Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Herbal Medicines Genkwadaphnin as Therapeutic Agent for Cancers and Other Human Disorders: A Review of Pharmacological Activities through Scientific Evidence

Author(s): Dinesh Kumar Patel* and Kanika Patel

Volume 10, Issue 4, 2024

Published on: 23 June, 2023

Article ID: e230523217251 Pages: 7

DOI: 10.2174/2215083810666230523155650

Price: $65

Abstract

Background: Daphnane-type diterpenes are an important class of phytochemicals found to be present in the family Euphorbiaceae and Thymelaeaceae. It has anti-leukaemic, antihyperglycaemic, and anti-fertility activities in medicine. Daphne genkwa is indigenous to the Yangtze River and Yellow River of China. Daphne genkwa contains significant amounts of daphnane- type diterpenes. Phytochemical analysis of Daphne genkwa led to the isolation of flavonoids, lignins, coumarins, caffeotannic acids, and genkwadaphnin.

Methods: Present review highlighted the biological potential of genkwadaphnin in medicine. All the scientific data of Daphne genkwa, and genkwadaphnin were collected from Google, Google Scholar, Science Direct, Scopus, and PubMed and analyzed in the present work to know the therapeutic potential of genkwadaphnin in medicine. Detailed pharmacological activities of genkwadaphnin were analyzed in the present work through scientific data analysis of various research works.

Results: Genkwadaphnin is a daphnane diterpene ester molecule mainly isolated from the Daphne genkwa, Dendrostellera lessertii, Daphne odorata, Gnidia latifolia, and Gnidia glaucus. Genkwadaphnin has been reported to exert therapeutic potential against hepatocellular carcinoma, human colon cancer, squamous cell carcinoma, and leukemia. Further, it has a significant role in innate immunity, melanogenesis, skeletal diseases, inflammatory cytokines, and natural killer cell. However, pharmacokinetics and metabolomics aspects of genkwadaphnin were also discussed in the present work. Further, more scientific data on human clinical trials is needed to ensure the safety and efficacy of genkwadaphnin in medicine.

Conclusion: In the present work, a successful review had been achieved by the above-mentioned scientific data, which signified the therapeutic potential of genkwadaphnin in medicine.

Graphical Abstract

[1]
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149: 112862.
[http://dx.doi.org/10.1016/j.biopha.2022.112862] [PMID: 35339826]
[2]
Shawky EM, Elgindi MR, Ibrahim HA, Baky MH. The potential and outgoing trends in traditional, phytochemical, economical, and ethnopharmacological importance of family Onagraceae: A comprehensive review. J Ethnopharmacol 2021; 281: 114450.
[http://dx.doi.org/10.1016/j.jep.2021.114450] [PMID: 34314807]
[3]
Zhang S, Long F, Lin H, Wang X, Jiang G, Wang T. Regulatory roles of phytochemicals on circular RNAs in cancer and other chronic diseases. Pharmacol Res 2021; 174: 105936.
[http://dx.doi.org/10.1016/j.phrs.2021.105936] [PMID: 34653635]
[4]
Kour G, Haq SA, Bajaj BK, Gupta PN, Ahmed Z. Phytochemical add-on therapy to DMARDs therapy in rheumatoid arthritis: In vitro and in vivo bases, clinical evidence and future trends. Pharmacol Res 2021; 169: 105618.
[http://dx.doi.org/10.1016/j.phrs.2021.105618] [PMID: 33878447]
[5]
Nguyen THP, Kumar VB, Ponnusamy VK, et al. Phytochemicals intended for anticancer effects at preclinical levels to clinical practice: Assessment of formulations at nanoscale for non-small cell lung cancer (NSCLC) therapy. Process Biochem 2021; 104: 55-75.
[http://dx.doi.org/10.1016/j.procbio.2021.02.004]
[6]
Ojo OA, Ojo AB, Barnabas M, et al. Phytochemical properties and pharmacological activities of the genus Pennisetum: A review. Sci Am 2022; 16: e01132.
[http://dx.doi.org/10.1016/j.sciaf.2022.e01132]
[7]
Wardana AP, Aminah NS, Rosyda M, et al. Potential of diterpene compounds as antivirals, a review. Heliyon 2021; 7(8): e07777.
[http://dx.doi.org/10.1016/j.heliyon.2021.e07777] [PMID: 34405122]
[8]
Johnson SR, Bhat WW, Bibik J, Turmo A, Hamberger B, Hamberger B. A database-driven approach identifies additional diterpene synthase activities in the mint family (Lamiaceae). J Biol Chem 2019; 294(4): 1349-62.
[http://dx.doi.org/10.1074/jbc.RA118.006025] [PMID: 30498089]
[9]
Móricz ÁM, Krüzselyi D, Ott PG, et al. Bioactive clerodane diterpenes of giant goldenrod (Solidago gigantea Ait.) root extract. J Chromatogr A 2021; 1635: 461727.
[http://dx.doi.org/10.1016/j.chroma.2020.461727] [PMID: 33338903]
[10]
Bathe U, Tissier A. Cytochrome P450 enzymes: A driving force of plant diterpene diversity. Phytochemistry 2019; 161: 149-62.
[http://dx.doi.org/10.1016/j.phytochem.2018.12.003] [PMID: 30733060]
[11]
Papaefthimiou D, Diretto G, Demurtas OC, et al. Heterologous production of labdane-type diterpenes in the green alga Chlamydomonas reinhardtii. Phytochemistry 2019; 167: 112082.
[http://dx.doi.org/10.1016/j.phytochem.2019.112082] [PMID: 31421542]
[12]
Liang YQ, Liao XJ, Lin JL, et al. Spongiains A-C: Three new spongian diterpenes with ring A rearrangement from the marine sponge Spongia sp. Tetrahedron 2019; 75(27): 3802-8.
[http://dx.doi.org/10.1016/j.tet.2019.06.001]
[13]
Ma LT, Wang CH, Hon CY, Lee YR, Chu FH. Discovery and characterization of diterpene synthases in Chamaecyparis formosensis Matsum. which participated in an unprecedented diterpenoid biosynthesis route in conifer. Plant Sci 2021; 304: 110790.
[http://dx.doi.org/10.1016/j.plantsci.2020.110790] [PMID: 33568294]
[14]
Hu T, Zhou J, Tong Y, et al. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast. Metab Eng 2020; 60: 87-96.
[http://dx.doi.org/10.1016/j.ymben.2020.03.011] [PMID: 32268192]
[15]
Oliveira LC, Porto TS, Junior AHC, et al. Schistosomicidal activity of kaurane, labdane and clerodane-type diterpenes obtained by fungal transformation. Process Biochem 2020; 98: 34-40.
[http://dx.doi.org/10.1016/j.procbio.2020.07.020]
[16]
Cavalcanti ABS, de Figueiredo PTR, Veloso CAG, Rodrigues GCS. A new labdane diterpene from the aerial segments of Leptohyptis macrostachys (L’Hérit.) Harley &amp. JFB Pastore Phytochem Lett 2021; 43: 117-22.
[http://dx.doi.org/10.1016/j.phytol.2021.03.022]
[17]
Mi SH, Zhao P, Li Q, et al. Guided isolation of daphnane-type diterpenes from daphne genkwa by molecular network strategies. Phytochemistry 2022; 198: 113144.
[http://dx.doi.org/10.1016/j.phytochem.2022.113144] [PMID: 35283165]
[18]
Lee SY, Xu KW, Huang CY, et al. Molecular phylogenetic analyses based on the complete plastid genomes and nuclear sequences reveal Daphne (Thymelaeaceae) to be non-monophyletic as current circumscription. Plant Divers 2022; 44(3): 279-89.
[http://dx.doi.org/10.1016/j.pld.2021.11.001] [PMID: 35769588]
[19]
Chen Y, Guo J, Tang Y, et al. Pharmacokinetic profile and metabolite identification of yuanhuapine, a bioactive component in Daphne genkwa by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. J Pharm Biomed Anal 2015; 112: 60-9.
[http://dx.doi.org/10.1016/j.jpba.2015.04.023] [PMID: 25956226]
[20]
Wang J, Ren Q, Zhang YY, et al. Assignment of the stereostructures of sesquiterpenoids from the roots of Daphne genkwa via quantum chemical calculations. Fitoterapia 2019; 138: 104352.
[http://dx.doi.org/10.1016/j.fitote.2019.104352] [PMID: 31476400]
[21]
Kim MA, Kang K, Lee HJ, Kim M, Kim CY, Nho CW. Apigenin isolated from Daphne genkwa Siebold et Zucc. inhibits 3T3-L1 preadipocyte differentiation through a modulation of mitotic clonal expansion. Life Sci 2014; 101(1-2): 64-72.
[http://dx.doi.org/10.1016/j.lfs.2014.02.012] [PMID: 24582594]
[22]
Hou XW, Han S, Zhang YY, et al. Neogenkwanine I from the flower buds of Daphne genkwa with its stereostructure confirmation using quantum calculation profiles and antitumor evaluation. Nat Prod Res 2020; 34(3): 405-12.
[http://dx.doi.org/10.1080/14786419.2018.1536133] [PMID: 30406671]
[23]
Tao Y, Su D, Li W, Cai B. Pharmacokinetic comparisons of six components from raw and vinegar-processed Daphne genkwa aqueous extracts following oral administration in rats by employing UHPLC–MS/MS approaches. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1079: 34-40.
[http://dx.doi.org/10.1016/j.jchromb.2018.02.005] [PMID: 29428673]
[24]
Sun Y, Bao Y, Yu H, et al. Anti-rheumatoid arthritis effects of flavonoids from Daphne genkwa. Int Immunopharmacol 2020; 83: 106384.
[http://dx.doi.org/10.1016/j.intimp.2020.106384] [PMID: 32199350]
[25]
Zhou DC, Zheng G, Jia LY, et al. Comprehensive evaluation on anti-inflammatory and anti-angiogenic activities in vitro of fourteen flavonoids from Daphne Genkwa based on the combination of efficacy coefficient method and principal component analysis. J Ethnopharmacol 2021; 268: 113683.
[http://dx.doi.org/10.1016/j.jep.2020.113683] [PMID: 33301910]
[26]
Li F, Sun Q, Hong L, et al. Daphnane-type diterpenes with inhibitory activities against human cancer cell lines from Daphne genkwa. Bioorg Med Chem Lett 2013; 23(9): 2500-4.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.025] [PMID: 23558238]
[27]
Guo R, Ren Q, Tang YX, et al. Sesquiterpenoids from the roots of Daphne genkwa Siebold et Zucc. With potential anti-inflammatory activity. Phytochemistry 2020; 174: 112348.
[http://dx.doi.org/10.1016/j.phytochem.2020.112348] [PMID: 32213358]
[28]
Wang J, Liu QB, Hou ZL, et al. Discovery of guaiane-type sesquiterpenoids from the roots of Daphne genkwa with neuroprotective effects. Bioorg Chem 2020; 95: 103545.
[http://dx.doi.org/10.1016/j.bioorg.2019.103545] [PMID: 31927316]
[29]
Zhang S, Li X, Zhang F, Yang P, Gao X, Song Q. Preparation of yuanhuacine and relative daphne diterpene esters from Daphne genkwa and structure–activity relationship of potent inhibitory activity against DNA topoisomerase I. Bioorg Med Chem 2006; 14(11): 3888-95.
[http://dx.doi.org/10.1016/j.bmc.2006.01.055] [PMID: 16488610]
[30]
Jiang HL, Wang R, Li JY, Shi YP. A new highly oxygenated daphnane diterpene esters from the flower buds of Daphne genkwa. Nat Prod Res 2015; 29(20): 1878-83.
[http://dx.doi.org/10.1080/14786419.2015.1009459] [PMID: 25674674]
[31]
Wang R, Tong L, Liu CY, Guo C. A new flavanol from the roots of Daphne genkwa. J Asian Nat Prod Res 2019; 21(12): 1215-20.
[http://dx.doi.org/10.1080/10286020.2018.1530222] [PMID: 30593256]
[32]
Van Minh N, Han BS, Choi HY, Byun J, Park JS, Kim WG. Genkwalathins A and B, new lathyrane-type diterpenes from Daphne genkwa. Nat Prod Res 2018; 32(15): 1782-90.
[http://dx.doi.org/10.1080/14786419.2017.1402322] [PMID: 29156984]
[33]
Zhang CY, Luo L, Xia J, et al. Sesquiterpenes and lignans from the flower buds of Daphne genkwa and their nitric oxide inhibitory activities. Nat Prod Res 2018; 32(24): 2893-9.
[http://dx.doi.org/10.1080/14786419.2017.1389937] [PMID: 29052451]
[34]
Zheng W, Gao X, Chen C, Tan R. Total flavonoids of Daphne genkwa root significantly inhibit the growth and metastasis of Lewis lung carcinoma in C57BL6 mice. Int Immunopharmacol 2007; 7(2): 117-27.
[http://dx.doi.org/10.1016/j.intimp.2006.07.010] [PMID: 17178377]
[35]
Hou X, Hou X, Li L. Chemical constituents from the flower buds of Daphne genkwa (Thymelaeaceae). Biochem Syst Ecol 2020; 91: 104055.
[http://dx.doi.org/10.1016/j.bse.2020.104055]
[36]
Li W, Gong J, Chu W, Li L. Chemical constituents from the stem and root bark of Daphne giraldii Nitsche (Thymelaeaceae). Biochem Syst Ecol 2021; 99: 104352.
[http://dx.doi.org/10.1016/j.bse.2021.104352]
[37]
Gan L, Ji J, Wang L, et al. Identification of the metabolites in normal and AA rat plasma, urine and feces after oral administration of Daphne genkwa flavonoids by LC-Q-TOF-MS spectrometry. J Pharm Biomed Anal 2020; 177: 112856.
[http://dx.doi.org/10.1016/j.jpba.2019.112856] [PMID: 31521020]
[38]
Jiang CP, He X, Yang XL, et al. Anti-rheumatoid arthritic activity of flavonoids from Daphne genkwa. Phytomedicine 2014; 21(6): 830-7.
[http://dx.doi.org/10.1016/j.phymed.2014.01.009] [PMID: 24561028]
[39]
Zhan ZJ, Fan CQ, Ding J, Yue JM. Novel diterpenoids with potent inhibitory activity against endothelium cell HMEC and cytotoxic activities from a well-known TCM plant Daphne genkwa. Bioorg Med Chem 2005; 13(3): 645-55.
[http://dx.doi.org/10.1016/j.bmc.2004.10.054] [PMID: 15653331]
[40]
Zheng W, Gao X, Gu Q, Chen C, Wei Z, Shi F. Antitumor activity of daphnodorins from Daphne genkwa roots. Int Immunopharmacol 2007; 7(2): 128-34.
[http://dx.doi.org/10.1016/j.intimp.2006.07.011] [PMID: 17178378]
[41]
Uyangaa E, Choi JY, Patil AM, et al. Functional restoration of exhausted CD4+ and CD8+ T cells in chronic viral infection by vinegar-processed flos of Daphne genkwa. Comp Immunol Microbiol Infect Dis 2015; 39: 25-37.
[http://dx.doi.org/10.1016/j.cimid.2015.02.001] [PMID: 25744061]
[42]
Li ZJ, Li XM, Piao YJ, et al. Genkwadaphnin induces reactive oxygen species (ROS)-mediated apoptosis of Squamous Cell Carcinoma (SCC) cells. Biochem Biophys Res Commun 2014; 450(2): 1115-9.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.118] [PMID: 24996181]
[43]
Hasegawa S, Kitoh H, Ohkawara B, et al. Tranilast stimulates endochondral ossification by upregulating SOX9 and RUNX2 promoters. Biochem Biophys Res Commun 2016; 470(2): 356-61.
[http://dx.doi.org/10.1016/j.bbrc.2016.01.044] [PMID: 26777999]
[44]
Moosavi MA, Yazdanparast R. Distinct MAPK signaling pathways, p21 up-regulation and caspase-mediated p21 cleavage establishes the fate of U937 cells exposed to 3-hydrogenkwadaphnin: Differentiation versus apoptosis. Toxicol Appl Pharmacol 2008; 230(1): 86-96.
[http://dx.doi.org/10.1016/j.taap.2008.02.010] [PMID: 18394670]
[45]
Emanuele E, Minoretti P, Arra M. Yohimbine may have a therapeutic role in prevention of suicide by regulation of glial fibrillary acidic protein expression. Med Hypotheses 2006; 67(6): 1472.
[http://dx.doi.org/10.1016/j.mehy.2006.06.010] [PMID: 16889903]
[46]
Nouri K, Yazdanparast R. Effects of 3-Hydrogenkwadaphnin on intracellular purine nucleotide contents and their link to K562 cell death. Food Chem 2011; 128(1): 81-6.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.080] [PMID: 25214332]
[47]
Moosavi MA, Yazdanparast R, Sanati MH, Nejad AS. 3-Hydrogenkwadaphnin targets inosine 5′-monophosphate dehydrogenase and triggers post-G1 arrest apoptosis in human leukemia cell lines. Int J Biochem Cell Biol 2005; 37(11): 2366-79.
[http://dx.doi.org/10.1016/j.biocel.2005.04.020] [PMID: 16084123]
[48]
Wu J, Guo L, Qiu X, et al. Genkwadaphnin inhibits growth and invasion in hepatocellular carcinoma by blocking DHCR24-mediated cholesterol biosynthesis and lipid rafts formation. Br J Cancer 2020; 123(11): 1673-85.
[http://dx.doi.org/10.1038/s41416-020-01085-z] [PMID: 32958824]
[49]
Choi HJ, Nepal M, Park YR, Lee HK, Oh SR, Soh Y. Stimulation of chondrogenesis in ATDC5 chondroprogenitor cells and hypertrophy in mouse by Genkwadaphnin. Eur J Pharmacol 2011; 655(1-3): 9-15.
[http://dx.doi.org/10.1016/j.ejphar.2011.01.012] [PMID: 21266170]
[50]
Hallx IH, Kasai R, Wu RY, Tagahara K, Lee KH. Antitumor agents LV: Effects of genkwadaphnin and yuanhuacine on nucleic acid synthesis of P-388 lymphocytic leukemia cells. J Pharm Sci 1982; 71(11): 1263-7.
[http://dx.doi.org/10.1002/jps.2600711120] [PMID: 7175720]
[51]
Kang HB, Ahn KS, Oh SR, Kim JW. Genkwadaphnin induces IFN-γ via PKD1/NF-κB/STAT1 dependent pathway in NK-92 cells. PLoS One 2014; 9(12): e115146.
[http://dx.doi.org/10.1371/journal.pone.0115146] [PMID: 25517939]
[52]
Kang HB, Lee HR, Jee DJ, et al. PRDM1, a tumor-suppressor gene, is induced by genkwadaphnin in human colon cancer sw620 cells. J Cell Biochem 2016; 117(1): 172-9.
[http://dx.doi.org/10.1002/jcb.25262] [PMID: 26096175]
[53]
Yoo N, Lee HR, Son JM, et al. Genkwadaphnin promotes leukocyte migration by increasing CD44 expression via PKD1/NF-κB signaling pathway. Immunol Lett 2016; 173: 69-76.
[http://dx.doi.org/10.1016/j.imlet.2016.03.006] [PMID: 26987843]
[54]
Park BY, Min BS, Ahn KS, et al. Daphnane diterpene esters isolated from flower buds of Daphne genkwa induce apoptosis in human myelocytic HL-60 cells and suppress tumor growth in Lewis lung carcinoma (LLC)-inoculated mouse model. J Ethnopharmacol 2007; 111(3): 496-503.
[http://dx.doi.org/10.1016/j.jep.2006.12.023] [PMID: 17241759]
[55]
Liou YF, Hall IH, Lee KH. Antitumor agents LVI: The protein synthesis inhibition by genkwadaphnin and yuanhuacine of P-388 lymphocytic leukemia cells. J Pharm Sci 1982; 71(12): 1340-4.
[http://dx.doi.org/10.1002/jps.2600711208] [PMID: 7153880]
[56]
Hall IH, Liou YF, Oswald CB, Lee KH. The effects of genkwadaphnin and gnidilatidin on the growth of p-388, l-1210 leukemia and kb carcinoma cells in vitro. Eur J Cancer Clin Oncol 1986; 22(1): 45-52.
[http://dx.doi.org/10.1016/0277-5379(86)90341-X] [PMID: 3754212]
[57]
Bang KK, Yun CY, Lee C, et al. Melanogenesis inhibitory daphnane diterpenoids from the flower buds of Daphne genkwa. Bioorg Med Chem Lett 2013; 23(11): 3334-7.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.096] [PMID: 23623417]
[58]
Yeşilada E, Taninaka H, Takaishi Y, et al. In vitro inhibitory effects of Daphne oleoides ssp. oleoides on inflammatory cytokines and activity-guided isolation of active constituents. Cytokine 2001; 13(6): 359-64.
[http://dx.doi.org/10.1006/cyto.2001.0838] [PMID: 11292319]
[59]
Geng L, Sun H, Yuan Y, et al. Discrimination of raw and vinegar-processed Genkwa Flos using metabolomics coupled with multivariate data analysis. Fitoterapia 2013; 84: 286-94.
[http://dx.doi.org/10.1016/j.fitote.2012.12.003] [PMID: 23237734]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy