39]
Graser, L.; Betz, D.; Cokoja, M.; Kuhn, E. Curr. Inorg. Chem., 2012, 1, 166-181.
[http://dx.doi.org/10.2174/1877944111101020166]
[40]
Weilhard, A.; Argent, S.P.; Sans, V. Nat. Commun., 2021, 12, 1-7.
[41]
Lu, J.; He, A.; Li, S.; Nie, L.; Zhang, W.; Yao, S. Mini Rev. Org. Chem., 2015, 12(5), 435-448.
[http://dx.doi.org/10.2174/1570193X13666151125230810]
[42]
Hamama, W.S.; El-Magid, O.M.A.; Zoorob, H.H. J. Heterocycl. Chem., 2006, 43(6), 1397-1420.
[http://dx.doi.org/10.1002/jhet.5570430601]
[43]
Ñíguez, J.A.; Burlingham, S.J.; Chinchilla, R.; Alonso, D.A. Molbank, 2022, 2022.
[44]
Lin, Y.S.; Lin, C.Y.; Liu, C.W.; Tsai, T.Y.R. Tetrahedron, 2006, 62(5), 872-877.
[http://dx.doi.org/10.1016/j.tet.2005.10.048]
[45]
Mi, X.; Luo, S.; Cheng, J.P. J. Org. Chem., 2005, 70(6), 2338-2341.
[http://dx.doi.org/10.1021/jo048391d] [PMID: 15760226]
[46]
Lethesh, K.C.; Evjen, S.; Raj, J.J.; Roux, D.C.D.; Venkatraman, V.; Jayasayee, K.; Fiksdahl, A. Front Chem., 2019, 7, 625.
[http://dx.doi.org/10.3389/fchem.2019.00625] [PMID: 31620423]
[47]
Bandrés, I.; Alcalde, R.; Lafuente, C.; Atilhan, M.; Aparicio, S. J. Phys. Chem. B, 2011, 115(43), 12499-12513.
[http://dx.doi.org/10.1021/jp203433u] [PMID: 21942824]
[48]
Gondal, H.Y.; Mumtaz, S.; Abbaskhan, A.; Mumtaz, N.; Cano, I. Chem. Pap., 2020, 74(9), 2951-2963.
[http://dx.doi.org/10.1007/s11696-020-01135-z]
[49]
Romero-Martínez, A.; Hernández-Guerrero, E.; Ramírez-Jaramillo, E.; Martínez-Palou, R. Energy Fuels, 2020, 34(8), 9243-9251.
[http://dx.doi.org/10.1021/acs.energyfuels.0c00426]
[50]
Ghandi, K. Green Sustainable Chem., 2014, 4(1), 44-53.
[http://dx.doi.org/10.4236/gsc.2014.41008]
[51]
Nayl, A.A.; Arafa, W.A.A.; Ahmed, I.M.; Abd-Elhamid, A.I.; El-Fakharany, E.M.; Abdelgawad, M.A.; Gomha, S.M.; Ibrahim, H.M.; Aly, A.A.; Bräse, S.; Mourad, A.K. Molecules, 2022, 27(9), 2940.
[http://dx.doi.org/10.3390/molecules27092940] [PMID: 35566291]
[52]
Buettner, C.S.; Cognigni, A.; Schröder, C.; Bica-Schröder, K. J. Mol. Liq., 2022, 347, 118160.
[http://dx.doi.org/10.1016/j.molliq.2021.118160]
[53]
Yasin, S. Pharmaceut. Pharmacol. Res., 2022, 5, 1-5.
[54]
Danho, M.; Gaspar, C.; Haubruge, E. J. Stored Prod. Res., 2002, 38(3), 259-266.
[http://dx.doi.org/10.1016/S0022-474X(01)00027-3]
[55]
Saeed, Q.; Amir, W.; Batool, M.; Parvaiz, F.; Chen, T.; Ahmad, F. Eco-Friendly Control of Rice Weevil, Sitophilus Oryzae L. (Coleoptera, Curculionidae); Grain Storage Structures Using Diatomaceous Earth Admixed Insecticides, 2022.
[http://dx.doi.org/10.1080/09670874.2022.2124324]
[56]
Parisot, N.; Vargas-Chávez, C.; Goubert, C.; Baa-Puyoulet, P.; Balmand, S.; Beranger, L.; Blanc, C.; Bonnamour, A.; Boulesteix, M.; Burlet, N.; Calevro, F.; Callaerts, P.; Chancy, T.; Charles, H.; Colella, S.; Da Silva Barbosa, A.; Dell’Aglio, E.; Di Genova, A.; Febvay, G.; Gabaldón, T.; Galvão Ferrarini, M.; Gerber, A.; Gillet, B.; Hubley, R.; Hughes, S.; Jacquin-Joly, E.; Maire, J.; Marcet-Houben, M.; Masson, F.; Meslin, C.; Montagné, N.; Moya, A.; Ribeiro de Vasconcelos, A.T.; Richard, G.; Rosen, J.; Sagot, M.F.; Smit, A.F.A.; Storer, J.M.; Vincent-Monegat, C.; Vallier, A.; Vigneron, A.; Zaidman-Rémy, A.; Zamoum, W.; Vieira, C.; Rebollo, R.; Latorre, A.; Heddi, A. BMC Biol., 2021, 19, 1-28.
[57]
Lu, C.; Nie, J.; Yang, G.; Chen, Z. Can. J. Chem., 2009, 87(1), 30-32.
[http://dx.doi.org/10.1139/v08-032]
[58]
Pilli, R.A.; Riatto, V.B. J. Braz. Chem. Soc., 1999, 10(5), 363-368.
[http://dx.doi.org/10.1590/S0103-50531999000500005]
[59]
Razkin, J.; González, A.; Gil, P. Tetrahedron Asymmetry, 1996, 7(12), 3479-3484.
[http://dx.doi.org/10.1016/S0957-4166(96)00455-7]
[60]
Fujisawa, T.; Mobele, B.I.; Shimizu, M. Tetrahedron Lett., 1992, 33(38), 5567-5570.
[http://dx.doi.org/10.1016/S0040-4039(00)61147-4]
[61]
Patiño-Bayona, W.R.; Nagles Galeano, L.J.; Bustos Cortes, J.J.; Delgado Ávila, W.A.; Herrera Daza, E.; Suárez, L.E.C.; Prieto-Rodríguez, J.A.; Patiño-Ladino, O. J. Insects, 2021, 12(6), 532.
[http://dx.doi.org/10.3390/insects12060532] [PMID: 34200992]
[62]
Chang, Y.; Lee, S.H.; Na, J.H.; Chang, P.S.; Han, J. J. Food Sci., 2017, 82(11), 2634-2642.
[http://dx.doi.org/10.1111/1750-3841.13931] [PMID: 29030875]
[63]
Nasr, G.M.; Taha, E.K.A.; Hamza, A.M.; Negm, E.A.; Eryan, N.L.; Noureldeen, A.; Darwish, H.; Zayed, M.S.; Elnabawy, E.S.M. Biology (Basel), 2022, 11(9), 1295.
[http://dx.doi.org/10.3390/biology11091295] [PMID: 36138774]
[64]
Ward, D.E.; Hrapchak, M.J.; Sales, M. Org. Lett., 2000, 2(1), 57-60.
[http://dx.doi.org/10.1021/ol991198z] [PMID: 10814245]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy