Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Redox-responsive Nanomicelles with Intracellular Targeting and Programmable Drug Release for Targeted Tumor Therapy

Author(s): Yaxin Yang, Wei Shi, Ziyi Zhang, Fawu Gong, Xuman Feng, Chenxi Guo, Yajuan Qi and Zhanjun Liu*

Volume 21, Issue 2, 2024

Published on: 15 June, 2023

Page: [295 - 307] Pages: 13

DOI: 10.2174/1567201820666230515111328

Price: $65

Abstract

Introduction: Anti-inflammatory medications, in particular aspirin, have chemopreventive and anticancer adjuvant effects on specific types of cancers, according to ongoing anti-tumor research. Additionally, efforts have been made to transform Poly(salicylic acid) (PSA) into delivery-related nanocarriers. to transport anticancer medications into nanocarriers. However, tumor cell targeting and tumor selectivity were lacking in the salicylic acid polymer-based nanocarriers, preventing them from performing to their full potential.

Objective: The objective of this study is to prepare targeting and reduction-responsive poly pre-drug nanocarriers (HA-ss-PSA NPs) and to investigate the feasibility of delivering adriamycin (DOX) as nanocarriers.

Methods: The structures of the polymers were confirmed by nuclear magnetic resonance hydrogen spectroscopy (1H-NMR) and infrared spectroscopy (IR); the encapsulation rate and drug loading of DOX-loaded nanoparticles were determined by HPLC; and the anti-tumor effects of the carriers were evaluated by MTT experiments and in vivo experiments.

Results: The prepared nanocarriers had uniform particle size distribution. The drug release rate was up to 80% within 48 h in the tumor environment. DOX/HA-ss-PSA NPs showed significant cytostatic effects. In addition, HA-ss-PSA NPs showed significant targeting and inhibition of cell migration in cell uptake and scratch assays. In vivo experiments showed that the prepared carriers had high tumor inhibition rates, good targeting effects on the liver and tumor, and significantly reduced toxicity to other tissues.

Conclusion: The prepared HA-ss-PSA NPs could effectively inhibit the growth of HepG2 cells and tumors in vivo, indicating that PSA could be used as a backbone component of a safe and reliable drug delivery system, providing a new strategy for the treatment of liver cancer.

« Previous
Graphical Abstract

[1]
Yi, X.; Zhao, D.; Zhang, Q.; Xu, J.; Yuan, G.; Zhuo, R.; Li, F. A co-delivery system based on a reduction-sensitive polymeric prodrug capable of loading hydrophilic and hydrophobic drugs for combination chemotherapy. Polym. Chem., 2016, 7(38), 5966-5977.
[http://dx.doi.org/10.1039/C6PY00900J]
[2]
Krishnan, V.; Dharamdasani, V.; Bakre, S.; Dhole, V.; Wu, D.; Budnik, B.; Mitragotri, S. Hyaluronic Acid Nanoparticles for Immunogenic Chemotherapy of Leukemia and T-Cell Lymphoma. Pharmaceutics, 2022, 14(2), 466.
[http://dx.doi.org/10.3390/pharmaceutics14020466] [PMID: 35214193]
[3]
Joung, Y.K.; Jang, J.Y.; Choi, J.H.; Han, D.K.; Park, K.D. Heparin-conjugated pluronic nanogels as multi-drug nanocarriers for combination chemotherapy. Mol. Pharm., 2013, 10(2), 685-693.
[http://dx.doi.org/10.1021/mp300480v] [PMID: 23237335]
[4]
Zhang, P.; Li, J.; Ghazwani, M.; Zhao, W.; Huang, Y.; Zhang, X.; Venkataramanan, R.; Li, S. Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. Biomaterials, 2015, 67, 104-114.
[http://dx.doi.org/10.1016/j.biomaterials.2015.07.027] [PMID: 26210177]
[5]
Han, L.; Hu, L.; Liu, F.; Wang, X.; Huang, X.; Liu, B.; Feng, F.; Liu, W.; Qu, W. Redox-sensitive micelles for targeted intracellular delivery and combination chemotherapy of paclitaxel and all-trans-retinoid acid. Asian J Pharmaceut Sci., 2019, 14(5), 531-542.
[http://dx.doi.org/10.1016/j.ajps.2018.08.009] [PMID: 32104480]
[6]
Chai, Z.; Teng, C.; Yang, L.; Ren, L.; Yuan, Z.; Xu, S.; Cheng, M.; Wang, Y.; Yan, Z.; Qin, C.; Han, X.; Yin, L. Doxorubicin delivered by redox-responsive Hyaluronic Acid–Ibuprofen prodrug micelles for treatment of metastatic breast cancer. Carbohydr. Polym., 2020, 245, 116527.
[http://dx.doi.org/10.1016/j.carbpol.2020.116527] [PMID: 32718631]
[7]
You, X.; Wang, L.; Wang, L.; Wu, J. Rebirth of aspirin Synthesis By‐Product: Prickly Poly(salicylic acid) nanoparticles as self‐anticancer drug carrier. Adv. Funct. Mater., 2021, 31(33), 2100805.
[http://dx.doi.org/10.1002/adfm.202100805]
[8]
Zheng, Y.; You, X.; Guan, S.; Huang, J.; Wang, L.; Zhang, J.; Wu, J. Poly(Ferulic Acid) with an anticancer effect as a drug nanocarrier for enhanced colon cancer therapy. Adv. Funct. Mater., 2019, 29(15), 1808646.
[http://dx.doi.org/10.1002/adfm.201808646]
[9]
Ou, K.; Xu, X.; Guan, S.; Zhang, R.; Zhang, X.; Kang, Y.; Wu, J. Nanodrug carrier based on Poly(Ursolic Acid) with self‐anticancer activity against colorectal cancer. Adv. Funct. Mater., 2020, 30(9), 1907857.
[http://dx.doi.org/10.1002/adfm.201907857]
[10]
Feng, Z.; Guo, J.; Liu, X.; Song, H.; Zhang, C.; Huang, P.; Dong, A.; Kong, D.; Wang, W. Cascade of reactive oxygen species generation by polyprodrug for combinational photodynamic therapy. Biomaterials, 2020, 255, 120210.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120210] [PMID: 32592871]
[11]
Zhang, X.; Duan, X.; Hu, Y.; Tang, Z.; Miao, C.; Tao, W.; Wu, J. One-step and facile synthesis of peptide-like poly(melphalan) nanodrug for cancer therapy. Nano Today, 2021, 37, 101098.
[http://dx.doi.org/10.1016/j.nantod.2021.101098]
[12]
Luo, J.; Zhang, S.; Zhu, P.; Liu, W.; Du, J. Fabrication of pH/Redox dual-responsive mixed polyprodrug micelles for improving cancer chemotherapy. Front. Pharmacol., 2022, 12, 802785.
[http://dx.doi.org/10.3389/fphar.2021.802785] [PMID: 35185545]
[13]
Xiao, X.; Wang, K.; Zong, Q.; Tu, Y.; Dong, Y.; Yuan, Y. Polyprodrug with glutathione depletion and cascade drug activation for multi-drug resistance reversal. Biomaterials, 2021, 270, 120649.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120649] [PMID: 33588139]
[14]
Zhang, X.; Zhang, T.; Ma, X.; Wang, Y.; Lu, Y.; Jia, D.; Huang, X.; Chen, J.; Xu, Z.; Wen, F. The design and synthesis of dextran-doxorubicin prodrug-based pH-sensitive drug delivery system for improving chemotherapy efficacy. Asian J Pharmaceut Sci, 2020, 15(5), 605-616.
[http://dx.doi.org/10.1016/j.ajps.2019.10.001] [PMID: 33193863]
[15]
Wang, Y.S.; Li, G.L.; Zhu, S.B.; Jing, F.C.; Liu, R.D.; Li, S.S.; He, J.; Lei, J.D. A Self-assembled Nanoparticle Platform Based on Amphiphilic Oleanolic Acid Polyprodrug for Cancer Therapy. Chin. J. Polym. Sci., 2020, 38(8), 819-829.
[http://dx.doi.org/10.1007/s10118-020-2401-2]
[16]
Chen, D.; Huang, Y.; Xu, S.; Jiang, H.; Wu, J.; Jin, X.; Zhu, X. Self-assembled polyprodrug amphiphile for subcutaneous xenograft tumor inhibition with prolonged acting time in vivo. Macromol. Biosci., 2017, 17(11), 1700174.
[http://dx.doi.org/10.1002/mabi.201700174] [PMID: 28737832]
[17]
Bildstein, L.; Dubernet, C.; Couvreur, P. Prodrug-based intracellular delivery of anticancer agents. Adv. Drug Deliv. Rev., 2011, 63(1-2), 3-23.
[http://dx.doi.org/10.1016/j.addr.2010.12.005] [PMID: 21237228]
[18]
Said-Elbahr, R.; Nasr, M.; Alhnan, M.A.; Taha, I.; Sammour, O. Nebulizable colloidal nanoparticles co-encapsulating a COX-2 inhibitor and a herbal compound for treatment of lung cancer. Eur. J. Pharm. Biopharm., 2016, 103, 1-12.
[http://dx.doi.org/10.1016/j.ejpb.2016.03.025] [PMID: 27020529]
[19]
Gulyas, M.; Mattsson, J.S.M.; Lindgren, A.; Ek, L.; Lamberg Lundström, K.; Behndig, A.; Holmberg, E.; Micke, P.; Bergman, B. COX-2 expression and effects of celecoxib in addition to standard chemotherapy in advanced non-small cell lung cancer. Acta Oncol., 2018, 57(2), 244-250.
[http://dx.doi.org/10.1080/0284186X.2017.1400685] [PMID: 29140138]
[20]
Takakura, H.; Horinaka, M.; Imai, A.; Aono, Y.; Nakao, T.; Miyamoto, S.; Iizumi, Y.; Watanabe, M.; Narita, T.; Ishikawa, H.; Mutoh, M.; Sakai, T. Sodium salicylate and 5-aminosalicylic acid synergistically inhibit the growth of human colon cancer cells and mouse intestinal polyp-derived cells. J. Clin. Biochem. Nutr., 2022, 70(2), 93-102.
[http://dx.doi.org/10.3164/jcbn.21-74] [PMID: 35400827]
[21]
Mikhnavets, L.; Abashkin, V.; Khamitsevich, H.; Shcharbin, D.; Burko, A.; Krekoten, N.; Radziuk, D. Ultrasonic formation of Fe 3 O 4 -Reduced Graphene Oxide–Salicylic Acid Nanoparticles with switchable antioxidant function. ACS Biomater. Sci. Eng., 2022, 8(3), 1181-1192.
[http://dx.doi.org/10.1021/acsbiomaterials.1c01603] [PMID: 35226462]
[22]
Zitta, K.; Meybohm, P.; Bein, B.; Huang, Y.; Heinrich, C.; Scholz, J.; Steinfath, M.; Albrecht, M. Salicylic acid induces apoptosis in colon carcinoma cells grown in-vitro: Influence of oxygen and salicylic acid concentration. Exp. Cell Res., 2012, 318(7), 828-834.
[http://dx.doi.org/10.1016/j.yexcr.2012.02.002] [PMID: 22342953]
[23]
Wang, Z.; Xu, Y.; Wu, G.; Zuo, T.; Zhang, J.; Yang, J.; Yang, Y.; Fang, T.; Shen, Q. Dual-Responsive and Deep-Penetrating nanomicelles for tumor therapy via.Extracellular matrix degradation and oxidative stress. ACS Biomater. Sci. Eng., 2021, 7(1), 166-179.
[http://dx.doi.org/10.1021/acsbiomaterials.0c01394] [PMID: 33372514]
[24]
Xia, D.; Wang, F.; Pan, S.; Yuan, S.; Liu, Y.; Xu, Y. Redox/pH-Responsive biodegradable Thiol-Hyaluronic Acid/Chitosan Charge-Reversal Nanocarriers for triggered drug release. Polymers, 2021, 13(21), 3785.
[http://dx.doi.org/10.3390/polym13213785] [PMID: 34771342]
[25]
Wang, W.; Zhang, X.; Li, Z.; Pan, D.; Zhu, H.; Gu, Z.; Chen, J.; Zhang, H.; Gong, Q.; Luo, K. Dendronized hyaluronic acid-docetaxel conjugate as a stimuli-responsive nano-agent for breast cancer therapy. Carbohydr. Polym., 2021, 267, 118160.
[http://dx.doi.org/10.1016/j.carbpol.2021.118160] [PMID: 34119134]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy