Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Cyclophosphamide Loading and Controlled Release in MIL-100(Fe) as an Anti-breast Cancer Carrier: In vivo In vitro Study

Author(s): Shabnam Tohidi and Mehrdad Aghaie-Khafri*

Volume 21, Issue 2, 2024

Published on: 18 April, 2023

Page: [283 - 294] Pages: 12

DOI: 10.2174/1567201820666230410120437

Price: $65

Abstract

Background: Biocompatible MIL-100 (Fe), a metal organic framework material, has recently attracted increasing attention in biomedical engineering. The high surface area, pore volume, and accessible Lewis acid sites make MIL-100 (Fe) a proper candidate for hydrophobic anticancer drug loading and storage. In this study, a novel investigation of cyclophosphamide (CP) -loaded MIL-100(Fe) (MIL- 100(Fe)/CP) and a simulation of drug loading at a molecular level is presented.

Methods: This research used a facile synthesis method to prepare MIL-100(Fe), which addresses the high temperature and pressure challenges of synthesis methods. MIL-100(Fe) and MIL-100(Fe)/CP were characterized using x-ray diffraction (XRD), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), and field emission scanning electron microscopy (FESEM).

Results: The carriers' drug loading and release behavior are determined by using UV-visible spectrophotometry. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay is applied to examine the biocompatibility and the anticancer effect of MIL-100(Fe)/CP on the human breast cancer cell line (MCF-7).

Conclusion: In vivo antitumor experiments and histological observation reveal inhibition properties of MIL-100(Fe)/CP on the tumor cells. MIL-100(Fe)/CP, with 37.41% drug payload, represents impressive antitumor activity.

Graphical Abstract

[1]
Heron, M. National vital statistics reports. Natl. Vital Stat. Rep., 2009, 57(14), 1-134.
[PMID: 19788058]
[2]
Wagner, V.; Dullaart, A.; Bock, A.K.; Zweck, A. The emerging nanomedicine landscape. Nat. Biotechnol., 2006, 24(10), 1211-1217.
[http://dx.doi.org/10.1038/nbt1006-1211] [PMID: 17033654]
[3]
Bao, G.; Mitragotri, S.; Tong, S. Multifunctional nanoparticles for drug delivery and molecular imaging. Annu. Rev. Biomed. Eng., 2013, 15(1), 253-282.
[http://dx.doi.org/10.1146/annurev-bioeng-071812-152409] [PMID: 23642243]
[4]
Novio, F.; Simmchen, J. Vázquez-Mera, N.; Amorín-Ferré, L.; Ruiz-Molina, D. Coordination polymer nanoparticles in medicine. Coord. Chem. Rev., 2013, 257(19-20), 2839-2847.
[http://dx.doi.org/10.1016/j.ccr.2013.04.022]
[5]
Shen, J.; Zhao, L.; Han, G. Lanthanide-doped upconverting luminescent nanoparticle platforms for optical imaging-guided drug delivery and therapy. Adv. Drug Deliv. Rev., 2013, 65(5), 744-755.
[http://dx.doi.org/10.1016/j.addr.2012.05.007] [PMID: 22626980]
[6]
Sostres, C.; Gargallo, C.J.; Arroyo, M.T.; Lanas, A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol., 2010, 24(2), 121-132.
[http://dx.doi.org/10.1016/j.bpg.2009.11.005] [PMID: 20227026]
[7]
Torchilin, V.P. Recent advances with liposomes as pharmaceutical carriers. Nat. Rev. Drug Discov., 2005, 4(2), 145-160.
[http://dx.doi.org/10.1038/nrd1632] [PMID: 15688077]
[8]
Lu, J. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 2007, 3(8), 1341-1346.
[http://dx.doi.org/10.1002/smll.200700005]
[9]
Peralta, M.E.; Jadhav, S.A.; Magnacca, G.; Scalarone, D. Mártire, D.O.; Parolo, M.E.; Carlos, L. Synthesis and in vitro testing of thermoresponsive polymer-grafted core-shell magnetic mesoporous silica nanoparticles for efficient controlled and targeted drug delivery. J. Colloid Interface Sci., 2019, 544, 198-205.
[http://dx.doi.org/10.1016/j.jcis.2019.02.086] [PMID: 30844568]
[10]
Costa, J.V.; Portugal, J.; Neves, C.B.; Bettencourt, A.F. Should local drug delivery systems be used in dentistry? Drug Deliv. Transl. Res., 2022, 12(6), 1395-1407.
[http://dx.doi.org/10.1007/s13346-021-01053-x] [PMID: 34545538]
[11]
Sun, T.; Zhang, Y.S.; Pang, B.; Hyun, D.C.; Yang, M.; Xia, Y. Engineered nanoparticles for drug delivery in cancer therapy. Angew. Chem. Int. Ed., 2014, 53(46), n/a.
[http://dx.doi.org/10.1002/anie.201403036] [PMID: 25294565]
[12]
Das, S.; Kaur, S.; Rai, V.K. Gastro-retentive drug delivery systems: A recent update on clinical pertinence and drug delivery. Drug Deliv. Transl. Res., 2021, 11(5), 1849-1877.
[http://dx.doi.org/10.1007/s13346-020-00875-5] [PMID: 33403646]
[13]
He, C.; Liu, D.; Lin, W. Nanomedicine applications of hybrid nanomaterials built from metal–ligand coordination bonds: nanoscale metal–organic frameworks and nanoscale coordination polymers. Chem. Rev., 2015, 115(19), 11079-11108.
[http://dx.doi.org/10.1021/acs.chemrev.5b00125] [PMID: 26312730]
[14]
Li, Z. Yang, G.; Wang, R.; Wang, Y.; Wang, J.; Yang, M.; Gong, C.; Yuan, Y. γ-Cyclodextrin metal–organic framework as a carrier to deliver triptolide for the treatment of hepatocellular carcinoma. Drug Deliv. Transl. Res., 2022, 12(5), 1096-1104.
[http://dx.doi.org/10.1007/s13346-021-00978-7] [PMID: 33860448]
[15]
He, C.; Lu, K.; Liu, D.; Lin, W. Nanoscale metal-organic frameworks for the co-delivery of cisplatin and pooled siRNAs to enhance therapeutic efficacy in drug-resistant ovarian cancer cells. J. Am. Chem. Soc., 2014, 136(14), 5181-5184.
[http://dx.doi.org/10.1021/ja4098862] [PMID: 24669930]
[16]
Zirak Hassan Kiadeh, S.; Ghaee, A.; Farokhi, M.; Nourmohammadi, J.; Bahi, A.; Ko, F.K. Electrospun pectin/modified copper-based metal–organic framework (MOF) nanofibers as a drug delivery system. Int. J. Biol. Macromol., 2021, 173, 351-365.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.01.058] [PMID: 33450340]
[17]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[18]
Horcajada, P.; Surblé, S.; Serre, C.; Hong, D.Y.; Seo, Y.K.; Chang, J.S.; Grenèche, J.M.; Margiolaki, I.; Férey, G. Synthesis and catalytic properties of MIL-100(Fe), an iron(III) carboxylate with large pores. Chem. Commun., 2007, (27), 2820-2822.
[http://dx.doi.org/10.1039/B704325B] [PMID: 17609787]
[19]
Bezverkhyy, I.; Weber, G.; Bellat, J.P. Degradation of fluoride-free MIL-100(Fe) and MIL-53(Fe) in water: Effect of temperature and pH. Microporous Mesoporous Mater., 2016, 219, 117-124.
[http://dx.doi.org/10.1016/j.micromeso.2015.07.037]
[20]
Erucar, I.; Keskin, S. Efficient storage of drug and cosmetic molecules in biocompatible metal organic frameworks: A molecular simulation study. Ind. Eng. Chem. Res., 2016, 55(7), 1929-1939.
[http://dx.doi.org/10.1021/acs.iecr.5b04556]
[21]
Shi, J. Synthesis of MIL-100 (Fe) at low temperature and atmospheric pressure. J. Chem., 2013, 2013
[22]
Quijia, C.R. Application of MIL-100 (Fe) in drug delivery and biomedicine. J. Drug Deliv. Sci. Technol., 2020, 102217.
[23]
Sağir, T.; Huysal, M.; Durmus, Z.; Kurt, B.Z.; Senel, M.; Isık, S. Preparation and in vitro evaluation of 5-flourouracil loaded magnetite–zeolite nanocomposite (5-FU-MZNC) for cancer drug delivery applications. Biomed. Pharmacother., 2016, 77, 182-190.
[http://dx.doi.org/10.1016/j.biopha.2015.12.025] [PMID: 26796283]
[24]
Chabner, B.A.; Longo, D.L. Cancer chemotherapy and biotherapy: principles and practice; Lippincott Williams & Wilkins, 2011.
[25]
Varshney, L.; Dodke, P.B. Radiation effect studies on anticancer drugs, cyclophosphamide and doxorubicin for radiation sterilization. Radiat. Phys. Chem., 2004, 71(6), 1103-1111.
[http://dx.doi.org/10.1016/j.radphyschem.2003.12.052]
[26]
Short, R.; Gibson, J. Protein half-lives in neonatal mice after a toxic dose of cyclophosphamide. Experientia, 1974, 30(4), 397-399.
[http://dx.doi.org/10.1007/BF01921685] [PMID: 4837627]
[27]
Katiyar, R.S.; Jha, P.K. Molecular simulations in drug delivery: Opportunities and challenges. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2018, 8(4), e1358.
[http://dx.doi.org/10.1002/wcms.1358]
[28]
Cunha, D.; Ben Yahia, M.; Hall, S.; Miller, S.R.; Chevreau, H.; Elkaïm, E.; Maurin, G.; Horcajada, P.; Serre, C. Rationale of drug encapsulation and release from biocompatible porous metal–organic frameworks. Chem. Mater., 2013, 25(14), 2767-2776.
[http://dx.doi.org/10.1021/cm400798p]
[29]
Strzempek, W.; Menaszek, E.; Gil, B. Fe-MIL-100 as drug delivery system for asthma and chronic obstructive pulmonary disease treatment and diagnosis. Microporous Mesoporous Mater., 2019, 280, 264-270.
[http://dx.doi.org/10.1016/j.micromeso.2019.02.018]
[30]
Guesh, K.; Caiuby, C.A.D. Mayoral, Á; Díaz-García, M.; Díaz, I.; Sanchez-Sanchez, M. Sustainable preparation of MIL-100 (Fe) and its photocatalytic behavior in the degradation of methyl orange in water. Cryst. Growth Des., 2017, 17(4), 1806-1813.
[http://dx.doi.org/10.1021/acs.cgd.6b01776]
[31]
di Nunzio, M.R.; Agostoni, V.; Cohen, B.; Gref, R.; Douhal, A.A. “ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J. Med. Chem., 2014, 57(2), 411-420.
[http://dx.doi.org/10.1021/jm4017202] [PMID: 24345217]
[32]
Rappé, A.K.; Casewit, C.J.; Colwell, K.S.; Goddard, W.A., III; Skiff, W.M. UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc., 1992, 114(25), 10024-10035.
[http://dx.doi.org/10.1021/ja00051a040]
[33]
Casewit, C.J.; Colwell, K.S.; Rappe, A.K. Application of a universal force field to organic molecules. J. Am. Chem. Soc., 1992, 114(25), 10035-10046.
[http://dx.doi.org/10.1021/ja00051a041]
[34]
Jagusiak, A.; Chlopas, K.; Zemanek, G.; Wolski, P.; Panczyk, T. Controlled release of doxorubicin from the drug delivery formulation composed of single-walled carbon nanotubes and congo red: A molecular dynamics study and dynamic light scattering analysis. Pharmaceutics, 2020, 12(7), 622.
[http://dx.doi.org/10.3390/pharmaceutics12070622] [PMID: 32635253]
[35]
Nordlund, K.; Dudarev, S.L. Interatomic potentials for simulating radiation damage effects in metals. C. R. Phys., 2008, 9(3-4), 343-352.
[http://dx.doi.org/10.1016/j.crhy.2007.10.012]
[36]
Goddard, S.M.B.O.W.; Suffix, I.I.I. DREIDING: a generic force field for molecular simulations. J. Phys. Chem., 1990, 94, 8897.
[http://dx.doi.org/10.1021/j100389a010]
[37]
Jolfaei, N.A.; Jolfaei, N.A.; Hekmatifar, M.; Piranfar, A.; Toghraie, D.; Sabetvand, R.; Rostami, S. Investigation of thermal properties of DNA structure with precise atomic arrangement via equilibrium and non-equilibrium molecular dynamics approaches. Comput. Methods Programs Biomed., 2020, 185, 105169.
[http://dx.doi.org/10.1016/j.cmpb.2019.105169] [PMID: 31715331]
[38]
Loverde, S.M.; Klein, M.L.; Discher, D.E. Nanoparticle shape improves delivery: Rational coarse grain molecular dynamics (rCG-MD) of taxol in worm-like PEG-PCL micelles. Adv. Mater., 2012, 24(28), 3823-3830.
[http://dx.doi.org/10.1002/adma.201103192] [PMID: 22105885]
[39]
Zeller, M. A visual computing environment for very large scale biomolecular modeling. Proceedings IEEE International Conference on Application-Specific Systems, Architectures and Processors, 1997.Zurich, Switzerland
[http://dx.doi.org/10.1109/ASAP.1997.606807]
[40]
Nagarajan, R. Solubilization of? guest? molecules into polymeric aggregates. Polym. Adv. Technol., 2001, 12(1-2), 23-43.
[http://dx.doi.org/10.1002/1099-1581(200101/02)12:1/2<23:AID-PAT75>3.0.CO;2-C]
[41]
Karimipour, A.; Karimipour, A.; Jolfaei, N.A.; Hekmatifar, M.; Toghraie, D.; Sabetvand, R.; Rostami, S. Prediction of the interaction between HIV viruses and Human Serum Albumin (HSA) molecules using an equilibrium dynamics simulation program for application in bio medical science. J. Mol. Liq., 2020, 318, 113989.
[http://dx.doi.org/10.1016/j.molliq.2020.113989]
[42]
Kotzabasaki, M.; Froudakis, G.E. Review of computer simulations on anti-cancer drug delivery in MOFs. Inorg. Chem. Front., 2018, 5(6), 1255-1272.
[http://dx.doi.org/10.1039/C7QI00645D]
[43]
Florêncio, E.; Silva, E.; Machado, E.S.; Vasconcelos, I.B.; Junior, S.A.L.; Dutra, J.D.; Freire, R.O.; da Costa, N.B. Are the absorption spectra of doxorubicin properly described by considering different tautomers? J. Chem. Inf. Model., 2020, 60(2), 513-521.
[http://dx.doi.org/10.1021/acs.jcim.9b00785] [PMID: 31833765]
[44]
Yang, J.; Niu, X.; An, S.; Chen, W.; Wang, J.; Liu, W. Facile synthesis of Bi2 MoO6 –MIL-100(Fe) metal–organic framework composites with enhanced photocatalytic performance. RSC Advances, 2017, 7(5), 2943-2952.
[http://dx.doi.org/10.1039/C6RA26110H]
[45]
Cho, K.Y.; Yoo, C.H.; Won, Y-J.; Hong, D.Y.; Chang, J-S.; Choi, J-W.; Lee, J-H.; Lee, J.S. Surface-concentrated chitosan-doped MIL-100(Fe) nanofiller-containing PVDF composites for enhanced antibacterial activity. Eur. Polym. J., 2019, 120, 109221.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109221]
[46]
Taherzade, S.; Soleimannejad, J.; Tarlani, A. Application of metal-organic framework Nano-MIL-100 (Fe) for sustainable release of doxycycline and tetracycline. Nanomaterials, 2017, 7(8), 215.
[http://dx.doi.org/10.3390/nano7080215] [PMID: 28783087]
[47]
Singco, B.; Liu, L-H.; Chen, Y-T.; Shih, Y-H.; Huang, H-Y.; Lin, C-H. Approaches to drug delivery: Confinement of aspirin in MIL-100(Fe) and aspirin in the de novo synthesis of metal–organic frameworks. Microporous Mesoporous Mater., 2016, 223, 254-260.
[http://dx.doi.org/10.1016/j.micromeso.2015.08.017]
[48]
Sun, K.; Li, L.; Yu, X.; Liu, L.; Meng, Q.; Wang, F.; Zhang, R. Functionalization of mixed ligand metal-organic frameworks as the transport vehicles for drugs. J. Colloid Interface Sci., 2017, 486, 128-135.
[http://dx.doi.org/10.1016/j.jcis.2016.09.068] [PMID: 27697650]
[49]
Akyüz, G. Evaluation of nano sized Mg@BTC metal organic framework as a drug carrier: A long term experimental and predictive theoretical study. Eng. Structure and Material, 2021, 7(1), 135-156.
[50]
Yang, D.; Xu, J.; Yang, G.; Zhou, Y.; Ji, H.; Bi, H.; Gai, S.; He, F.; Yang, P. Metal-organic frameworks join hands to create an anti-cancer nanoplatform based on 808 nm light driving up-conversion nanoparticles. Chem. Eng. J., 2018, 344, 363-374.
[http://dx.doi.org/10.1016/j.cej.2018.03.101]
[51]
Liu, J.Q.; Li, X.F.; Gu, C.Y.; da Silva, J.C.S.; Barros, A.L. Alves-, S., Jr; Li, B.H.; Ren, F.; Batten, S.R.; Soares, T.A. A combined experimental and computational study of novel nanocage-based metal–organic frameworks for drug delivery. Dalton Trans., 2015, 44(44), 19370-19382.
[http://dx.doi.org/10.1039/C5DT02171E] [PMID: 26501793]
[52]
Panda, J.; Satapathy, B.S.; Majumder, S.; Sarkar, R.; Mukherjee, B.; Tudu, B. Engineered polymeric iron oxide nanoparticles as potential drug carrier for targeted delivery of docetaxel to breast cancer cells. J. Magn. Magn. Mater., 2019, 485, 165-173.
[http://dx.doi.org/10.1016/j.jmmm.2019.04.058]
[53]
Wu, M.X.; Yang, Y.W. Metal–organic framework (MOF)‐based drug/cargo delivery and cancer therapy. Adv. Mater., 2017, 29(23), 1606134.
[http://dx.doi.org/10.1002/adma.201606134] [PMID: 28370555]
[54]
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed., 2006, 45(36), 5974-5978.
[http://dx.doi.org/10.1002/anie.200601878] [PMID: 16897793]
[55]
Cai, W.; Gao, H.; Chu, C.; Wang, X.; Wang, J.; Zhang, P.; Lin, G.; Li, W.; Liu, G.; Chen, X. Engineering phototheranostic nanoscale metal–organic frameworks for multimodal imaging-guided cancer therapy. ACS Appl. Mater. Interfaces, 2017, 9(3), 2040-2051.
[http://dx.doi.org/10.1021/acsami.6b11579] [PMID: 28032505]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy