Generic placeholder image

Coronaviruses

Editor-in-Chief

ISSN (Print): 2666-7967
ISSN (Online): 2666-7975

Review Article

A Review on the Role of Nitric Oxide in the Pathophysiology and Management of Sars- Cov-2 Disease

Author(s): Sonia Chadha*, Sayali Mukherjee and Somali Sanyal

Volume 4, Issue 2, 2023

Published on: 04 August, 2023

Article ID: e080623217802 Pages: 10

DOI: 10.2174/2666796704666230608120444

Price: $65

Abstract

SARS-CoV-2, first emerged in December 2019 in Wuhan, China, and its rapid transmission led to the declaration of a pandemic by WHO. Nitric oxide is involved in SARS CoV-2 disease and its antiviral effects have prompted its use in the therapeutic management of SARS CoV-2. The effects of NO are concentration dependent. Local and controlled production of NO by the constitutive nitric oxide synthase appears beneficial, while overproduction due to inducible nitric oxide synthase may lead to cell destruction and tissue damage. The review discusses the role of nitric oxide in the pathogenesis of COVID-19 and its use as a probable therapeutic intervention preventing its progress to a more severe form.

Graphical Abstract

[1]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[2]
Liu Y, Yang Y, Zhang C, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci 2020; 63(3): 364-74.
[http://dx.doi.org/10.1007/s11427-020-1643-8] [PMID: 32048163]
[3]
Petrosillo N, Viceconte G, Ergonul O, Ippolito G, Petersen E. COVID-19, SARS and MERS: are they closely related? Clin Microbiol Infect 2020; 26(6): 729-34.
[http://dx.doi.org/10.1016/j.cmi.2020.03.026] [PMID: 32234451]
[4]
Ignarro LJ. Nitric Oxide: Biology and Pathobiology In: Academic. Cambridge 2009.
[5]
Lundberg JO. Nitric oxide and the paranasal sinuses. Anat Rec 2008; 291(11): 1479-84.
[http://dx.doi.org/10.1002/ar.20782] [PMID: 18951492]
[6]
Lundberg JON, Weitzberg E. Nasal nitric oxide in man. Thorax 1999; 54(10): 947-52.
[http://dx.doi.org/10.1136/thx.54.10.947] [PMID: 10491460]
[7]
Lundberg JON, Farkas-Szallasi T, Weitzberg E, et al. High nitric oxide production in human paranasal sinuses. Nat Med 1995; 1(4): 370-3.
[http://dx.doi.org/10.1038/nm0495-370] [PMID: 7585069]
[8]
Runer T, Cervin A, Lindberg S, Uddman R, Uddman R. Nitric oxide is a regulator of mucociliary activity in the upper respiratory tract. Otolaryngol Head Neck Surg 1998; 119(3): 278-87.
[http://dx.doi.org/10.1016/S0194-5998(98)70063-4] [PMID: 9743084]
[9]
Nagaki M, Shimura S, Irokawa T, Sasaki T, Shirato K. Nitric oxide regulation of glycoconjugate secretion from feline and human airways in vitro. Respir Physiol 1995; 102(1): 89-95.
[http://dx.doi.org/10.1016/0034-5687(95)00042-C] [PMID: 8610212]
[10]
Nathan C, Xie Q. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994; 78(6): 915-8.
[http://dx.doi.org/10.1016/0092-8674(94)90266-6] [PMID: 7522969]
[11]
Xu W, Zheng S, Dweik RA, Erzurum SC. Role of epithelial nitric oxide in airway viral infection. Free Radic Biol Med 2006; 41(1): 19-28.
[http://dx.doi.org/10.1016/j.freeradbiomed.2006.01.037] [PMID: 16781449]
[12]
Croen KD. Evidence for antiviral effect of nitric oxide. Inhibition of herpes simplex virus type 1 replication. J Clin Invest 1993; 91(6): 2446-52.
[http://dx.doi.org/10.1172/JCI116479] [PMID: 8390481]
[13]
Turner RB, Singh I. Effect of nitric oxide on rhinovirus replication and virus-induced interleukin-8 elaboration. Am J Respir Crit Care Med 1999; 159(4)
[14]
Klingström J, Åkerström S, Hardestam J, et al. Nitric oxide and peroxynitrite have different antiviral effects against hantavirus replication and free mature virions. Eur J Immunol 2006; 36(10): 2649-57.
[http://dx.doi.org/10.1002/eji.200535587] [PMID: 16955520]
[15]
Saura M, Zaragoza C, McMillan A, et al. An antiviral mechanism of nitric oxide: inhibition of a viral protease. Immunity 1999; 10(1): 21-8.
[http://dx.doi.org/10.1016/S1074-7613(00)80003-5] [PMID: 10023767]
[16]
Keyaerts E, Vijgen L, Chen L, Maes P, Hedenstierna G, Van Ranst M. Inhibition of SARS-coronavirus infection in vitro by S-nitroso-N-acetylpenicillamine, a nitric oxide donor compound. Int J Infect Dis 2004; 8(4): 223-6.
[http://dx.doi.org/10.1016/j.ijid.2004.04.012] [PMID: 15234326]
[17]
Åkerström S, Gunalan V, Keng CT, Tan YJ, Mirazimi A. Dual effect of nitric oxide on SARS-CoV replication: Viral RNA production and palmitoylation of the S protein are affected. Virology 2009; 395(1): 1-9.
[http://dx.doi.org/10.1016/j.virol.2009.09.007] [PMID: 19800091]
[18]
Ritz T, Trueba AF, Vogel PD, Auchus RJ, Rosenfield D. Exhaled nitric oxide and vascular endothelial growth factor as predictors of cold symptoms after stress. Biol Psychol 2018; 132: 116-24.
[http://dx.doi.org/10.1016/j.biopsycho.2017.11.006] [PMID: 29162553]
[19]
Lundberg JO, Weitzberg E, Nordvall SL, Kuylenstierna R, Lundberg JM, Alving K. Primarily nasal origin of exhaled nitric oxide and absence in Kartagener’s syndrome. Eur Respir J 1994; 7(8): 1501-4.
[http://dx.doi.org/10.1183/09031936.94.07081501] [PMID: 7957837]
[20]
Lundberg JO, Nordvall SL, Weitzberg E, Kollberg H, Alving K. Exhaled nitric oxide in paediatric asthma and cystic fibrosis. Arch Dis Child 1996; 75(4): 323-6.
[http://dx.doi.org/10.1136/adc.75.4.323] [PMID: 8984919]
[21]
Karupiah G, Xie Q, Buller R, Nathan C, Duarte C, MacMicking J. Inhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science 1993; 261(5127): 1445-8.
[22]
Lundberg JO, Weitzberg E, Lundberg JM, Alving K. Nitric oxide in exhaled air. Eur Respir J 1996; 9(12): 2671-80.
[http://dx.doi.org/10.1183/09031936.96.09122671] [PMID: 8980984]
[23]
Kovesi T, Kulka R, Dales R. Exhaled nitric oxide concentration is affected by age, height, and race in healthy 9- to 12-year-old children. Chest 2008; 133(1): 169-75.
[http://dx.doi.org/10.1378/chest.07-1177] [PMID: 17925422]
[24]
Taylor DR, Pijnenburg MW, Smith AD, Jongste JCD. Exhaled nitric oxide measurements: clinical application and interpretation. Thorax 2006; 61(9): 817-27.
[http://dx.doi.org/10.1136/thx.2005.056093] [PMID: 16936238]
[25]
Kharitonov SA, Chung KF, Evans D, O’Connor BJ, Barnes PJ. Increased exhaled nitric oxide in asthma is mainly derived from the lower respiratory tract. Am J Respir Crit Care Med 1996; 153(6): 1773-80.
[http://dx.doi.org/10.1164/ajrccm.153.6.8665033] [PMID: 8665033]
[26]
Fukuto JM. CJSC The chemical properties of nitric oxide and related nitrogen oxidesNitric Oxide. San Diego: Academic Press 2000; pp. 23-40.
[http://dx.doi.org/10.1016/B978-012370420-7/50003-4]
[27]
Burgner D, Rockett K, Kwiatkowski D. Nitric oxide and infectious diseases. Arch Dis Child 1999; 81(2): 185-8.
[http://dx.doi.org/10.1136/adc.81.2.185] [PMID: 10490536]
[28]
Perrone LA, Belser JA, Wadford DA, Katz JM, Tumpey TM. Inducible nitric oxide contributes to viral pathogenesis following highly pathogenic influenza virus infection in mice. J Infect Dis 2013; 207(10): 1576-84.
[http://dx.doi.org/10.1093/infdis/jit062] [PMID: 23420903]
[29]
Gamba G, Cavalieri H, Courreges MC, Massouh EJ, Benencia F. Early inhibition of nitric oxide production increases HSV-1 intranasal infection. J Med Virol 2004; 73(2): 313-22.
[http://dx.doi.org/10.1002/jmv.20093] [PMID: 15122810]
[30]
Adler H, Beland JL, Del-Pan NC, et al. Suppression of herpes simplex virus type 1 (HSV-1)-induced pneumonia in mice by inhibition of inducible nitric oxide synthase (iNOS, NOS2). J Exp Med 1997; 185(9): 1533-40.
[http://dx.doi.org/10.1084/jem.185.9.1533] [PMID: 9151890]
[31]
Lisi F, Zelikin AN, Chandrawati R. Nitric Oxide to Fight Viral Infections. Adv Sci (Weinh) 2021; 8(7): 2003895.
[http://dx.doi.org/10.1002/advs.202003895] [PMID: 33850691]
[32]
Kharitonov SA, Yates D, Barnes PJ. Increased nitric oxide in exhaled air of normal human subjects with upper respiratory tract infections. Eur Respir J 1995; 8(2): 295-7.
[http://dx.doi.org/10.1183/09031936.95.08020295] [PMID: 7538934]
[33]
Hedenstierna G, Chen L, Hedenstierna M, Lieberman R, Fine DH. Nitric oxide dosed in short bursts at high concentrations may protect against Covid 19. Nitric Oxide 2020; 103: 1-3.
[http://dx.doi.org/10.1016/j.niox.2020.06.005] [PMID: 32590117]
[34]
Guan WJ. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur Respir J 2020; 55(5): 2000547.
[35]
Tsigaris P, Teixeira da Silva JA. Smoking Prevalence and COVID-19 in Europe. Nicotine Tob Res 2020; 22(9): 1646-9.
[http://dx.doi.org/10.1093/ntr/ntaa121] [PMID: 32609839]
[36]
Vardavas C, Nikitara K. COVID-19 and smoking: A systematic review of the evidence. Tob Induc Dis 2020; 18(March): 20.
[http://dx.doi.org/10.18332/tid/119324] [PMID: 32206052]
[37]
Alqahtani JS, Oyelade T, Aldhahir AM, et al. Prevalence, Severity and Mortality associated with COPD and Smoking in patients with COVID-19: A Rapid Systematic Review and Meta-Analysis. PLoS One 2020; 15(5): e0233147.
[http://dx.doi.org/10.1371/journal.pone.0233147] [PMID: 32392262]
[38]
Berlin I, Thomas D, Le Faou AL, Cornuz J. COVID-19 and Smoking. Nicotine Tob Res 2020; 22(9): 1650-2.
[http://dx.doi.org/10.1093/ntr/ntaa059] [PMID: 32242236]
[39]
Högman M, Holmkvist T, Wålinder R, et al. Increased nitric oxide elimination from the airways after smoking cessation. Clin Sci (Lond) 2002; 103(1): 15-9.
[http://dx.doi.org/10.1042/cs1030015] [PMID: 12095399]
[40]
Toda N, Toda H. Nitric oxide-mediated blood flow regulation as affected by smoking and nicotine. Eur J Pharmacol 2010; 649(1-3): 1-13.
[http://dx.doi.org/10.1016/j.ejphar.2010.09.042] [PMID: 20868673]
[41]
Toda N, Okamura T. Cigarette smoking impairs nitric oxide-mediated cerebral blood flow increase: Implications for Alzheimer’s disease. J Pharmacol Sci 2016; 131(4): 223-32.
[http://dx.doi.org/10.1016/j.jphs.2016.07.001] [PMID: 27530818]
[42]
Törnberg DCF, Marteus H, Schedin U, Alving K, Lundberg JON, Weitzberg E. Nasal and oral contribution to inhaled and exhaled nitric oxide: a study in tracheotomized patients. Eur Respir J 2002; 19(5): 859-64.
[http://dx.doi.org/10.1183/09031936.02.00273502] [PMID: 12030725]
[43]
Kukwa W, Guilleminault C, Tomaszewska M, Kukwa A, Krzeski A, Migacz E. Prevalence of upper respiratory tract infections in habitually snoring and mouth breathing children. Int J Pediatr Otorhinolaryngol 2018; 107: 37-41.
[http://dx.doi.org/10.1016/j.ijporl.2018.01.022] [PMID: 29501308]
[44]
Tousoulis D, Kampoli AM, Tentolouris Nikolaos Papageorgiou C, Stefanadis C, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol 2012; 10(1): 4-18.
[http://dx.doi.org/10.2174/157016112798829760] [PMID: 22112350]
[45]
Schmidt EP, Yang Y, Janssen WJ, et al. The pulmonary endothelial glycocalyx regulates neutrophil adhesion and lung injury during experimental sepsis. Nat Med 2012; 18(8): 1217-23.
[http://dx.doi.org/10.1038/nm.2843] [PMID: 22820644]
[46]
Uchimido R, Schmidt EP, Shapiro NI. The glycocalyx: a novel diagnostic and therapeutic target in sepsis. Crit Care 2019; 23(1): 16.
[http://dx.doi.org/10.1186/s13054-018-2292-6] [PMID: 30654825]
[47]
Cabrales P, Tsai AG, Frangos JA, Intaglietta M. Role of endothelial nitric oxide in microvascular oxygen delivery and consumption. Free Radic Biol Med 2005; 39(9): 1229-37.
[http://dx.doi.org/10.1016/j.freeradbiomed.2005.06.019] [PMID: 16214038]
[48]
Li H, Tian S, Chen T, et al. Newly diagnosed diabetes is associated with a higher risk of mortality than known diabetes in hospitalized patients with COVID ‐19. Diabetes Obes Metab 2020; 22(10): 1897-906.
[http://dx.doi.org/10.1111/dom.14099]
[49]
Cabrales P, Friedman JM. HBOC vasoactivity: interplay between nitric oxide scavenging and capacity to generate bioactive nitric oxide species. Antioxid Redox Signal 2013; 18(17): 2284-97.
[http://dx.doi.org/10.1089/ars.2012.5099.test] [PMID: 23249305]
[50]
Rossaint R, Falke KJ, López F, Slama K, Pison U, Zapol WM. Inhaled nitric oxide for the adult respiratory distress syndrome. N Engl J Med 1993; 328(6): 399-405.
[http://dx.doi.org/10.1056/NEJM199302113280605] [PMID: 8357359]
[51]
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181(2): 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[52]
Arora A, Byrem T, Nair M. Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids In. Elsevier 2000.
[53]
Shulla A, Heald-Sargent T, Subramanya G, Zhao J, Perlman S, Gallagher T. A transmembrane serine protease is linked to the severe acute respiratory syndrome coronavirus receptor and activates virus entry. J Virol 2011; 85(2): 873-82.
[http://dx.doi.org/10.1128/JVI.02062-10] [PMID: 21068237]
[54]
Epstein FH, Moncada S, Higgs A. The L-arginine-nitric oxide pathway. N Engl J Med 1993; 329(27): 2002-12.
[http://dx.doi.org/10.1056/NEJM199312303292706] [PMID: 7504210]
[55]
Csoma B, Bikov A, Nagy L, et al. Dysregulation of the endothelial nitric oxide pathway is associated with airway inflammation in COPD. Respir Res 2019; 20(1): 156.
[http://dx.doi.org/10.1186/s12931-019-1133-8] [PMID: 31311549]
[56]
Ungvari Z, Tarantini S, Kiss T, et al. Endothelial dysfunction and angiogenesis impairment in the ageing vasculature. Nat Rev Cardiol 2018; 15(9): 555-65.
[http://dx.doi.org/10.1038/s41569-018-0030-z] [PMID: 29795441]
[57]
Green SJ. Nitric oxide in mucosal immunity. Nat Med 1995; 1(6): 515-7.
[http://dx.doi.org/10.1038/nm0695-515] [PMID: 7585111]
[58]
Lundberg JO, Gladwin MT, Weitzberg E. Strategies to increase nitric oxide signalling in cardiovascular disease. Nat Rev Drug Discov 2015; 14(9): 623-41.
[http://dx.doi.org/10.1038/nrd4623] [PMID: 26265312]
[59]
Behnia M, Wheatley CM, Avolio A, Johnson BD. Influence of dietary nitrate supplementation on lung function and exercise gas exchange in COPD patients. Nitric Oxide 2018; 76: 53-61.
[http://dx.doi.org/10.1016/j.niox.2018.03.009] [PMID: 29549005]
[60]
Ilie PC, Stefanescu S, Smith L. The role of vitamin D in the prevention of coronavirus disease 2019 infection and mortality. Aging Clin Exp Res 2020; 32(7): 1195-8.
[http://dx.doi.org/10.1007/s40520-020-01570-8] [PMID: 32377965]
[61]
Andrukhova O, Slavic S, Zeitz U, et al. Vitamin D is a regulator of endothelial nitric oxide synthase and arterial stiffness in mice. Mol Endocrinol 2014; 28(1): 53-64.
[http://dx.doi.org/10.1210/me.2013-1252] [PMID: 24284821]
[62]
Yoon HJ, Cho SW, Ahn BW, Yang SY. Alterations in the activity and expression of endothelial NO synthase in aged human endothelial cells. Mech Ageing Dev 2010; 131(2): 119-23.
[http://dx.doi.org/10.1016/j.mad.2009.12.010] [PMID: 20064546]
[63]
Cernadas MR, de Miguel LS, García-Durán M, et al. Expression of constitutive and inducible nitric oxide synthases in the vascular wall of young and aging rats. Circ Res 1998; 83(3): 279-86.
[http://dx.doi.org/10.1161/01.RES.83.3.279] [PMID: 9710120]
[64]
Smith AR, Visioli F, Frei B, Hagen TM. Age-related changes in endothelial nitric oxide synthase phosphorylation and nitric oxide dependent vasodilation: evidence for a novel mechanism involving sphingomyelinase and ceramide-activated phosphatase 2A. Aging Cell 2006; 5(5): 391-400.
[http://dx.doi.org/10.1111/j.1474-9726.2006.00232.x] [PMID: 16930126]
[65]
Cattaneo M, Bertinato EM, Birocchi S, et al. Pulmonary Embolism or Pulmonary Thrombosis in COVID-19? Is the Recommendation to Use High-Dose Heparin for Thromboprophylaxis Justified? Thromb Haemost 2020; 120(8): 1230-2.
[http://dx.doi.org/10.1055/s-0040-1712097] [PMID: 32349132]
[66]
Helms J, Tacquard C, Severac F, et al. High risk of thrombosis in patients with severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020; 46(6): 1089-98.
[http://dx.doi.org/10.1007/s00134-020-06062-x] [PMID: 32367170]
[67]
Connors JM, Levy JH. COVID-19 and its implications for thrombosis and anticoagulation. Blood 2020; 135(23): 2033-40.
[http://dx.doi.org/10.1182/blood.2020006000] [PMID: 32339221]
[68]
Akaike T, Maeda H. Nitric oxide and virus infection. Immunology 2000; 101(3): 300-8.
[http://dx.doi.org/10.1046/j.1365-2567.2000.00142.x] [PMID: 11106932]
[69]
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844-7.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[70]
Lippi G, Mattiuzzi C. Hemoglobin value may be decreased in patients with severe coronavirus disease 2019. Hematol Transfus Cell Ther 2020; 42(2): 116-7.
[http://dx.doi.org/10.1016/j.htct.2020.03.001] [PMID: 32284281]
[71]
Zhang R, Hess DT, Qian Z, et al. Hemoglobin βCys93 is essential for cardiovascular function and integrated response to hypoxia. Proc Natl Acad Sci USA 2015; 112(20): 6425-30.
[http://dx.doi.org/10.1073/pnas.1502285112]
[72]
Cheng Y, Luo R, Wang K, et al. Kidney disease is associated with in-hospital death of patients with COVID-19. Kidney Int 2020; 97(5): 829-38.
[http://dx.doi.org/10.1016/j.kint.2020.03.005] [PMID: 32247631]
[73]
Dai DF, Rabinovitch PS, Ungvari Z. Mitochondria and cardiovascular aging. Circ Res 2012; 110(8): 1109-24.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.246140] [PMID: 22499901]
[74]
Wu J. Tackle the free radicals damage in COVID-19. Nitric Oxide 2020; 102: 39-41.
[http://dx.doi.org/10.1016/j.niox.2020.06.002] [PMID: 32562746]
[75]
Golonka RM, Saha P, Yeoh BS, et al. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics 2020; 52(5): 217-21.
[http://dx.doi.org/10.1152/physiolgenomics.00033.2020] [PMID: 32275178]
[76]
Abouhashem AS, Singh K, Azzazy HME, Sen CK. Is Low Alveolar Type II Cell SOD3 in the Lungs of Elderly Linked to the Observed Severity of COVID-19? Antioxid Redox Signal 2020; 33(2): 59-65.
[http://dx.doi.org/10.1089/ars.2020.8111] [PMID: 32323565]
[77]
Antonelli M, Azoulay E, Bonten M, et al. Year in review in Intensive Care Medicine, 2008: II. Experimental, acute respiratory failure and ARDS, mechanical ventilation and endotracheal intubation. Intensive Care Med 2009; 35(2): 215-31.
[http://dx.doi.org/10.1007/s00134-008-1380-5] [PMID: 19125232]
[78]
de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol 2016; 14(8): 523-34.
[http://dx.doi.org/10.1038/nrmicro.2016.81] [PMID: 27344959]
[79]
Lee TF, Jantzie LL, Todd KG, Cheung PY. Postresuscitation N-acetylcysteine treatment reduces cerebral hydrogen peroxide in the hypoxic piglet brain. Intensive Care Med 2008; 34(1): 190-7.
[http://dx.doi.org/10.1007/s00134-007-0880-z] [PMID: 17938888]
[80]
Lucas C, Wong P, Klein J, et al. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020; 584(7821): 463-9.
[http://dx.doi.org/10.1038/s41586-020-2588-y] [PMID: 32717743]
[81]
Tay MZ, Poh CM, Rénia L, MacAry PA, Ng LFP. The trinity of COVID-19: immunity, inflammation and intervention. Nat Rev Immunol 2020; 20(6): 363-74.
[http://dx.doi.org/10.1038/s41577-020-0311-8] [PMID: 32346093]
[82]
Khomich O, Kochetkov S, Bartosch B, Ivanov A. Redox Biology of Respiratory Viral Infections. Viruses 2018; 10(8): 392.
[http://dx.doi.org/10.3390/v10080392] [PMID: 30049972]
[83]
Jose RJ, Manuel A. COVID-19 cytokine storm: the interplay between inflammation and coagulation. Lancet Respir Med 2020; 8(6): e46-7.
[http://dx.doi.org/10.1016/S2213-2600(20)30216-2] [PMID: 32353251]
[84]
Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet 2020; 395(10229): 1033-4.
[http://dx.doi.org/10.1016/S0140-6736(20)30628-0] [PMID: 32192578]
[85]
Ragab D, Salah Eldin H, Taeimah M, Khattab R, Salem R. The COVID-19 Cytokine Storm; What We Know So Far. Front Immunol 2020; 11: 1446.
[http://dx.doi.org/10.3389/fimmu.2020.01446] [PMID: 32612617]
[86]
Tang D, Comish P, Kang R. The hallmarks of COVID-19 disease. PLoS Pathog 2020; 16(5): e1008536.
[http://dx.doi.org/10.1371/journal.ppat.1008536] [PMID: 32442210]
[87]
Abu-Soud HM, Maitra D, Shaeib F, et al. Disruption of heme-peptide covalent cross-linking in mammalian peroxidases by hypochlorous acid. J Inorg Biochem 2014; 140: 245-54.
[http://dx.doi.org/10.1016/j.jinorgbio.2014.06.018] [PMID: 25193127]
[88]
Karki R, Sharma BR, Tuladhar S, et al. Synergism of TNF-α and IFN-γ Triggers Inflammatory Cell Death, Tissue Damage, and Mortality in SARS-CoV-2 Infection and Cytokine Shock Syndromes. Cell 2021; 184(1): 149-168.e17.
[http://dx.doi.org/10.1016/j.cell.2020.11.025] [PMID: 33278357]
[89]
Albina JE, Reichner JS. Role of nitric oxide in mediation of macrophage cytotoxicity and apoptosis. Cancer Metastasis Rev 1998; 17(1): 39-53.
[http://dx.doi.org/10.1023/A:1005904704618] [PMID: 9544422]
[90]
Lei C. Protocol of a randomized controlled trial testing inhaled Nitric Oxide in mechanically ventilated patients with severe acute respiratory syndrome in COVID-19 (SARS-CoV-2). medRxiv 2020; 2020; 20033530.
[91]
Wilson CH, Christensen TA, Nighorn AJ. Inhibition of nitric oxide and soluble guanylyl cyclase signaling affects olfactory neuron activity in the moth, Manduca sexta. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193(7): 715-28.
[http://dx.doi.org/10.1007/s00359-007-0227-9] [PMID: 17551736]
[92]
Kendrick KM, Guevara-Guzman R, Zorrilla J, et al. Formation of olfactory memories mediated by nitric oxide. Nature 1997; 388(6643): 670-4.
[http://dx.doi.org/10.1038/41765] [PMID: 9262400]
[93]
Samama B, Boehm N. Inhibition of nitric oxide synthase impairs early olfactory associative learning in newborn rats. Neurobiol Learn Mem 1999; 71(2): 219-31.
[http://dx.doi.org/10.1006/nlme.1998.3869] [PMID: 10082641]
[94]
Adusumilli NC, Zhang D, Friedman JM, Friedman AJ. Harnessing nitric oxide for preventing, limiting and treating the severe pulmonary consequences of COVID-19. Nitric Oxide 2020; 103: 4-8.
[http://dx.doi.org/10.1016/j.niox.2020.07.003] [PMID: 32681986]
[95]
Martel J, Ko YF, Young JD, Ojcius DM. Could nasal nitric oxide help to mitigate the severity of COVID-19? Microbes Infect 2020; 22(4-5): 168-71.
[http://dx.doi.org/10.1016/j.micinf.2020.05.002] [PMID: 32387333]
[96]
Chen L, Liu P, Gao H, et al. Inhalation of nitric oxide in the treatment of severe acute respiratory syndrome: a rescue trial in Beijing. Clin Infect Dis 2004; 39(10): 1531-5.
[http://dx.doi.org/10.1086/425357] [PMID: 15546092]
[97]
Fang W, Jiang J, Su L, et al. The role of NO in COVID-19 and potential therapeutic strategies. Free Radic Biol Med 2021; 163: 153-62.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.008] [PMID: 33347987]
[98]
Lei C. Protocol for a randomized controlled trial testing inhaled nitric oxide therapy in spontaneously breathing patients with COVID-19. medRxiv 2020; 2020; 20033522.
[http://dx.doi.org/10.1101/2020.03.10.20033522]
[99]
Murphy AW, Platts-Mills TAE, Lobo M, Hayden F. Respiratory nitric oxide levels in experimental human influenza. Chest 1998; 114(2): 452-6.
[http://dx.doi.org/10.1378/chest.114.2.452] [PMID: 9726729]
[100]
Avnon LS, Munteanu D, Smoliakov A, Jotkowitz A, Barski L. Thromboembolic events in patients with severe pandemic influenza A/H1N1. Eur J Intern Med 2015; 26(8): 596-8.
[http://dx.doi.org/10.1016/j.ejim.2015.08.017] [PMID: 26365372]
[101]
Safaee Fakhr B, Wiegand SB, Pinciroli R, et al. High Concentrations of Nitric Oxide Inhalation Therapy in Pregnant Patients With Severe Coronavirus Disease 2019 (COVID-19). Obstet Gynecol 2020; 136(6): 1109-13.
[http://dx.doi.org/10.1097/AOG.0000000000004128] [PMID: 32852324]
[102]
Parikh R, Wilson C, Weinberg J, Gavin D, Murphy J, Reardon CC. Inhaled nitric oxide treatment in spontaneously breathing COVID-19 patients. Ther Adv Respir Dis 2020; 14.
[http://dx.doi.org/10.1177/1753466620933510] [PMID: 32539647]
[103]
Sanchez-Nadales A, Treminio-Quezada M, Abad H, et al. Critical Care Management for Novel 2019 SARS-CoV-2 and HCoV-NL63 Coinfection in a Young Immunocompromised Patient: A Chicago Experience. Case Rep Crit Care 2020; 2020: 1-8.
[http://dx.doi.org/10.1155/2020/8877641] [PMID: 32802523]
[104]
Berra L, Su B, Dong H, et al. Protocol for a randomized controlled trial testing inhaled nitric oxide therapy in spontaneously breathing patients with COVID-19. medRxiv 2020.
[105]
Gianni S, Fakhr BS, Morais ACC, et al. Nitric oxide gas inhalation to prevent COVID-2019 in healthcare providers. medRxiv 2020.
[106]
Ferrari M, Santini A, Protti A, et al. Inhaled nitric oxide in mechanically ventilated patients with COVID-19. J Crit Care 2020; 60: 159-60.
[http://dx.doi.org/10.1016/j.jcrc.2020.08.007] [PMID: 32814271]
[107]
Yu B, Muenster S, Blaesi AH, Bloch DB, Zapol WM. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy. Sci Transl Med 2015; 7(294): 294ra107.
[http://dx.doi.org/10.1126/scitranslmed.aaa3097] [PMID: 26136478]
[108]
Zamanian RT, Pollack CV Jr, Gentile MA, et al. Outpatient Inhaled Nitric Oxide in a Patient with Vasoreactive Idiopathic Pulmonary Arterial Hypertension and COVID-19 Infection. Am J Respir Crit Care Med 2020; 202(1): 130-2.
[http://dx.doi.org/10.1164/rccm.202004-0937LE] [PMID: 32369396]
[109]
Douglass ME, Goudie MJ, Pant J, et al. Catalyzed Nitric Oxide Release via Cu Nanoparticles Leads to an Increase in Antimicrobial Effects and Hemocompatibility for Short-Term Extracorporeal Circulation. ACS Appl Bio Mater 2019; 2(6): 2539-48.
[http://dx.doi.org/10.1021/acsabm.9b00237] [PMID: 33718805]
[110]
Pieretti JC, Rubilar O, Weller RB, Tortella GR, Seabra AB. Nitric oxide (NO) and nanoparticles – Potential small tools for the war against COVID-19 and other human coronavirus infections. Virus Res 2021; 291198202.
[http://dx.doi.org/10.1016/j.virusres.2020.198202] [PMID: 33086123]
[111]
Quinn JF, Whittaker MR, Davis TP. Delivering nitric oxide with nanoparticles. J Control Release 2015; 205: 190-205.
[http://dx.doi.org/10.1016/j.jconrel.2015.02.007] [PMID: 25665865]
[112]
Isidori AM, Giannetta E, Pofi R, et al. Targeting the NO‐cGMP‐PDE5 pathway in COVID‐19 infection. The DEDALO project. Andrology 2021; 9(1): 33-8.
[http://dx.doi.org/10.1111/andr.12837] [PMID: 32526061]
[113]
Kroll Juliet. Acute ingestion of beetroot juice increases exhaled nitric oxide in healthy individuals. PLoS One 2018; 13(1): e0191030.
[114]
Iwasaki A, Grubaugh ND. Why does Japan have so few cases of COVID‐19? EMBO Mol Med 2020; 12(5): e12481.
[http://dx.doi.org/10.15252/emmm.202012481] [PMID: 32275804]
[115]
Sundqvist ML, Larsen FJ, Carlström M, et al. A randomized clinical trial of the effects of leafy green vegetables and inorganic nitrate on blood pressure. Am J Clin Nutr 2020; 111(4): 749-56.
[http://dx.doi.org/10.1093/ajcn/nqaa024] [PMID: 32091599]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy