Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Phytochemistry and Biological Assessment of Thuja articulata Trunk Barks: HPLC-PDA-ESI-MS Analysis, Bioevaluation, and Molecular Docking

Author(s): Faisal K. Algethami*, Salma Jlizi, Mansour Znati, Mohamed R. Elamin, Naoufel Ben Hamadi and Hichem Ben Jannet*

Volume 20, Issue 3, 2024

Published on: 20 July, 2023

Article ID: e070623217770 Pages: 10

DOI: 10.2174/1573407219666230607154721

Price: $65

Abstract

Background: Thuja articulata is a Mediterranean forest species from the Cupressaceae family, it has been used in popular medicine to treat several diseases. Various studies have been carried out in vitro using diverse T. articulata extracts to understand its traditional use.

Methods: In this study, the ethyl acetate extract of T. articulata trunk barks was chemically identified using HPLC-PDA-ESI-MS, then examined in vitro for its antioxidant and α-amylase inhibitory effects. A molecular docking study was also performed to reinforce the noted bioactivities.

Results: HPLC-PDA-ESI-MS analysis led to the identification of 22 polyphenolic compounds in the ethyl acetate extract of T. articulata trunk barks. This extract revealed interesting in vitro antioxidant properties and a significant α-amylase inhibitory action (IC50 = 16.08 ± 1.27 μg/mL). In silico analysis was found to agree with the in vitro studies in which major constituents of the ethyl acetate extract revealed low binding energy and a correct mode of interaction in the active pocket of the enzyme (PDB: 7TAA). The anti-a-amylase potential could be due either to a synergistic or individual action of certain constituents present in this extract.

Conclusion: This study illustrates that the ethyl acetate extract of T. articulata trunk barks has potent sources of antioxidants and α-amylase inhibitors to be explored.

Graphical Abstract

[1]
Halliwell, B. Free radicals, antioxidants, and human disease: curiosity, cause, or consequence? Lancet, 1994, 344(8924), 721-724.
[http://dx.doi.org/10.1016/S0140-6736(94)92211-X] [PMID: 7915779]
[2]
Styskal, J.; Van Remmen, H.; Richardson, A.; Salmon, A.B. Oxidative stress and diabetes: What can we learn about insulin resistance from antioxidant mutant mouse models? Free Radic. Biol. Med., 2012, 52(1), 46-58.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.10.441] [PMID: 22056908]
[3]
Finkel, T.; Holbrook, N.J. Oxidants, oxidative stress and the biology of ageing. Nature, 2000, 408(6809), 239-247.
[http://dx.doi.org/10.1038/35041687] [PMID: 11089981]
[4]
Mårin, P.; Rebuffé-Scrive, M.; Smith, U.; Björntorp, P. Glucose uptake in human adipose tissue. Metabolism, 1987, 36(12), 1154-1160.
[http://dx.doi.org/10.1016/0026-0495(87)90242-3] [PMID: 3316924]
[5]
Haslam, E. Natural polyphenols (vegetable tannins) as drugs: Possible modes of action. J. Nat. Prod., 1996, 59(2), 205-215.
[http://dx.doi.org/10.1021/np960040+] [PMID: 8991956]
[6]
Yang, Y.C.; Hwang, J.H.; Hong, S.J.; Hsu, H.K. Enhancement of glucose uptake in 3T3-L1 adipocytes by Toona sinensis leaf extract. Kaohsiung J. Med. Sci., 2003, 19(7), 327-332.
[http://dx.doi.org/10.1016/S1607-551X(09)70433-4] [PMID: 12926517]
[7]
Cheng, A.Y.Y.; Fantus, I.G. Oral antihyperglycemic therapy for type 2 diabetes mellitus. CMAJ, 2005, 172(2), 213-226.
[http://dx.doi.org/10.1503/cmaj.1031414] [PMID: 15655244]
[8]
Islam, M.S.; Zahan, R.; Nahar, L.; Alam, M.B.; Naznin, M.; Sarkar, G.C.; Mosaddik, M.A.; Haque, M.E. Antibacterial, insecticidal and in vivo cytotoxicity activities of Salix tetrasperma. Int. J. Pharm. Sci. Res., 2011, 2, 2103-2108.
[9]
De Sales, P.M.; de Souza, P.M.; Simeoni, L.A. α-Amylase inhibitors: a review of raw material and isolated compounds from plant source. J. Pharm. Pharm. Sci., 2012, 15, 141-183.
[http://dx.doi.org/10.18433/J35S3K] [PMID: 22365095]
[10]
Kumar, S.; Kumar, V.; Rana, M.; Kumar, D. Enzymes inhibitors from plants: An alternate approach to treat diabetes. Pharmacogn. Commun., 2012, 2(2), 18-33.
[http://dx.doi.org/10.5530/pc.2012.2.4]
[11]
Canga, I.; Vita, P.; Oliveira, A.I.; Castro, M.Á.; Pinho, C. In vitro cytotoxic activity of African plants: A review. Molecules, 2022, 27(15), 4989.
[http://dx.doi.org/10.3390/molecules27154989] [PMID: 35956938]
[12]
Kouider, H.; Assia, L. Bibliographical summary on the thuya de berbérie. Geo Eco Trop, 2017, 41, 13-27.
[13]
Hind, S.J.; Anas, F.; Lahcen, Z. Survey of ethnomedicinal plants used for the treatment of gastrointestinal disorders in Seksaoua Region (Western High Moroccan Atlas). Annu. Res. Rev. Biol., 2017, 16(5), 1-9.
[http://dx.doi.org/10.9734/ARRB/2017/36112]
[14]
Teixidor-Toneu, I.; Martin, G.J.; Puri, R.K.; Ouhammou, A.; Hawkins, J.A. Treating infants with frigg: linking disease aetiologies, medicinal plant use and care-seeking behaviour in Southern Morocco. J. Ethnobiol. Ethnomed., 2017, 13(1), 4.
[http://dx.doi.org/10.1186/s13002-016-0129-4] [PMID: 28086924]
[15]
Jlizi, S.; Zardi-Bergaoui, A.; Znati, M.; Flamini, G.; Ascrizzi, R.; Ben Jannet, H. Chemical composition and biological evaluation of the resin from Tetraclinis articulata (Vahl.) Masters: A promising source of bioactive secondary metabolites. Ind. Crops Prod., 2018, 124, 74-83.
[http://dx.doi.org/10.1016/j.indcrop.2018.07.055]
[16]
Rached, W.; Zeghada, F.Z.; Bennaceur, M.; Barros, L.; Calhelha, R.C.; Heleno, S.; Alves, M.J.; Carvalho, A.M.; Marouf, A.; Ferreira, I.C.F.R. Phytochemical analysis and assessment of antioxidant, antimicrobial, anti-inflammatory and cytotoxic properties of Tetraclinis articulata (Vahl) Masters leaves. Ind. Crops Prod., 2018, 112, 460-466.
[http://dx.doi.org/10.1016/j.indcrop.2017.12.037]
[17]
Ababsa, Z.E.A.; Derouiche, M.T.; Medjroubi, K.; Akkal, S. In vivo Antidiarrhoeal and anti-ulcerative activities of the Tetraclinis articulata species of the Cupressaceae family. Acta. Sci. Nat., 2019, 6, 50-53.
[18]
Sadiki, F.Z.; Idrissi, M.E.; Cioanca, O.; Trifan, A.; Hancianu, M.; Hritcu, L.; Postu, P.A. Tetraclinis articulata essential oil mitigates cognitive deficits and brain oxidative stress in an Alzheimer’s disease amyloidosis model. Phytomedicine, 2019, 56, 57-63.
[http://dx.doi.org/10.1016/j.phymed.2018.10.032] [PMID: 30668354]
[19]
El-Shemy, H. Essential Oils : Oils of Nature; BoD–Books on Demand, 2020.
[http://dx.doi.org/10.5772/intechopen.77673]
[20]
Rabib, H.; Elagdi, C.; Hsaine, M.; Fougrach, H.; Koussa, T.; Badri, W. Antioxidant and antibacterial activities of the essential oil of Moroccan Tetraclinis articulata (Vahl) Masters. Biochem. Res. Int., 2020, 2020, 1-6.
[http://dx.doi.org/10.1155/2020/9638548] [PMID: 32704398]
[21]
Jlizi, S.; Lahmar, A.; Zardi-Bergaoui, A.; Ascrizzi, R.; Flamini, G.; Harrath, A.H.; Chekir-Ghedira, L.; Ben Jannet, H. Chemical composition and cytotoxic activity of the fractionated trunk bark essential oil from Tetraclinis articulata (Vahl) Mast. growing in Tunisia. Molecules, 2021, 26(4), 1110.
[http://dx.doi.org/10.3390/molecules26041110] [PMID: 33669825]
[22]
Saber, M.; Hicham, H.; Bouyahya, A.; Ouchbani, T.; Tabyaoui, M. Chemical composition and antioxidant activity of essential oil of sawdust from Moroccan Thuya (Tetraclinis articulata (Vahl) masters). Biointerface Res. Appl. Chem., 2021, 2021(11), 7912-7920.
[23]
Zahir, I.; Er-rahmany, A.; Es-sadouny, R.; El Hadri, I. Biological activities of Tetraclinis articulata: Review. Bull. Soc. R. Sci. Liege, 2020, 89, 91-114.
[http://dx.doi.org/10.25518/0037-9565.9644]
[24]
Lin, D.; Xiao, M.; Zhao, J.; Li, Z.; Xing, B.; Li, X.; Kong, M.; Li, L.; Zhang, Q.; Liu, Y.; Chen, H.; Qin, W.; Wu, H.; Chen, S. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules, 2016, 21(10), 1374.
[http://dx.doi.org/10.3390/molecules21101374] [PMID: 27754463]
[25]
Vinayagam, R.; Jayachandran, M.; Xu, B. Antidiabetic effects of simple phenolic acids: A comprehensive review. Phytother. Res., 2016, 30(2), 184-199.
[http://dx.doi.org/10.1002/ptr.5528] [PMID: 26634804]
[26]
Ahangarpour, A.; Sayahi, M.; Sayahi, M. The antidiabetic and antioxidant properties of some phenolic phytochemicals: A review study. Diabetes Metab. Syndr., 2019, 13(1), 854-857.
[http://dx.doi.org/10.1016/j.dsx.2018.11.051] [PMID: 30641821]
[27]
Jlizi, S.; Lazrag, H.; Oulad El Majdoub, Y.; Zardi-bergaoui, A.; Cacciola, F.; Mondello, L.; Harrath, A.H.; Ben Jannet, H. Phenolic constituents, antioxidant and α-amylase inhibitory activities of Pulicaria vulgaris growing in Tunisia: An in vitro and in silico study. Plant Biosyst, 2022, 157(1), 61-70.
[http://dx.doi.org/10.1080/11263504.2022.2089760]
[28]
Zardi-Bergaoui, A.; Jelizi, S.; Flamini, G.; Ascrizzi, R.; Ben Jannet, H. Comparative study of the chemical composition and bioactivities of essential oils of fresh and dry seeds from Myoporum insulare R. Br. Ind. Crops Prod., 2018, 111, 232-237.
[http://dx.doi.org/10.1016/j.indcrop.2017.10.019]
[29]
Chortani, S.; Horchani, M.; Znati, M.; Issaoui, N.; Jannet, H.B.; Romdhane, A. Design and synthesis of new benzopyrimidinone derivatives: α-amylase inhibitory activity, molecular docking and DFT studies. J. Mol. Struct., 2021, 1230, 129920.
[http://dx.doi.org/10.1016/j.molstruc.2021.129920]
[30]
Trott, O.; Olson, A.J. Software news and update AutoDockVina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31, 455-461.
[PMID: 19499576]
[31]
Shen, M.C.; Rodríguez, E.; Kerr, K.; Mabry, T.J. Flavonoids of four species of Parthenium (compositae). Phytochemistry, 1976, 15(6), 1045-1047.
[http://dx.doi.org/10.1016/S0031-9422(00)84401-5]
[32]
Huong, D.T.; Luong, D.V.; Thao, T.T.P.; Sung, T.V. A new flavone and cytotoxic activity of flavonoid constituents isolated from Miliusa balansae (Annonaceae). ChemInform, 2005, 36(50), 627-629.
[http://dx.doi.org/10.1002/chin.200550192] [PMID: 16124409]
[33]
Valdez-Calderón, A.; Torres-Valencia, J.M.; Manríquez-Torres, J.J.; Velázquez-Jiménez, R.; Gómez-Hurtado, M.A.; Román-Marín, L.U.; Hernández-Hernández, J.D.; Cerda-García-Rojas, C.M.; Joseph- Nathan, P. A new bisabolene from Stevia tomentosa. Nat. Prod. Commun., 2011, 6(9), 1934578X1100600.
[http://dx.doi.org/10.1177/1934578X1100600903] [PMID: 21941883]
[34]
Trendafilova, A.; Todorova, M.; Genova, V.; Shestakova, P.; Dimitrov, D.; Jadranin, M.; Milosavljevic, S. New pseudoguaiane derivatives from Inula aschersoniana Janka var. aschersoniana. Nat. Prod. Commun., 2014, 9(8), 1934578X1400900.
[http://dx.doi.org/10.1177/1934578X1400900814] [PMID: 25233586]
[35]
Galala, A.A.; Sallam, A.; Abdel-Halim, O.B.; Gedara, S.R. New ent -kaurane diterpenoid dimer from Pulicaria inuloides. Nat. Prod. Res., 2016, 30(21), 2468-2475.
[http://dx.doi.org/10.1080/14786419.2016.1201671] [PMID: 27348493]
[36]
Garayev, E.; Di Giorgio, C.; Herbette, G.; Mabrouki, F.; Chiffolleau, P.; Roux, D.; Sallanon, H.; Ollivier, E.; Elias, R.; Baghdikian, B. Bioassay-guided isolation and UHPLC-DAD-ESI-MS/MS quantification of potential anti-inflammatory phenolic compounds from flowers of Inula montana L. J. Ethnopharmacol., 2018, 226, 176-184.
[http://dx.doi.org/10.1016/j.jep.2018.08.005] [PMID: 30102993]
[37]
Gülçin, I. Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid). Toxicology, 2006, 217(2-3), 213-220.
[http://dx.doi.org/10.1016/j.tox.2005.09.011] [PMID: 16243424]
[38]
Wang, S.H.; Liang, C.H.; Liang, F.P.; Ding, H.Y.; Lin, S.P.; Huang, G.J.; Lin, W.Ch.; Juang, S.H. The inhibitory mechanisms study of 5,6,41-trihydroxy-7,31-dimethoxyflavone against the LPS-induced macrophage inflammatory responses through the antioxidant ability. Molecules, 2016, 2, 136.
[http://dx.doi.org/10.3390/molecules21020136] [PMID: 26805809]
[39]
Ben Salah, H.; Smaoui, S.; Abdennabi, R.; Allouche, N. LC-ESI-MS/MS phenolic profile of Volutaria lippii (L.) Cass. extracts and evaluation of their in vitro antioxidant, antiacetylcholinesterase, antidiabetic, and antibacterial activities. Evid. Based Complement. Alternat. Med., 2019, 2019, 1-13.
[http://dx.doi.org/10.1155/2019/9814537] [PMID: 31341506]
[40]
Mnafgui, K.; Kchaou, M.; Ben Salah, H.; Hajji, R.; Khabbabi, G.; Elfeki, A.; Allouche, N.; Gharsallah, N. Essential oil of Zygophyllum album inhibits key-digestive enzymes related to diabetes and hypertension and attenuates symptoms of diarrhea in alloxan-induced diabetic rats. Pharm. Biol., 2016, 54(8), 1326-1333.
[http://dx.doi.org/10.3109/13880209.2015.1075049] [PMID: 26439719]
[41]
Kwon, Y.I.; Apostolidis, E.; Shetty, K. Evaluation of pepper (Capsicum annuum) for management of diabetes andhypertension. J. Food Biochem., 2007, 31(3), 370-385.
[http://dx.doi.org/10.1111/j.1745-4514.2007.00120.x]
[42]
Brzozowski, A.M.; Davies, G.J. Structure of the Aspergillus oryzae α-amylase complexed with the inhibitor acarbose at 2.0 A resolution. Biochemistry, 1997, 36(36), 10837-10845.
[http://dx.doi.org/10.1021/bi970539i] [PMID: 9283074]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy