Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Mini-Review Article

A Mini-Review on the Structural Characteristics and Anticancer Activity of Nagilactones

Author(s): Yuchen Xiao, Jianping Yong* and Canzhong Lu*

Volume 10, Issue 5, 2024

Published on: 13 July, 2023

Article ID: e070623217729 Pages: 7

DOI: 10.2174/2215083810666230607093151

Price: $65

Abstract

Natural products provide abundant resources for the development of new drugs. Podocarpus nagi is an arbor of Podocarpus L'Hér. ex Persoon. Its fruits, leaves, and roots exhibit a broad spectrum of pharmacological activities (such as antitumor, plant growth regulation, termite killing, and insect larval toxicity), which have been used in Yao folk for a long history. Nagilactone is one of the key components discovered in Podocarpus nagi, which has a variety of structures and a broad spectrum of antitumor activities. In this mini-review, the structures and spectral characteristics, together with the antitumor activities and the structure-activity relationships of nagilactones, are summarized by searching the database in order to provide detailed references for researchers to elucidate and modify their structures.

Graphical Abstract

[1]
Abdillahi HS, Verschaeve L, Finnie JF, Van Staden J. Mutagenicity, antimutagenicity and cytotoxicity evaluation of South African Podocarpus species. J Ethnopharmacol 2012; 139(3): 728-38.
[http://dx.doi.org/10.1016/j.jep.2011.11.044] [PMID: 22155396]
[2]
Hayashi Y, Matsumoto T, Tashiro T. Antitumor activity of norditerpenoid dilactones in Podocarpus plants: Structure-activity relationship on in vitro cytotoxicity against Yoshida sarcoma. Gann 1979; 70(3): 365-9.
[PMID: 572795]
[3]
Yang Y, Yong JP, Olagoke ZO. First isolation and confirmation of sterol based on β-sitosterol skeleton from the leaves of Podocarpusnagi Planted in Fujian, preliminary in vitro anticancer activity and the crystal structure. Chin J Struc Chem 2021; 40(5): 653-8.
[4]
Yang Y, Yong J, Lu C. Chemical and biological progress of Podocarpus nagi. Biomed Res Rev 2018; 2(3): 1-5.
[http://dx.doi.org/10.15761/BRR.1000118]
[5]
Yong JP, Lu CZ, Yang Y. Extraction method and application of sterides from Podocarpus nagi leaves. China Patent CN 112300239 B, 2020.
[6]
Yong JP, Yang Y, Tian DN. Study on the large-scale preparation, chemical constituents of Podocarpus Nagi kernel oil and in vitro antioxidant and anticancer activities. Acad J Med Plant 2022; 10(3): 22-39.
[7]
Xiao Y, Yong J, Yang Y, Lu C. The ethyl acetate extraction obtained from podocarpus nagi kernel meal with anticancer activity. Biomed Pharmacol J 2021; 14(1): 363-6.
[http://dx.doi.org/10.13005/bpj/2134]
[8]
Yong JP, Lu CZ, Xiao YC. Extraction method and application of ethyl acetate from Podocarpus nagi kernel meal. China Patent 202011199776.2, 2020.
[9]
Barrero AF, Quilez Del Moral JF, Mar Herrador M. Podolactones: A group of biologically active norditerpenoids. Stud Nat Prod Chem 2003; 28: 453-516.
[http://dx.doi.org/10.1016/S1572-5995(03)80147-3]
[10]
Hayashi Y, Matsumoto T, Uemura M, Koreeda M. Carbon-13 NMR studies of the biologically active nor-diterpenoid dilactones fromPodocarpus plants. Org Magn Reson 1980; 14(2): 86-91.
[http://dx.doi.org/10.1002/mrc.1270140203]
[11]
Xu YM, Fang SD. Chemical constituents of Podocarpus fleuryi Hickel. Zhiwuxue Tongbao 1990; 32(4): 302-6.
[12]
Xu YM, Fang SD. Structure of a new diflavone in Podocarpus fleuryi Hickel. Zhiwuxue Tongbao 1991; 33(2): 162-3.
[13]
Xu YM, Fang SD. Chemical constituents of Podocarpus fleuryi Hickel (II). Zhiwuxue Tongbao 1991; 33(5): 406-8.
[14]
Xu YM, Fang SD. Studied on chemical constituents of Podocarpaceae Endl. I. Antitumor constituents of Podocarpus nagi. Aata Chim Sinica 1989; 47: 1086-108.
[15]
Xu YM, Fang SD. Two new diterpene dilactones from Podocarpus nagi. Zhiwuxue Tongbao 1993; 35(2): 133-7.
[16]
Bloor SJ, Molloy BPJ. Cytotoxic norditerpene lactones from Ileostylus micranthus. J Nat Prod 1991; 54(5): 1326-30.
[http://dx.doi.org/10.1021/np50077a015] [PMID: 1800635]
[17]
Banerjee K, Resat H. Constitutive activation of STAT3 in breast cancer cells: A review. Int J Cancer 2016; 138(11): 2570-8.
[http://dx.doi.org/10.1002/ijc.29923] [PMID: 26559373]
[18]
Fathi N, Rashidi G, Khodadadi A, Shahi S, Sharifi S. STAT3 and apoptosis challenges in cancer. Int J Biol Macromol 2018; 117: 993-1001.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.121] [PMID: 29782972]
[19]
Jing N, Tweardy DJ. Targeting Stat3 in cancer therapy. Anticancer Drugs 2005; 16(6): 601-7.
[http://dx.doi.org/10.1097/00001813-200507000-00002] [PMID: 15930886]
[20]
Shan H, Yao S, Ye Y, Yu Q. 3-Deoxy-2β,16-dihydroxyna-gilactone E, a natural compound from Podocarpus nagi, preferentially inhibits JAK2/STAT3 signaling by allosterically interacting with the regulatory domain of JAK2 and induces apoptosis of cancer cells. Acta Pharmacol Sin 2019; 40(12): 1578-86.
[http://dx.doi.org/10.1038/s41401-019-0254-4] [PMID: 31201357]
[21]
Benatrehina PA, Chen WL, Czarnecki AA, et al. Bioactivity-guided isolation of totarane-derived diterpenes from podocarpus neriifolius and Structure Revision of 3-Deoxy-2α-hydroxynagilactone E. Nat Prod Bioprospect 2019; 9(2): 157-63.
[http://dx.doi.org/10.1007/s13659-019-0198-x] [PMID: 30783922]
[22]
Feng ZL, Zhang LL, Zheng YD, et al. Norditerpenoids and Dinorditerpenoids from the Seeds of Podocarpus nagi as Cytotoxic Agents and Autophagy Inducers. J Nat Prod 2017; 80(7): 2110-7.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00347] [PMID: 28719204]
[23]
Reck M, Popat S, Reinmuth N, De Ruysscher D, Kerr KM, Peters S. Metastatic non-small-cell lung cancer (NSCLC): ESMO clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol 2014; 25(3) (Suppl. 3): iii27-39.
[http://dx.doi.org/10.1093/annonc/mdu199] [PMID: 25115305]
[24]
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70(1): 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[25]
Zheng R, Zhang S, Zeng H, et al. Cancer incidence and mortality in China, 2016. Journal of the National Cancer Center 2022; 2(1): 1-9.
[http://dx.doi.org/10.1016/j.jncc.2022.02.002]
[26]
Zhang LL, Feng ZL, Su MX, et al. Downregulation of Cyclin B1 mediates nagilactone E-induced G2 phase cell cycle arrest in non-small cell lung cancer cells. Eur J Pharmacol 2018; 830: 17-25.
[http://dx.doi.org/10.1016/j.ejphar.2018.04.020] [PMID: 29680228]
[27]
Lamouille S, Xu J, Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat Rev Mol Cell Biol 2014; 15(3): 178-96.
[http://dx.doi.org/10.1038/nrm3758] [PMID: 24556840]
[28]
Zhang LL, Jiang XM, Huang MY, et al. Nagilactone E suppresses TGF-β1-induced epithelial–mesenchymal transition, migration and invasion in non-small cell lung cancer cells. Phytomedicine 2019; 52: 32-9.
[http://dx.doi.org/10.1016/j.phymed.2018.09.222] [PMID: 30599910]
[29]
Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer 2005; 5(4): 263-74.
[http://dx.doi.org/10.1038/nrc1586] [PMID: 15776005]
[30]
Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer 2012; 12(4): 252-64.
[http://dx.doi.org/10.1038/nrc3239] [PMID: 22437870]
[31]
Chen YC, Huang MY, Zhang LL, et al. Nagilactone E increases PD-L1 expression through activation of c-Jun in lung cancer cells. Chin J Nat Med 2020; 18(7): 517-25.
[http://dx.doi.org/10.1016/S1875-5364(20)30062-5] [PMID: 32616192]
[32]
Ren Y, Kinghorn AD. Development of potential antitumor agents from the scaffolds of plant-derived Terpenoid Lactones. J Med Chem 2020; 63(24): 15410-48.
[http://dx.doi.org/10.1021/acs.jmedchem.0c01449] [PMID: 33289552]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy