Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Supercritical Fluid Extraction of Phenolics from Anisophyllea disticha (Jack) Baill. and Evaluation of their Antioxidant Activities

In Press, (this is not the final "Version of Record"). Available online 03 May, 2024
Author(s): Sahena Ferdosh*, Nurul Ashikin Abdul Bari, Bulan Wu and Md. Zaidul Islam Sarker
Published on: 03 May, 2024

Article ID: e070623217749

DOI: 10.2174/2210315513666230607123047

Price: $95

Abstract

Background: Anisophyllea disticha (Jack) Baill. (A. disticha) is a species of the Anisophylleaceae family that has undergone the least investigation despite being widely used in folk medicine to cure a wide range of illnesses.

Objective: The purpose of this study is to examine the impact of various factors on the supercritical fluid extraction of A. disticha in order to maximise recovery of total phenolic content, antioxidant activity, and polyphenol identification.

Method: The total phenolic content (TPC) and antioxidant activities of A. disticha were determined using the supercritical fluid extraction (SFE) method and compared with Soxhlet. Box-Behnken design of response surface methodology was performed to examine the effect of independent variables of SFE such as temperature, pressure, and concentration of ethanol as co-solvent on TPC and antioxidant activities of A. disticha stem extracts.

Result: At combined effects of different temperatures, pressure, and co-solvent, the total SFE yield were ranged between 0.65 and 4.14%, which was about half of the Soxhlet extract of 8.75 ± 1.54%. The highest concentration (μg/g) of gallic acid (118.83 ± 1.17), p-coumaric (61.60 ± 0.33), ferulic acid (57.93 ± 1.15), and quercetin (24.16 ± 0.41) were obtained at a temperature of 50°C, the pressure of 25 MPa and co-solvent of 20%, while lowest concentration was found 70°C, 30 MPa, and 20% ethanol.

Conclusion: SFE extracts possessed remarkable TPC and concentration of phenolic compounds, indicating superior recovery of compounds. SFE showed more than two-fold higher ferric-reducing antioxidant power compared to Soxhlet with values of 585.32 ± 17.01 mg Fe (II)/g extract and 203.63 ± 16.03 mg Fe (II)/g extract, respectively. SFE demonstrated a potential alternative to the classical solvent extraction methods.

[1]
Singh, A. Compendia of world’s medicinal flora; CRC Press, 2016.
[http://dx.doi.org/10.1201/b11006]
[2]
Quattrocchi, U. CRC world dictionary of medicinal and poisonous plants: Common names, scientific names, eponyms, synonyms, and etymology; CRC Press: Boca Raton, 2012.
[3]
Onivogui, G.; Zhang, X.; Diaby, M.; Maomy, C.G.; Song, Y. Potential nutritional and antioxidant activity of various solvent extracts from leaves and stem bark of Anisophyllea laurina R. Br ex Sabine used in folk medicine. Braz. J. Pharm. Sci., 2017, 53(2), e16040.
[http://dx.doi.org/10.1590/s2175-97902017000216040]
[4]
Chian, L.K. The DNA of Singapore: Anisophyllea disticha Jack. 2017. Available from: lkcnhm.nus.edu.sg/dna/organisms/details/354
[5]
Suharjito, D.; Darusman, L.K.; Darusman, D.; Suwarno, E. Comparing medicinal plants use for traditional and modern herbal medicine in Long Nah Village of East Kalimantan. Bionatura., 2014, 16(2), 95-102.
[6]
Azmir, J.; Zaidul, I.S.M.; Rahman, M.M.; Sharif, K.M.; Mohamed, A.; Sahena, F.; Jahurul, M.H.A.; Ghafoor, K.; Norulaini, N.A.N.; Omar, A.K.M. Techniques for extraction of bioactive compounds from plant materials: A review. J. Food Eng., 2013, 117(4), 426-436.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.014]
[7]
Easmin, M.S.; Sarker, M.Z.I.; Ferdosh, S.; Shamsudin, S.H.; Yunus, K.B.; Uddin, M.S.; Sarker, M.M.R.; Akanda, M.J.H.; Hossain, M.S.; Khalil, H.P.S.A. Bioactive compounds and advanced processing technology: Phaleria macrocarpa (sheff.) Boerl, a review. J. Chem. Technol. Biotechnol., 2015, 90(6), 981-991.
[http://dx.doi.org/10.1002/jctb.4603]
[8]
Khodaie, F.; Ghoreishi, S.M. Experimental extraction of gallic acid from brown sumac seed (Rhus coriaria) using supercritical carbon dioxide and ethanol as co-solvent: Modeling and optimization. J. Supercrit. Fluids, 2021, 175, 105266.
[http://dx.doi.org/10.1016/j.supflu.2021.105266]
[9]
Goyeneche, R.; Di Scala, K.; Ramirez, C.L.; Fanovich, M.A. Recovery of bioactive compounds from beetroot leaves by supercritical CO2 extraction as a promising bioresource. J. Supercrit. Fluids, 2020, 155, 104658.
[http://dx.doi.org/10.1016/j.supflu.2019.104658]
[10]
Kargbo, M.R.; Onivogui, G.; Song, Y. In vitro anti-diabetic activity and phenolic compound profile of ethanol extracts of Anisophyllea laurina R. Br. ex Sabine leaves and stem bark. Eur. Acad. Res., 2015, 2(12), 16089-16106.
[11]
Khallouki, F.; Hull, W.E.; Owen, R.W. Characterization of a rare triterpenoid and minor phenolic compounds in the root bark of Anisophyllea dichostyla R. Br. Food Chem. Toxicol., 2009, 47(8), 2007-2012.
[http://dx.doi.org/10.1016/j.fct.2009.05.018] [PMID: 19460411]
[12]
Zheng, W.; Wang, S.Y. Antioxidant activity and phenolic compounds in selected herbs. J. Agric. Food Chem., 2001, 49(11), 5165-5170.
[http://dx.doi.org/10.1021/jf010697n] [PMID: 11714298]
[13]
Abdul Bari, N.A.; Ferdosh, S.; Sarker, M.Z.I. Antimicrobial and antioxidant activities of a Malaysian medicinal plant Anisophyllea disticha (Jack) Baill. and quantification of its phenolic constituents. Bangladesh J. Bot., 2021, 50(3), 515-521.
[http://dx.doi.org/10.3329/bjb.v50i3.55830]
[14]
Liu, H.; Qiu, N.; Ding, H.; Yao, R. Polyphenols contents and antioxidant capacity of 68 Chinese herbals suitable for medical or food uses. Food Res. Int., 2008, 41(4), 363-370.
[http://dx.doi.org/10.1016/j.foodres.2007.12.012]
[15]
Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem., 1996, 239(1), 70-76.
[http://dx.doi.org/10.1006/abio.1996.0292] [PMID: 8660627]
[16]
Wang, H.; Helliwell, K.; You, X. Isocratic elution system for the determination of catechins, caffeine and gallic acid in green tea using HPLC. Food Chem., 2000, 68(1), 115-121.
[http://dx.doi.org/10.1016/S0308-8146(99)00179-X]
[17]
Tasioula-Margari, M.; Tsabolatidou, E. Extraction, separation, and identification of phenolic compounds in virgin olive oil by HPLC-DAD and HPLC-MS. Antioxidants, 2015, 4(3), 548-562.
[http://dx.doi.org/10.3390/antiox4030548] [PMID: 26783843]
[18]
Woźniak, Ł.; Marszałek, K.; Skąpska, S.; Jędrzejczak, R. The application of supercritical carbon dioxide and ethanol for the extraction of phenolic compounds from Chokeberry Pomace. Appl. Sci., 2017, 7(4), 322.
[http://dx.doi.org/10.3390/app7040322]
[19]
Zulkafli, Z.D.; Wang, H.; Miyashita, F.; Utsumi, N.; Tamura, K. Cosolvent-modified supercritical carbon dioxide extraction of phenolic compounds from bamboo leaves (Sasa palmata). J. Supercrit. Fluids, 2014, 94, 123-129.
[http://dx.doi.org/10.1016/j.supflu.2014.07.008]
[20]
Bimakr, M.; Rahman, R.A.; Ganjloo, A.; Taip, F.S.; Salleh, L.M.; Sarker, M.Z.I. Optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from spearmint (Mentha spicata L.) leaves by using response surface methodology. Food Bioprocess Technol., 2012, 5(3), 912-920.
[http://dx.doi.org/10.1007/s11947-010-0504-4]
[21]
Machmudah, S.; Shotipruk, A.; Goto, M.; Sasaki, M.; Hirose, T. Extraction of Astaxanthin from Haematococcus pluvialis using supercritical CO2 and ethanol as entrainer. Ind. Eng. Chem. Res., 2006, 45(10), 3652-3657.
[http://dx.doi.org/10.1021/ie051357k]
[22]
Cacace, J.E.; Mazza, G. Mass transfer process during extraction of phenolic compounds from milled berries. J. Food Eng., 2003, 59(4), 379-389.
[http://dx.doi.org/10.1016/S0260-8774(02)00497-1]
[23]
Gong, Y.; Hou, Z.; Gao, Y.; Xue, Y.; Liu, X.; Liu, G. Optimization of extraction parameters of bioactive components from defatted marigold (Tagetes erecta L.) residue using response surface methodology. Food Bioprod. Process., 2012, 90(1), 9-16.
[http://dx.doi.org/10.1016/j.fbp.2010.12.004]
[24]
Lang, Q.; Wai, C.M. Supercritical fluid extraction in herbal and natural product studies - a practical review. Talanta, 2001, 53(4), 771-782.
[http://dx.doi.org/10.1016/S0039-9140(00)00557-9] [PMID: 18968166]
[25]
Kazan, A.; Koyu, H.; Turu, I.C.; Yesil-Celiktas, O. Supercritical fluid extraction of Prunus persica leaves and utilization possibilities as a source of phenolic compounds. J. Supercrit. Fluids, 2014, 92, 55-59.
[http://dx.doi.org/10.1016/j.supflu.2014.05.006]
[26]
Casas, L.; Mantell, C.; Rodríguez, M.; Ossa, E.J.M.; Roldán, A.; Ory, I.D.; Caro, I.; Blandino, A. Extraction of resveratrol from the pomace of Palomino fino grapes by supercritical carbon dioxide. J. Food Eng., 2010, 96(2), 304-308.
[http://dx.doi.org/10.1016/j.jfoodeng.2009.08.002]
[27]
Maran, J.P.; Manikandan, S.; Priya, B.; Gurumoorthi, P. Box-Behnken design based multi-response analysis and optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from tea (Camellia sinensis L.) leaves. J. Food Sci. Technol., 2015, 52(1), 92-104.
[http://dx.doi.org/10.1007/s13197-013-0985-z]
[28]
Farías-Campomanes, A.M.; Rostagno, M.A.; Meireles, M.A.A. Production of polyphenol extracts from grape bagasse using supercritical fluids: Yield, extract composition and economic evaluation. J. Supercrit. Fluids, 2013, 77, 70-78.
[http://dx.doi.org/10.1016/j.supflu.2013.02.006]
[29]
Adnan, L.; Osman, A.; Abdul Hamid, A. Antioxidant activity of different extracts of red pitaya (Hylocereus polyrhizus) seed. Int. J. Food Prop., 2011, 14(6), 1171-1181.
[http://dx.doi.org/10.1080/10942911003592787]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy