Generic placeholder image

Current Bioactive Compounds

Editor-in-Chief

ISSN (Print): 1573-4072
ISSN (Online): 1875-6646

Research Article

Cardiovascular Protective Effect of Lignan Glycosides of Plumeria rubra Leaves

Author(s): Kandasamy Nagarajana, Nayla Khan, Roma Ghai, Parul Grover, Garima Kapoor* and Md Shamshir Alam

Volume 19, Issue 10, 2023

Published on: 03 July, 2023

Article ID: e220523217147 Pages: 10

DOI: 10.2174/1573407219666230522103847

Price: $65

Abstract

Introduction: Cardiovascular disorders are the most prevalent and life-threatening conditions affecting human beings. Therefore, this study aimed to assess the cardioprotective effect of P. rubra leaves.

Aim: Plumeria rubra L. has been used for ages in alternative/traditional systems of medicine for several conditions, such as arthritis, toothache, pruritus, asthma, dysuria, gonorrhoea, diabetes, and various types of inflammation.

Methods: Acute toxicity studies were performed using OECD 423 guidelines, and cardiomyopathy was induced in Wistar albino rats through an intraperitoneal injection of doxorubicin hydrochloride. Different groups were established to study the efficacy of doxorubicin-treated P. rubra leaf extract for 7 days. Blood pressure of both systolic and diastolic was recorded with noninvasive blood pressure apparatus, and the mean was considered. Biochemical parameters were analysed for serum and tissue homogenate viz. lactate dehydrogenase (LDH), thiobarbituric acid reactive substance (TBARS), reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT).

Results: The LD50 cut-off range for the leaf extract was found to be 2,000 mg/kg body weight. P. rubra leaf extract prevented the increase in heart rate (364.8 BPM) and mean blood pressure (122.24 mmHg) and demonstrated good results as an antihypertensive agent. The treatment with the extract was also found to revert the oxidative stress levels, as depicted by the MDA, SOD, and catalase levels in heart tissue in treated rats.

Conclusion: P. rubra leaf extract at a higher dose (200 mg/kg) exerted a compelling cardioprotective action against cardiomyopathy induced by doxorubicin in Wistar rats due to the presence of lignan glycoside, liriodendrin.

Graphical Abstract

[1]
Heinrich, M.; Barnes, J.; Gibbons, S.; Williamson, E.M. Fundamentals of Pharmacognosy and Phytotherapy, 2nd ed; Elsevier Churchill Livingstone: Edinburgh, 2012, pp. 166-219.
[2]
Bihani, T. Plumeria rubra L.– A review on its ethnopharmacological, morphological, phytochemical, pharmacological and toxicological studies. J. Ethnopharmacol., 2021, 264, 113291.
[http://dx.doi.org/10.1016/j.jep.2020.113291] [PMID: 32841700]
[3]
Khan, I.A.; Hussain, M.; Syed, S.K.; Saadullah, M.; Alqahtani, A.M.; Alqahtani, T.; Aldahish, A.A.; Asiri, S.; Zeng, L.H. Pharmacological Justification for the Medicinal Use of Plumeria rubra Linn. in Cardiovascular Disorders. Molecules, 2021, 27(1), 251.
[http://dx.doi.org/10.3390/molecules27010251] [PMID: 35011482]
[4]
Kapoor, G.; Bhutani, R.; Pathak, D.P.; Chauhan, G.; Kant, R. Grover, P Kandasamy Nagarajan, K.; Siddiqui, S.A. Current Advancement in the Oxadiazole-Based Scaffolds as Anticancer Agents. Polycyclic. Aromatic. Compdounds., 2022, 42(7), 4183-4215.
[http://dx.doi.org/10.1080/10406638.2021.1886123]
[5]
Grover, P.; Mehta, L.; Malhotra, A.; Kapoor, G.; Nagarajan, K.; Kumar, P.; Chawla, V.; Chawla, P.A. Exploring the Multitarget Potential of Iridoids: Advances and Applications. Curr. Top. Med. Chem., 2023, 23(5), 371-388.
[http://dx.doi.org/10.2174/1568026623666221222142217]
[6]
Kardono, L.B.S.; Tsauri, S.; Padmawinata, K.; Pezzuto, J.M.; Kinghorn, A.D. Cytotoxic constituents of the bark of Plumeria rubra collected in Indonesia. J. Nat. Prod., 1990, 53(6), 1447-1455.
[http://dx.doi.org/10.1021/np50072a008] [PMID: 1965200]
[7]
Patil, C.D.; Patil, S.V.; Borase, H.P.; Salunke, B.K.; Salunkhe, R.B. Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol. Res., 2012, 110(5), 1815-1822.
[http://dx.doi.org/10.1007/s00436-011-2704-x] [PMID: 22089086]
[8]
Hamburger, M.O.; Cordell, G.A.; Ruangrungsi, N. Traditional medicinal plants of Thailand XVII Biologically active constituents of Plumeria rubra. J. Ethnopharmacol., 1991, 33(3), 289-292.
[http://dx.doi.org/10.1016/0378-8741(91)90091-Q] [PMID: 1921428]
[9]
Kuigoua, G.; Kouam, S.; Ngadjui, B.; Schulz, B.; Green, I.; Choudhary, M.; Krohn, K. Minor secondary metabolic products from the stem bark of Plumeria rubra Linn. displaying antimicrobial activities. Planta Med., 2010, 76(6), 620-625.
[http://dx.doi.org/10.1055/s-0029-1240611] [PMID: 19937550]
[10]
Banu Rekha, J.; Jayakar, B. Anticancer activity of ethanolic extract of leaves of Plumeria rubra (Linn). Curr. Pharm. Res., 2011, 1(2), 175-179.
[http://dx.doi.org/10.33786/JCPR.2011.v01i02.015]
[11]
Ramproshad, S.; Afroz, T.; Mondal, B.; Khan, R.; Ahmed, S. Screening of phytochemical and pharmacological activities of leaves of medicinal plant Plumeria rubra. Int. J. Res. Pharm. Chem., 2012, 2(4), 1001-1007.
[12]
Hafizur, R.; Vijaya, B.R.; Saumya, G.; Sandeep Kumar, M.; Geetika, P.; Sibi, G. Antioxidant, cytotoxic and hypolipidemic activities of Plumeria alba L. and Plumeria rubra L. Am. J. Life Sci., 2014, 2(4), 11-15.
[13]
Merina, A.J.; Sivanesan, D.; Begum, V.H.; Sulochana, N. Antioxidant and hypolipidemic effect of Plumeria rubra L. in alloxan induced hyperglycemic rats. E-J. Chem., 2010, 7(1), 1-5.
[http://dx.doi.org/10.1155/2010/576704]
[14]
Bacar, J.N.B.; Tan, M.C.S.; Shen, C.; Ragasa, C.Y. Triterpenes from Plumeria rubra L. flowers. Int. J. Pharmacog. Phytochem. Res., 2017, 9(2), 248-252.
[15]
Chaudhary, M.; Kumar, V.; Singh, S. Phytochemical and pharmacological activity of genus Plumeria: An updated review. Int. J. Biol. Adv. Res., 2014, 5(6), 266-271.
[16]
Jinwu, S.U. Feed for preventing pig cold. Patent 106974091, 2017.
[17]
Jiang, C.; Iwaisako, K.; Cong, M.; Diggle, K.; Hassanein, T.; Brenner, D.A.; Kisseleva, T. Traditional Chinese Medicine Fuzheng Huayu Prevents Development of Liver Fibrosis in Mice. Arch. Clin. Biomed. Res., 2020, 4(5), 561-580.
[http://dx.doi.org/10.26502/acbr.50170125]
[18]
Douglass, J.A.; O’Hehir, R.E. Diagnosis, treatment and prevention of allergic disease: the basics. Med. J. Aust., 2006, 185(4), 228-233.
[http://dx.doi.org/10.5694/j.1326-5377.2006.tb00539.x]
[19]
Hye, H.E. Cosmetic composition containing Frangipani oil or fermented frangipani oil.,
[20]
Harborne, J.B. Methods of Plant Analysis. In: Phytochemical Methods; Springer: Dordrecht, 1984; pp. 1-36.
[http://dx.doi.org/10.1007/978-94-009-5570-7_1]
[21]
OECD Guidance Document on Acute Oral Toxicity. Environmental Health and Safety Monograph Series on Testing and Assessment No 24., 2000, 1-14.
[22]
Ribezzo, S.; Spina, E.; Di Bartolomeo, S.; Sanson, G. Noninvasive techniques for blood pressure measurement are not a reliable alternative to direct measurement: a randomized crossover trial in ICU. ScientificWorldJournal, 2014, 353628
[http://dx.doi.org/10.1155/2014/353628]
[23]
Bergmeyer, H.U. Methods of Enzymatic analysis, 1st ed; Academic Press New York, 1965.
[24]
Sedlak, J.; Lindsay, R.H. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal. Biochem., 1968, 25(1), 192-205.
[http://dx.doi.org/10.1016/0003-2697(68)90092-4] [PMID: 4973948]
[25]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95(2), 351-358.
[http://dx.doi.org/10.1016/0003-2697(79)90738-3] [PMID: 36810]
[26]
Marklund, S.; Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem., 1974, 47(3), 469-474.
[http://dx.doi.org/10.1111/j.1432-1033.1974.tb03714.x] [PMID: 4215654]
[27]
Claiborne, A. CRC Handbook of Methods for Oxygen Radical Research, 1st ed; CRC Press: Boca Raton, 1985.
[28]
Kumar Singh, B.; Pathan, R.A.; Pillai, K.K.; Haque, S.E.; Dubey, K. Diclofenac sodium, a nonselective nonsteroidal anti-inflammatory drug aggravates doxorubicin-induced cardiomyopathy in rats. J. Cardiovasc. Pharmacol., 2010, 55(2), 139-144.
[http://dx.doi.org/10.1097/FJC.0b013e3181c87e17] [PMID: 19920767]
[29]
Rashikh, A.; Pillai, K.K.; Ahmad, S.J.; Akhtar, M.; Najmi, A.K. Aliskiren alleviates doxorubicin-induced nephrotoxicity by inhibiting oxidative stress and podocyte injury. J. Renin Angiotensin Aldosterone Syst., 2013, 14(1), 14-22.
[http://dx.doi.org/10.1177/1470320312459980] [PMID: 23060472]
[30]
Singal, P.K.; Iliskovic, N. Doxorubicin-induced cardiomyopathy. N. Engl. J. Med., 1998, 339(13), 900-905.
[http://dx.doi.org/10.1056/NEJM199809243391307] [PMID: 9744975]
[31]
Goto, T.; Takase, H.; Toriyama, T.; Sugiura, T.; Sato, K.; Ueda, R.; Dohi, Y. Circulating concentrations of cardiac proteins indicate the severity of congestive heart failure. Br. Heart J., 2003, 89(11), 1303-1307.
[http://dx.doi.org/10.1136/heart.89.11.1303] [PMID: 14594884]
[32]
Matsui, H.; Morishima, I.; Numaguchi, Y.; Toki, Y.; Okumura, K.; Hayakawa, T. Protective effects of carvedilol against doxorubicin-induced cardiomyopathy in rats. Life Sci., 1999, 65(12), 1265-1274.
[http://dx.doi.org/10.1016/S0024-3205(99)00362-8] [PMID: 10503942]
[33]
Kelishomi, R.B.; Ejtemaeemehr, S.; Tavangar, S.M.; Rahimian, R.; Mobarakeh, J.I.; Dehpour, A.R. Morphine is protective against doxorubicin-induced cardiotoxicity in rat. Toxicology, 2008, 243(1-2), 96-104.
[http://dx.doi.org/10.1016/j.tox.2007.09.026] [PMID: 17988779]
[34]
Yilmaz, S.; Atessahin, A.; Sahna, E.; Karahan, I.; Ozer, S. Protective effect of lycopene on adriamycin-induced cardiotoxicity and nephrotoxicity. Toxicology, 2006, 218(2-3), 164-171.
[http://dx.doi.org/10.1016/j.tox.2005.10.015] [PMID: 16325981]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy