Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

2D-QSAR Modeling, Docking, Synthesis and In-Vitro Evaluation of Novel Flavone Derivatives as Anticancer Agents

Author(s): Remya Ramachandran Surajambika* and Pavithra Palanikarasu

Volume 20, Issue 3, 2024

Published on: 13 July, 2023

Article ID: e220523217153 Pages: 19

DOI: 10.2174/1573407219666230522112102

Price: $65

Abstract

Background: Cancer is the second leading cause of death globally and is responsible for 10 million deaths in 2020 (2.26 million breast cancer deaths). Due to the problems like drug resistance, toxicities and economic burden, there is a need for the development of novel anticancer agents.

Objectives: To design novel flavone derivatives by 2D QSAR studies and docking studies and to evaluate the compounds as potential anticancer agents against MCF7 cell line by MTT assay.

Methods: We designed a series of novel flavone derivatives by 2D QSAR modelling using the software QSARINS.The molecular docking studies were carried out to study the molecular interaction and binding affinitiesof the designed compounds against tyrosine protein kinase (PDB ID: 2SRC) by Auto DockVina software. ADMET profiles were calculated for all the designed compounds and five compounds were chosen for synthesis. The synthesized compounds were characterized and evaluated in-vitro for anticancer activity against MCF7 cell line by MTT assay. Based on 2D QSAR and molecular docking studies, compounds 3c, 3f, 3i and 3m were synthesized and evaluated for anticancer activity against MCF-7 cell lines.

Results: Molecular docking studies of the compounds showed good binding affinity against tyrosine- protein kinase (2SRC). The synthesized flavone derivatives were evaluated for anti-cancer activity against human breast cancer cell line MCF-7 by MTT assay using cisplatin as a positive control. The novel flavone derivative (3c) exhibits more cytotoxicity effect, and the IC50 value of the compound was found to be 52.03 μg/ml. Optimization of these novel scaffolds requires extensive studies on more derivatives.

Conclusion: The novel flavone derivatives will be good lead compounds targeting breast cancer.

Graphical Abstract

[1]
ur Rashid, H.; Xu, Y.; Ahmad, N.; Muhammad, Y.; Wang, L. Promising anti-inflammatory effects of chalcones via inhibition of cyclooxy-genase, prostaglandin E2, inducible NO synthase and nuclear factor κb activities. Bioorg. Chem., 2019, 87, 335-365.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.033] [PMID: 30921740]
[2]
Hussain, S.; Singh, A.; Nazir, S.U.; Tulsyan, S.; Khan, A.; Kumar, R.; Bashir, N.; Tanwar, P.; Mehrotra, R. Cancer drug resistance: A fleet to conquer. J. Cell. Biochem., 2019, 120(9), 14213-14225.
[http://dx.doi.org/10.1002/jcb.28782] [PMID: 31037763]
[3]
Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination therapy in combating cancer. Oncotarget, 2017, 8(23), 38022-38043.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[4]
Asgaonkar, K.D.; Mote, G.D.; Chitre, T.S. QSAR and molecular docking studies of oxadiazole-ligated pyrrole derivatives as enoyl-ACP (CoA) reductase inhibitors. Sci. Pharm., 2014, 82(1), 71-85.
[http://dx.doi.org/10.3797/scipharm.1310-05] [PMID: 24634843]
[5]
Sharma, P.; Virmani, T. Synthesis, antimicrobial evaluation and QSAR studies of some newly synthesized imidazole derivatives. Synthesis, 2020, 29(03), 6513-6520.
[6]
Zhao, M.; Wang, L.; Zheng, L.; Zhang, M.; Qiu, C.; Zhang, Y.; Du, D.; Niu, B. 2D-QSAR and 3D-QSAR analyses for EGFR inhibitors. BioMed Res. Int., 2017, 2017, 1-11.
[http://dx.doi.org/10.1155/2017/4649191] [PMID: 28630865]
[7]
Lewis, R.A.; Wood, D. Modern 2D QSAR for drug discovery. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2014, 4(6), 505-522.
[http://dx.doi.org/10.1002/wcms.1187]
[8]
Neves, B.J.; Braga, R.C.; Melo-Filho, C.C.; Moreira-Filho, J.T.; Muratov, E.N.; Andrade, C.H. QSAR-based virtual screening: Advances and applications in drug discovery. Front. Pharmacol., 2018, 9, 1275.
[http://dx.doi.org/10.3389/fphar.2018.01275] [PMID: 30524275]
[9]
Lemmon, M.A.; Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7), 1117-1134.
[http://dx.doi.org/10.1016/j.cell.2010.06.011] [PMID: 20602996]
[10]
Blume-Jensen, P.; Hunter, T. Oncogenic kinase signalling. Nature, 2001, 411(6835), 355-365.
[http://dx.doi.org/10.1038/35077225] [PMID: 11357143]
[11]
Hunter, T.; Cooper, J.A. Protein-tyrosine kinases. Annu. Rev. Biochem., 1985, 54(1), 897-930.
[http://dx.doi.org/10.1146/annurev.bi.54.070185.004341] [PMID: 2992362]
[12]
Adamson, P.C.; Blaney, S.M.; Widemann, B.C.; Kitchen, B.; Murphy, R.F.; Hannah, A.L.; Cropp, G.F.; Patel, M.; Gillespie, A.F.; Whit-comb, P.G.; Balis, F.M. Pediatric phase I trial and pharmacokinetic study of the platelet-derived growth factor (PDGF) receptor pathway inhibitor SU101. Cancer Chemother. Pharmacol., 2004, 53(6), 482-488.
[http://dx.doi.org/10.1007/s00280-004-0769-2] [PMID: 14999430]
[13]
Ahmad, T.; Marais, R.; Pyle, L.; James, M.; Schwartz, B.; Gore, Z.; Eisen, T. BAY 43-9006 in patients with advanced melanoma: the Royal Marsden experience. American Society of Clinical Oncology 40th Annual Meeting Proceedings, 2004, pp. 5-8.
[14]
Imperatore, C.; Della Sala, G.; Casertano, M.; Luciano, P.; Aiello, A.; Laurenzana, I.; Piccoli, C.; Menna, M. In-vitro antiproliferative evaluation of synthetic meroterpenes inspired by marine natural products. Mar. Drugs, 2019, 17(12), 684.
[http://dx.doi.org/10.3390/md17120684] [PMID: 31817358]
[15]
Aiello, P.; Sharghi, M.; Mansourkhani, S.M.; Ardekan, A.P.; Jouybari, L.; Daraei, N.; Peiro, K.; Mohamadian, S.; Rezaei, M.; Heidari, M. Medicinal plants in the prevention and treatment of colon cancer. Oxid. Med. Cell., 2019, 2019, 2075614.
[16]
Raffa, D.; Maggio, B.; Raimondi, M.V.; Plescia, F.; Daidone, G. Recent discoveries of anticancer flavonoids. Eur. J. Med. Chem., 2017, 142, 213-228.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.034] [PMID: 28793973]
[17]
Park, W.H. MAPK inhibitors differentially affect gallic acid-induced human pulmonary fibroblast cell growth inhibition. Mol. Med. Rep., 2011, 4(1), 193-04.
[PMID: 21461585]
[18]
Dinarello, C.A. Anti-inflammatory agents: Present and future. Cell, 2010, 140(6), 935-950.
[http://dx.doi.org/10.1016/j.cell.2010.02.043] [PMID: 20303881]
[19]
Yu, X.; He, G.; Du, G. [Neuroprotective effect of baicalein in patients with Parkinson’s disease]. Zhongguo Zhongyao Zazhi, 2012, 37(4), 421-425.
[PMID: 22667137]
[20]
Dai, F.; Li, Q.; Wang, Y.; Ge, C.; Feng, C.; Xie, S.; He, H.; Xu, X.; Wang, C. Design, synthesis, and biological evaluation of mitochondria-targeted flavone–naphthalimide–polyamine conjugates with antimetastatic activity. J. Med. Chem., 2017, 60(5), 2071-2083.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01846] [PMID: 28177238]
[21]
Kumar, G.S.; Tiwari, A.K.; Rao, V.R.S.; Prasad, K.R.; Ali, A.Z.; Babu, K.S. Synthesis and biological evaluation of novel benzyl-substituted flavones as free radical (DPPH) scavengers and α-glucosidase inhibitors. J. Asian Nat. Prod. Res., 2010, 12(11), 978-984.
[http://dx.doi.org/10.1080/10286020.2010.511190] [PMID: 21061220]
[22]
Sumbul, S.; Ahmad, M.A.; Mohd, A.; Mohd, A. Role of phenolic compounds in peptic ulcer: An overview. J. Pharm. Bioallied Sci., 2011, 3(3), 361-367.
[http://dx.doi.org/10.4103/0975-7406.84437] [PMID: 21966156]
[23]
Suresh Babu, K.; Hari Babu, T.; Srinivas, P.V.; Hara Kishore, K.; Murthy, U.S.N.; Rao, J.M. Synthesis and biological evaluation of novel C (7) modified chrysin analogues as antibacterial agents. Bioorg. Med. Chem. Lett., 2006, 16(1), 221-224.
[http://dx.doi.org/10.1016/j.bmcl.2005.09.009] [PMID: 16213726]
[24]
Gao, L.; Zu, M.; Wu, S.; Liu, A.L.; Du, G.H. 3D QSAR and docking study of flavone derivatives as potent inhibitors of influenza H1N1 virus neuraminidase. Bioorg. Med. Chem. Lett., 2011, 21(19), 5964-5970.
[http://dx.doi.org/10.1016/j.bmcl.2011.07.071] [PMID: 21843936]
[25]
Sagrera, G.; Bertucci, A.; Vazquez, A.; Seoane, G. Synthesis and antifungal activities of natural and synthetic biflavonoids. Bioorg. Med. Chem., 2011, 19(10), 3060-3073.
[http://dx.doi.org/10.1016/j.bmc.2011.04.010] [PMID: 21530273]
[26]
Casano, G.; Dumètre, A.; Pannecouque, C.; Hutter, S.; Azas, N.; Robin, M. Anti-HIV and antiplasmodial activity of original flavonoid derivatives. Bioorg. Med. Chem., 2010, 18(16), 6012-6023.
[http://dx.doi.org/10.1016/j.bmc.2010.06.067] [PMID: 20638854]
[27]
Veljkovic, V.; Mouscadet, J.F.; Veljkovic, N.; Glisic, S.; Debyser, Z. Simple criterion for selection of flavonoid compounds with anti-HIV activity. Bioorg. Med. Chem. Lett., 2007, 17(5), 1226-1232.
[http://dx.doi.org/10.1016/j.bmcl.2006.12.029] [PMID: 17189684]
[28]
Ayers, S.; Zink, D.L.; Mohn, K.; Powell, J.S.; Brown, C.M.; Murphy, T.; Brand, R.; Pretorius, S.; Stevenson, D.; Thompson, D.; Singh, S.B. Flavones from Struthiola argentea with anthelmintic activity in-vitro. Phytochemistry, 2008, 69(2), 541-545.
[http://dx.doi.org/10.1016/j.phytochem.2007.08.003] [PMID: 17923139]
[29]
Yamamura, S.; Ozawa, K.; Ohtani, K.; Kasai, R.; Yamasaki, K. Antihistaminic flavones and aliphatic glycosides from Mentha spicata. Phytochemistry, 1998, 48(1), 131-136.
[http://dx.doi.org/10.1016/S0031-9422(97)01112-6] [PMID: 9745765]
[30]
Iwamura, C.; Shinoda, K.; Yoshimura, M.; Watanabe, Y.; Obata, A.; Nakayama, T. Naringenin chalcone suppresses allergic asthma by inhibiting the type-2 function of CD4 T cells. Allergol. Int., 2010, 59(1), 67-73.
[http://dx.doi.org/10.2332/allergolint.09-OA-0118] [PMID: 20035147]
[31]
Rao, Y.J.; Sowjanya, T.; Thirupathi, G.; Murthy, N.Y.S.; Kotapalli, S.S. Synthesis and biological evaluation of novel fla-vone/triazole/benzimidazole hybrids and flavone/isoxazole-annulated heterocycles as antiproliferative and antimycobacterial agents. Mol. Divers., 2018, 22(4), 803-814.
[http://dx.doi.org/10.1007/s11030-018-9833-4] [PMID: 29869169]
[32]
Shaik, J.B.; Yeggoni, D.P.; Kandrakonda, Y.R.; Penumala, M.; Zinka, R.B.; Kotapati, K.V.; Darla, M.M.; Ampasala, D.R.; Subramanyam, R.; Amooru, D.G. Synthesis and biological evaluation of flavone-8-acrylamide derivatives as potential multi-target-directed anti Alzheimer agents and investigation of binding mechanism with acetylcholinesterase. Bioorg. Chem., 2019, 88, 102960.
[http://dx.doi.org/10.1016/j.bioorg.2019.102960] [PMID: 31102808]
[33]
Verma, A.K.; Singh, H.; Satyanarayana, M.; Srivastava, S.P.; Tiwari, P.; Singh, A.B.; Dwivedi, A.K.; Singh, S.K.; Srivastava, M.; Nath, C.; Raghubir, R.; Srivastava, A.K.; Pratap, R. Flavone-based novel antidiabetic and antidyslipidemic agents. J. Med. Chem., 2012, 55(10), 4551-4567.
[http://dx.doi.org/10.1021/jm201107g] [PMID: 22524508]
[34]
Li, W.; Li, X.; Liu, M.; Wang, Q. Synthesis and antiproliferative activity of thioxoflavonesmannich base derivatives. Arch. Pharm., 2017, 350(7), e1700044.
[http://dx.doi.org/10.1002/ardp.201700044] [PMID: 28605048]
[35]
Habashneh, A.Y.; El-Abadelah, M.M.; Zihlif, M.A.; Imraish, A.; Taha, M.O. Synthesis and antitumor activities of some new N1‐(Flavon‐6‐yl) amidrazone Derivatives. Arch. Pharm., 2014, 347(6), 415-422.
[http://dx.doi.org/10.1002/ardp.201300326] [PMID: 24615985]
[36]
Geahlen, R.L.; Koonchanok, N.M.; McLaughlin, J.L.; Pratt, D.E. Inhibition of protein-tyrosine kinase activity by flavanoids and related compounds. J. Nat. Prod., 1989, 52(5), 982-986.
[http://dx.doi.org/10.1021/np50065a011] [PMID: 2607357]
[37]
Hassan, A.H.E.; Lee, K.T.; Lee, Y.S. Flavone-based arylamides as potential anticancers: Design, synthesis and in-vitro cell-based/cell-free evaluations. Eur. J. Med. Chem., 2020, 187, 111965.
[http://dx.doi.org/10.1016/j.ejmech.2019.111965] [PMID: 31877541]
[38]
Liu, H.; Dong, A.; Gao, C.; Tan, C.; Xie, Z.; Zu, X.; Qu, L.; Jiang, Y. New synthetic flavone derivatives induce apoptosis of hepatocarci-noma cells. Bioorg. Med. Chem., 2010, 18(17), 6322-6328.
[http://dx.doi.org/10.1016/j.bmc.2010.07.019] [PMID: 20674374]
[39]
Yan, G.H.; Li, X.F.; Ge, B.C.; Shi, X.D.; Chen, Y.F.; Yang, X.M.; Xu, J.P.; Liu, S.W.; Zhao, P.L.; Zhou, Z.Z.; Zhou, C.Q.; Chen, W.H. Synthesis and anticancer activities of 3-arylflavone-8-acetic acid derivatives. Eur. J. Med. Chem., 2015, 90, 251-257.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.030] [PMID: 25461325]
[40]
Shobeiri, N.; Rashedi, M.; Mosaffa, F.; Zarghi, A.; Ghandadi, M.; Ghasemi, A.; Ghodsi, R. Synthesis and biological evaluation of quinoline analogues of flavones as potential anticancer agents and tubulin polymerization inhibitors. Eur. J. Med. Chem., 2016, 114, 14-23.
[http://dx.doi.org/10.1016/j.ejmech.2016.02.069] [PMID: 26974371]
[41]
Thorat, N.M.; Sarkate, A.P.; Lokwani, D.K.; Tiwari, S.V.; Azad, R.; Thopate, S.R. N-Benzylation of 6-aminoflavone by reductive amination and efficient access to some novel anticancer agents via topoisomerase II inhibition. Mol. Divers., 2020, 1-2.
[PMID: 32249379]
[42]
Kozak, W.; Daśko, M.; Masłyk, M.; Kubiński, K.; Rachon, J.; Demkowicz, S. Steroid sulfatase inhibitors based on phosphate and thio-phosphate flavone analogs. Drug Dev. Res., 2015, 76(8), 450-462.
[http://dx.doi.org/10.1002/ddr.21281] [PMID: 26415657]
[43]
Walle, T.; Walle, U.K. Novel methoxylated flavone inhibitors of cytochrome P450 1B1 in SCC-9 human oral cancer cells. J. Pharm. Pharmacol., 2010, 59(6), 857-862.
[http://dx.doi.org/10.1211/jpp.59.6.0012] [PMID: 17637178]
[44]
Le Bail, J.C.; Pouget, C.; Fagnere, C.; Basly, J.P.; Chulia, A.J.; Habrioux, G. Chalcones are potent inhibitors of aromatase and 17β-hydroxysteroid dehydrogenase activities. Life Sci., 2001, 68(7), 751-761.
[http://dx.doi.org/10.1016/S0024-3205(00)00974-7] [PMID: 11205867]
[45]
Wagal, O.S.; Joshi, A.J.; Joshi, U.J.; Bhojwani, H.R.; Begwani, K.V.; Dawne, H.A.; Gude, R.P.; Sathaye, S.S.; Kanchan, D.M. Studies in molecular modeling, in-vitro CDK2 inhibition and antimetastatic activity of some synthetic flavones. Front. Biosci., 2021, 26(4), 664-681.
[http://dx.doi.org/10.2741/4911] [PMID: 33049687]
[46]
Silbermann, K.; Shah, C.P.; Sahu, N.U.; Juvale, K.; Stefan, S.M.; Kharkar, P.S.; Wiese, M. Novel chalcone and flavone derivatives as selective and dual inhibitors of the transport proteins ABCB1 and ABCG2. Eur. J. Med. Chem., 2019, 164, 193-213.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.019] [PMID: 30594677]
[47]
Yokoyama, T.; Kosaka, Y.; Mizuguchi, M. Structural insight into the interactions between death-associated protein kinase 1 and natural flavonoids. J. Med. Chem., 2015, 58(18), 7400-7408.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00893] [PMID: 26322379]
[48]
Gramatica, P.; Chirico, N.; Papa, E.; Kovarich, S.; Cassani, S. QSARINS: A new software for the development, analysis, and validation of QSAR MLR models. J. Comput. Chem., 2013, 34, 2121-2132.
[49]
Ravishankar, D.; Watson, K.A.; Greco, F.; Osborn, H.M.I. Novel synthesised flavone derivatives provide significant insight into the structural features required for enhanced anti-proliferative activity. RSC Advances, 2016, 6(69), 64544-64556.
[http://dx.doi.org/10.1039/C6RA11041J]
[50]
Akama, T.; Shida, Y.; Sugaya, T.; Ishida, H.; Gomi, K.; Kasai, M. Novel 5-aminoflavone derivatives as specific antitumor agents in breast cancer. J. Med. Chem., 1996, 39(18), 3461-3469.
[http://dx.doi.org/10.1021/jm950938g] [PMID: 8784443]
[51]
Al-Oudat, B.A.; Alqudah, M.A.; Audat, S.A.; Al-Balas, Q.A.; El-Elimat, T.; Hassan, M.A.; Frhat, I.N.; Azaizeh, M.M. Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Des. Devel. Ther., 2019, 13, 423-433.
[http://dx.doi.org/10.2147/DDDT.S189476] [PMID: 30774307]
[52]
Stompor, M.; Świtalska, M.; Wietrzyk, J. Synthesis and biological evaluation of acyl derivatives of hydroxyflavones as potent antiprolifer-ative agents against drug resistance cell lines. Z. Naturforsch. C J. Biosci., 2018, 73(1-2), 87-93.
[http://dx.doi.org/10.1515/znc-2017-0093] [PMID: 29116937]
[53]
Yap, C.W. PaDEL‐descriptor: An open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem., 2011, 32(7), 1466-1474.
[54]
Gramatica, P.; Cassani, S.; Chirico, N. QSARINS-chem: Insubria datasets and new QSAR/QSPR models for environmental pollutants in QSARINS. J. Comput. Chem., 2014, 35(13), 1036-1044.
[http://dx.doi.org/10.1002/jcc.23576] [PMID: 24599647]
[55]
Gramatica, P. On the development and validation of QSAR models. In: Computational toxicology; Humana Press: Totowa, NJ, 2013; pp. 499-526.
[http://dx.doi.org/10.1007/978-1-62703-059-5_21]
[56]
Chirico, N.; Sangion, A.; Gramatica, P.; Bertato, L.; Casartelli, I.; Papa, E. QSARINS ‐Chem standalone version: A new platform‐independent software to profile chemicals for physico‐chemical properties, fate, and toxicity. J. Comput. Chem., 2021, 42(20), 1452-1460.
[http://dx.doi.org/10.1002/jcc.26551] [PMID: 33973667]
[57]
Gramatica, P. External evaluation of QSAR models, in addition to cross‐validation: verification of predictive capability on totally new chemicals. Mol. Inform., 2014, 33(4), 311-314.
[http://dx.doi.org/10.1002/minf.201400030] [PMID: 27485777]
[58]
Gopinath, P.; Kathiravan, M.K. QSARand docking studies on Triazole Benzene Sulfonamides with human Carbonic anhydrase IX inhibitory activity. J. Chemom., 2019, 33(12), e3189.
[59]
Eriksson, L.; Jaworska, J.; Worth, A.P.; Cronin, M.T.D.; McDowell, R.M.; Gramatica, P. Methods for reliability and uncertainty assess-ment and for applicability evaluations of classification- and regression-based QSARs. Environ. Health Perspect., 2003, 111(10), 1361-1375.
[http://dx.doi.org/10.1289/ehp.5758] [PMID: 12896860]
[60]
Dimitrov, S.; Dimitrova, G.; Pavlov, T.; Dimitrova, N.; Patlewicz, G.; Niemela, J.; Mekenyan, O. A stepwise approach for defining the applicability domain of SAR and QSAR models. J. Chem. Inf. Model., 2005, 45(4), 839-849.
[http://dx.doi.org/10.1021/ci0500381] [PMID: 16045276]
[61]
Ekins, S.; Mestres, J.; Testa, B. In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. Br. J. Pharmacol., 2007, 152(1), 9-20.
[http://dx.doi.org/10.1038/sj.bjp.0707305] [PMID: 17549047]
[62]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]
[63]
Oprea, T.I.; Davis, A.M.; Teague, S.J.; Leeson, P.D. Is there a difference between leads and drugs? A historical perspective. J. Chem. Inf. Comput. Sci., 2001, 41(5), 1308-1315.
[http://dx.doi.org/10.1021/ci010366a] [PMID: 11604031]
[64]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3–25. 1. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[65]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr, 2002, 40(1), 82-92.
[66]
Banerjee, P.; Eckert, A.O.; Schrey, A.K.; Preissner, R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res., 2018, 46(W1), W257-W263.
[http://dx.doi.org/10.1093/nar/gky318] [PMID: 29718510]
[67]
Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol., 2015, 1263, 243-250.
[http://dx.doi.org/10.1007/978-1-4939-2269-7_19] [PMID: 25618350]
[68]
Ramalakshmi, N.; Manimegalai, P.; Bhandare, R.R.; Arun Kumar, S.; Shaik, A.B. 2D-Quantitative structure activity relationship (QSAR) modeling, docking studies, synthesis and in-vitro evaluation of 1,3,4-thiadiazole tethered coumarin derivatives as antiproliferative agents. J. Saudi Chem. Soc., 2021, 25(7), 101279.
[http://dx.doi.org/10.1016/j.jscs.2021.101279]
[69]
Ounthaisong, U.; Tangyuenyongwatana, P. Cross-docking study of flavonoids against tyrosinase enzymes using PyRx 0.8 virtual screening tool. Conference: The JSPS-NRCT Follow-Up Seminar, 2017, 2017, p. 41.
[70]
Sharma, S.; Kumar, P.; Chandra, R.; Singh, S.P.; Mandal, A.; Dondapati, R.S. Overview of BIOVIA materials studio, LAMMPS, and GROMACS. In: Molecular Dynamics Simulation of Nanocomposites using BIOVIA Materials Studio, Lammps and Gromacs; Elsevier: Amsterdam, Netherlands, 2019; pp. 39-100.
[71]
Hadda, T.B.; Rastija, V.; AlMalki, F.; Titi, A.; Touzani, R.; Mabkhot, Y.N.; Khalid, S.; Zarrouk, A.; Siddiqui, B.S. Petra/Osiris/Molinspiration and Molecular Docking Analyses of 3-Hydroxy-Indolin-2-one Derivatives as Potential Antiviral Agents. Curr. Computeraided Drug Des., 2021, 17(1), 123-133.
[http://dx.doi.org/10.2174/1573409916666191226110029] [PMID: 31878861]
[72]
Patel, S.; Shah, U.H. Synthesis of Flavones from 2-Hydroxy Acetophenone and aromatic aldehyde derivatives by conventional methods and green chemistry approach. Asian J. Pharm. Clin. Res., 2017, 10(2), 403-406.
[http://dx.doi.org/10.22159/ajpcr.2017.v10i2.15928]
[73]
Remya, R.S.; Ramalakshmi, N.; Nalini, C.N.; Niraimathi, V.; Amuthalakshmi, S. Design Synthesis and in-vitro Evaluation of Tacrine-flavone Hybrids as Multifunctional Cholinesterase Inhibitors for Alzheimer’s Disease. Curr. Computeraided Drug Des., 2022, 18(4), 271-292.
[http://dx.doi.org/10.2174/1573409918666220804153754] [PMID: 35927818]
[74]
Razak, N.A.; Abu, N.; Ho, W.Y.; Zamberi, N.R.; Tan, S.W.; Alitheen, N.B.; Long, K.; Yeap, S.K. Cytotoxicity of eupatorin in MCF-7 and MDA-MB-231 human breast cancer cells via cell cycle arrest, anti-angiogenesis and induction of apoptosis. Sci. Rep., 2019, 9(1), 1514.
[http://dx.doi.org/10.1038/s41598-018-37796-w] [PMID: 30728391]
[75]
Ahmadian, S.; Barar, J.; Saei, A.A.; Fakhree, M.A.A.; Omidi, Y. Cellular toxicity of nanogenomedicine in MCF-7 cell line: MTT assay. J. Vis. Exp., 2009, 3(26), e1191.
[http://dx.doi.org/10.3791/1191-v] [PMID: 19352311]
[76]
Lobo, R.; Kumar, N.; Maheshwari, R.; Shreedhara, C.S.; Sodde, V.K. Cytotoxic activity of Macrosolen parasiticus (L.) Danser on the growth of breast cancer cell line (MCF-7). Pharmacogn. Mag., 2015, 11(42), 156.
[http://dx.doi.org/10.4103/0973-1296.157719] [PMID: 26109761]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy