Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

An Extensive Review of MR Sensors with Design and Characteristic Evaluation of Three-layered TMR Sensor

Author(s): Subramanian Vimala Gayathri and Durairaj Subbulekshmi*

Volume 20, Issue 4, 2024

Published on: 09 June, 2023

Page: [447 - 458] Pages: 12

DOI: 10.2174/1573413719666230511145554

open access plus

Abstract

The reliability and efficacy of sensor-based automated systems have improved due to the proliferation of electric vehicles, renewable sources, and integrated systems in power industries extensively. This has been accomplished by increasing the power density and decreasing the volume of the system.

Background: Mathematical estimation and comparative analysis of the physical factors result in massive usage of operational matrices measured using sensors. Magnetic field sensors, used in industries and biomedical applications, have a high level of precision in the evaluation of measurements. In order to extract the measured parameters such as sensitivity, accuracy, operating cost, the linear range of operation, and power utilisation, these sensors adhere to the physical constraints during their nominal working conditions. The characteristics of the aforementioned sensors are enumerated in detail in this article.

Objective: This objective is highly focused on providing a comprehensive overview of classification and the properties of Hall-Effect, anisotropic magnetoresistive (AMR), giant magnetoresistive (GMR), and tunnelling magnetoresistive (TMR) sensors. The dissertation on its properties concludes that TMR is more reliable and sensitive in variable operating conditions.

Methods: The methods for selecting the sensors for an application are confined to voltage fluctuations and sensitivity. A three-layered TMR sensor with two magnetic layers and an insulator in between is proposed as a significant advancement compared to the literature. The micromagnetic simulation is carried out at room temperature for a three-layered TMR made up of neodymium alloy, magnesium oxide, and cobalt platinum alloy.

Conclusion: Based on the studies executed, it is determined that TMR is more sensitive than both conventional and MR sensors. The proposed schematic claims that the higher free layer thickness offers maximum sensitivity with 77% negative magnetoresistance. The reduced coercivity of 1.9Oe is achieved in this combination at a specified temperature range.

Graphical Abstract

[1]
Zhang, H.; Li, F.; Guo, H.; Yang, Z.; Yu, N. Current measurement with 3-D coreless TMR sensor array for inclined conductor. IEEE Sens. J., 2019, 19(16), 6684-6690.
[http://dx.doi.org/10.1109/JSEN.2019.2914939]
[2]
Blagojević M.; Jovanović U.; Jovanović I.; Mančić D.; Popović R.S. Realization and optimization of bus bar current transducers based on Hall effect sensors. Meas. Sci. Technol., 2016, 27(6), 065102.
[http://dx.doi.org/10.1088/0957-0233/27/6/065102]
[3]
Foroughi, F.; Mol, J.M.; Müller, T.; Kirtley, J.R.; Moler, K.A.; Bluhm, H. A micro-SQUID with dispersive readout for magnetic scanning microscopy. Appl. Phys. Lett., 2018, 112(25), 252601.
[http://dx.doi.org/10.1063/1.5030489]
[4]
Khan, M.A.; Sun, J.; Li, B.; Przybysz, A. Magnetic sensors-a review and recent technologies. Eng. Res. Express., 2021, 3(2), 022005.
[5]
Das, R; He, X; Ghaffarzadeh, K Flexible, printed and organic electronics 2019–2029: forecasts, players & opportunities. IDTechEx.com, 2018.
[6]
Borole, U.P.; Subramaniam, S.; Kulkarni, I.R.; Saravanan, P.; Barshilia, H.C.; Chowdhury, P. Highly sensitive giant magnetoresistance (GMR) based ultra low differential pressure sensor. Sens. Actuators A Phys., 2018, 280, 125-131.
[http://dx.doi.org/10.1016/j.sna.2018.07.022]
[7]
Ouyang, Y.; Wang, Z.; Zhao, G.; Hu, J.; Ji, S.; He, J.; Wang, S.X. Current sensors based on GMR effect for smart grid applications. Sens. Actuators A Phys., 2019, 294, 8-16.
[http://dx.doi.org/10.1016/j.sna.2019.05.002]
[8]
Bhatti, S.; Sbiaa, R.; Hirohata, A.; Ohno, H.; Fukami, S.; Piramanayagam, S.N. Spintronics based random access memory: A review. Mater. Today, 2017, 20(9), 530-548.
[http://dx.doi.org/10.1016/j.mattod.2017.07.007]
[9]
Wang, S.; Wu, Z.; Peng, D.; Li, W.; Chen, S.; Liu, S. An angle displacement sensor using a simple gear. Sens. Actuators A Phys., 2018, 270, 245-251.
[http://dx.doi.org/10.1016/j.sna.2017.12.064]
[10]
Tawfik, N.G.; Hussein, Y.; Azab, E. Analysis of magnetoresistive sensors for nondestructive evaluation. 2018 IEEE Sensors Applications Symposium (SAS), 2018, pp. 1-4.
[http://dx.doi.org/10.1109/SAS.2018.8336718]
[11]
Freitas, P.P.; Ferreira, R.; Cardoso, S. Spintronic sensors. Proc. IEEE, 2016, 104(10), 1894-1918.
[http://dx.doi.org/10.1109/JPROC.2016.2578303]
[12]
Vidal, E.G.; Muñoz, D.R.; Arias, S.I.R.; Moreno, J.S.; Cardoso, S.; Ferreira, R.; Freitas, P. Electronic energy meter based on a tunnel magnetoresistive effect (TMR) current sensor. Materials, 2017, 10(10), 1134.
[http://dx.doi.org/10.3390/ma10101134] [PMID: 28954425]
[13]
Giouroudi, I.; Hristoforou, E. Perspective: Magnetoresistive sensors for biomedicine. J. Appl. Phys., 2018, 124(3), 030902.
[http://dx.doi.org/10.1063/1.5027035]
[14]
Han, W.; Chau, K.T.; Jiang, C.; Liu, W. Accurate position detection in wireless power transfer using magnetoresistive sensors for implant applications. IEEE Trans. Magn., 2018, 54(11), 1-5.
[15]
Sen, T.; Sreekantan, A.C.; Sen, S. A magnetic feedback-based Δ–Σ digitizing interface for giant magnetoresistance sensors. IEEE Trans. Circuits Syst. II Express Briefs, 2023, 70(1), 36-40.
[http://dx.doi.org/10.1109/TCSII.2022.3201169]
[16]
Bhaskarrao, N.K.; Anoop, C.S.; Dutta, P.K. A novel linearizing signal conditioner for half-bridge-based TMR angle sensor. IEEE Sens. J., 2020, 21(3), 1.
[http://dx.doi.org/10.1109/JSEN.2020.3023089]
[17]
Li, J.; Li, H.; Li, J. Magnetic gradient tensor positioning system based on AMR sensor. 2022 IEEE 6th Information Technology and Mechatronics Engineering Conference (ITOEC), 2022 Mar 4 2022, 6, p. 1515-1520.
[http://dx.doi.org/10.1109/ITOEC53115.2022.9734574]
[18]
Qian, S.; Guo, J.; Huang, H.; Chen, C.; Wang, H.; Li, Y. Measurement of small-magnitude direct current mixed with alternating current by tunneling magnetoresistive sensor. IEEE Sens. Lett., 2022, 6(7), 1-4.
[http://dx.doi.org/10.1109/LSENS.2022.3185486]
[19]
Liu, Z.H.; Lin, S.W.; Lee, Y.C.; Cheng, M.C.; Fang, W. NI Mushroom Array to Enhance Out-of-Plane Magnetic Field Sensitivity of Anisotropic Magnetoresistance Sensor. 2022 IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), 2022, p. 951-954.
[http://dx.doi.org/10.1109/MEMS51670.2022.9699537]
[20]
Sun, K.; Qi, P.; Tao, X.; Zhao, W.; Ye, C. Vector magnetic field imaging with high-resolution TMR sensor arrays for metal structure inspection. IEEE Sens. J., 2022, 22(14), 14513-14521.
[http://dx.doi.org/10.1109/JSEN.2022.3181366]
[21]
Caetano, D.M.; Rabuske, T.; Fernandes, J.; Pelkner, M.; Fermon, C.; Cardoso, S.; Ribes, B.; Franco, F.; Paul, J.; Piedade, M.; Freitas, P.P. High-resolution nondestructive test probes based on magnetoresistive sensors. IEEE Trans. Ind. Electron., 2019, 66(9), 7326-7337.
[http://dx.doi.org/10.1109/TIE.2018.2879306]
[22]
Zheng, C.; Zhu, K.; Cardoso de Freitas, S.; Chang, J.Y.; Davies, J.E.; Eames, P.; Freitas, P.P.; Kazakova, O.; Kim, C.G.; Leung, C-W.; Liou, S-H.; Ognev, A.; Piramanayagam, S.N.; Ripka, P.; Samardak, A.; Shin, K-H.; Tong, S-Y.; Tung, M-J.; Wang, S.X.; Xue, S.; Yin, X.; Pong, P.W.T. Magnetoresistive Sensor development roadmap (non-recording applications). IEEE Trans. Magn., 2019, 55(4), 1-30.
[http://dx.doi.org/10.1109/TMAG.2019.2896036]
[23]
Sharma, P.P.; Albisetti, E.; Monticelli, M.; Bertacco, R.; Petti, D. Exchange bias tuning for Magnetoresistive sensors by the inclusion of nonmagnetic impurities. Sensors, 2016, 16(7)
[24]
Zhou, W.; Ma, C.; Gan, Z.; Zhang, Z.; Wang, X.; Tan, W.; Wang, D. Manipulation of anisotropic magnetoresistance and domain configuration in Co/PMN-PT (011) multiferroic heterostructures by electric field. Appl. Phys. Lett., 2017, 111(5), 052401.
[http://dx.doi.org/10.1063/1.4997322]
[25]
Quynh, L.K.; Tu, B.D.; Anh, C.V.; Duc, N.H.; Phung, A.T.; Dung, T.T.; Giang, D.T.H. Design optimization of an anisotropic magnetoresistance sensor for detection of magnetic nanoparticles. J. Electron. Mater., 2019, 48(2), 997-1004.
[http://dx.doi.org/10.1007/s11664-018-6822-4]
[26]
Lv, Y.Y.; Zhang, B.B.; Li, X.; Yao, S.H.; Chen, Y.B.; Zhou, J.; Zhang, S.T.; Lu, M.H.; Chen, Y.F. Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals. Appl. Phys. Lett., 2016, 108(24), 244101.
[http://dx.doi.org/10.1063/1.4953772]
[27]
Haldar, S.; Gutzeit, M.; Heinze, S. Tunneling anisotropic magnetoresistance of Pb and Bi adatoms and dimers on Mn/W(110): A first-principles study. Phys. Rev. B, 2019, 100(9), 094412.
[http://dx.doi.org/10.1103/PhysRevB.100.094412]
[28]
Bodnar, S.Y.; Šmejkal, L.; Turek, I.; Jungwirth, T.; Gomonay, O.; Sinova, J.; Sapozhnik, A.A.; Elmers, H.J.; Kläui, M.; Jourdan, M. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance. Nat. Commun., 2018, 9(1), 348.
[http://dx.doi.org/10.1038/s41467-017-02780-x] [PMID: 29367633]
[29]
Wadehra, N.; Tomar, R.; Varma, R.M.; Gopal, R.K.; Singh, Y.; Dattagupta, S. Planar Hall effect and anisotropic magnetoresistance in the polar-polar interface of LaVO3-KTaO3 with strong spin-orbit coupling. Nat. Commun., 2020, 11(1), 874.
[30]
Pan, H.; Tong, B.; Yu, J.; Wang, J.; Fu, D.; Zhang, S.; Wu, B.; Wan, X.; Zhang, C.; Wang, X.; Song, F. Three-dimensional anisotropic magnetoresistance in the Dirac node-line material ZrSiSe. Sci. Rep., 2018, 8(1), 9340.
[http://dx.doi.org/10.1038/s41598-018-27148-z] [PMID: 29921950]
[31]
Jedlicska, I.; Weiss, R.; Weigel, R. Increasing the measurement accuracy of GMR current sensors through hysteresis modeling. 2008 IEEE International Symposium on Industrial Electronics, 2008, pp. 884-889.
[http://dx.doi.org/10.1109/ISIE.2008.4676939]
[32]
Mukhopadhyay, S.C.; Huang, R.Y. Sensors: advancements in modeling, design issues, fabrication, and practical applications; Springer Publishing Company, Incorporated: New York City, 2008.
[http://dx.doi.org/10.1007/978-3-540-69033-7]
[33]
Jinseok Park, J. Jiwei Fan; Xiaopeng Wang; Huang, A. A sample-data model for double edge current programmed mode control (DECPM) in high-frequency and wide-range DC-DC converters. IEEE Trans. Power Electron., 2010, 25(4), 1023-1033.
[http://dx.doi.org/10.1109/TPEL.2009.2036618]
[34]
Shah, S.; Heidari, H. On-chip magnetoresistive sensors for Detection and localization of paramagnetic particles. Proc. IEEE Sens., 2017, 1-3.
[http://dx.doi.org/10.1109/ICSENS.2017.8233894]
[35]
Costa, T.; Cardoso, F.A.; Germano, J.; Freitas, P.P.; Piedade, M.S. A CMOS Front-End with integrated Magnetoresistive sensors for biomolecular recognition detection applications. IEEE Trans. Biomed. Circuits Syst., 2017, 11(5), 988-1000.
[http://dx.doi.org/10.1109/TBCAS.2017.2743685] [PMID: 28920908]
[36]
Lei, Q.; Long, X.; Chen, H.; Tan, J.; Wang, X.; Chen, R. Facilitating charge transfer via a giant magnetoresistance effect for high-efficiency photocatalytic hydrogen production. Chem. Commun., 2019, 55(96), 14478-14481.
[http://dx.doi.org/10.1039/C9CC07812F] [PMID: 31729499]
[37]
Su, D.; Wu, K.; Krishna, V.D.; Klein, T.; Liu, J.; Feng, Y.; Perez, A.M.; Cheeran, M.C.J.; Wang, J.P. Detection of influenza A virus in swine nasal swab samples with a wash-free magnetic bioassay and a handheld giant magnetoresistance sensing system. Front. Microbiol., 2019, 10(MAY), 1077.
[http://dx.doi.org/10.3389/fmicb.2019.01077] [PMID: 31164877]
[38]
Gu, H.; Zhang, H.; Lin, J.; Shao, Q.; Young, D.P.; Sun, L.; Shen, T.D.; Guo, Z. Large negative giant magnetoresistance at room temperature and electrical transport in cobalt ferrite-polyaniline nanocomposites. Polymer, 2018, 143, 324-330.
[http://dx.doi.org/10.1016/j.polymer.2018.04.008]
[39]
Ustinov, V.V.; Milyaev, M.A.; Naumova, L.I. Giant Magnetoresistance of metallic exchange-coupled multilayers and Spin Valves. Phys. Met. Metallogr., 2017, 118(13), 1300-1359.
[http://dx.doi.org/10.1134/S0031918X17130038]
[40]
Yan, X.; Gu, J.; Zheng, G.; Guo, J.; Galaska, A.M.; Yu, J.; Khan, M.A.; Sun, L.; Young, D.P.; Zhang, Q.; Wei, S.; Guo, Z. Lowly loaded carbon nanotubes induced high electrical conductivity and giant magnetoresistance in ethylene/1-octene copolymers. Polymer, 2016, 103, 315-327.
[http://dx.doi.org/10.1016/j.polymer.2016.09.056]
[41]
Ennen, I.; Kappe, D.; Rempel, T.; Glenske, C.; Hütten, A. Giant Magnetoresistance: Basic concepts,microstructure, magnetic interactions, and applications. Sensors, 2016, 16(6), 904.
[42]
Zhou, J.; Zhao, W.; Wang, Y.; Peng, S.; Qiao, J.; Su, L.; Zeng, L.; Lei, N.; Liu, L.; Zhang, Y.; Bournel, A. Large influence of capping layers on tunnel magnetoresistance in magnetic tunnel junctions. Appl. Phys. Lett., 2016, 109(24), 242403.
[http://dx.doi.org/10.1063/1.4972030]
[43]
Kim, H.H.; Yang, B.; Tian, S.; Li, C.; Miao, G.X.; Lei, H.; Tsen, A.W. Tailored tunnel magnetoresistance response in three ultrathin chromium trihalides. Nano Lett., 2019, 19(8), 5739-5745.
[http://dx.doi.org/10.1021/acs.nanolett.9b02357] [PMID: 31305077]
[44]
Telegin, A.V.; Barsaume, S.; Bessonova, V.A.; Sukhorukov, Y.P.; Nosov, A.P.; Kimel’, A.V.; Gan’shina, E.A.; Yurasov, A.N.; Lysina, E.A. Magnetooptical response to tunnel magnetoresistance in manganite films with a variant structure. J. Magn. Magn. Mater., 2018, 459, 317-321.
[http://dx.doi.org/10.1016/j.jmmm.2017.10.006]
[45]
Feng, Y.; Cheng, Z.; Wang, X. Extremely large non-equilibrium tunnel magnetoresistance ratio in CoRhMnGe based magnetic tunnel junction by interface modification. Front Chem., 2019, 7, 550.
[http://dx.doi.org/10.3389/fchem.2019.00550] [PMID: 31508406]
[46]
Fujiwara, K.; Oogane, M.; Kanno, A.; Imada, M.; Jono, J.; Terauchi, T.; Okuno, T.; Aritomi, Y.; Morikawa, M.; Tsuchida, M.; Nakasato, N.; Ando, Y. Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors. Appl. Phys. Express, 2018, 11(2), 023001.
[http://dx.doi.org/10.7567/APEX.11.023001]
[47]
Wang, M.; Wang, Y.; Peng, L.; Ye, C. Measurement of triaxial magnetocardiography using high sensitivity tunnel magnetoresistance sensor. IEEE Sens. J., 2019, 19(21), 9610-9615.
[http://dx.doi.org/10.1109/JSEN.2019.2927086]
[48]
Wang, M.; Cai, W.; Cao, K.; Zhou, J.; Wrona, J.; Peng, S.; Yang, H.; Wei, J.; Kang, W.; Zhang, Y.; Langer, J.; Ocker, B.; Fert, A.; Zhao, W. Current-induced magnetization switching in atom-thick tungsten engineered perpendicular magnetic tunnel junctions with large tunnel magnetoresistance. Nat. Commun., 2018, 9(1), 671.
[http://dx.doi.org/10.1038/s41467-018-03140-z] [PMID: 29445186]
[49]
Kowalska, E.; Fukushima, A.; Sluka, V.; Fowley, C.; Kákay, A.; Aleksandrov, Y.; Lindner, J.; Fassbender, J.; Yuasa, S.; Deac, A.M. Tunnel magnetoresistance angular and bias dependence enabling tuneable wireless communication. Sci. Rep., 2019, 9(1), 9541.
[http://dx.doi.org/10.1038/s41598-019-45984-5] [PMID: 31266999]
[50]
Sung, G.M.; Gunnam, L.C.; Wang, H.K.; Lin, W.S. Three-dimensional CMOS differential folded Hall sensor with bandgap reference and a readout circuit. IEEE Sens. J., 2018, 18(2), 517-527.
[http://dx.doi.org/10.1109/JSEN.2017.2777485]
[51]
Yang, W.; Zhuo, Y.; Anheuser, M. A residual current measurement method with a combination of MR and Hall Effect sensors. AMPS 2010. IEEE Int Conf Appl Meas Power Syst Proc., 2010, 2010, 27-30.
[52]
Pham, H.Q.; Tran, B.V.; Doan, D.T.; Le, V.S.; Pham, Q.N.; Kim, K.; Kim, C.; Terki, F.; Tran, Q.H. Highly sensitive planar Hall magnetoresistive sensor for magnetic flux leakage pipeline inspection. IEEE Trans. Magn., 2018, 54(6), 1-5.
[http://dx.doi.org/10.1109/TMAG.2018.2816075]
[53]
Pandey, R.K.; Droopad, R.; Stern, H.P. Magnetic field sensor based on varistor response. IEEE Sens. J., 2019, 19(19), 8635-8641.
[http://dx.doi.org/10.1109/JSEN.2019.2918270]
[54]
Joo, S; Kim, D; Lee, HK; Rhie, K Spin hall effect device for magnetic sensor application. CPEM 2018 - Conf Precis Electromagn Meas., 2018, 0–1.
[http://dx.doi.org/10.1109/CPEM.2018.8500932]
[55]
Ni, Y.; Zhang, Z.; Nlebedim, I.C.; Jiles, D.C. Ultrahigh sensitivity of anomalous hall effect sensor based on Cr-doped Bi2Te3 topological insulator thin films. IEEE Trans. Magn., 2016, 52(7), 1-4.
[http://dx.doi.org/10.1109/TMAG.2016.2519512]
[56]
Das, P.T.; Nhalil, H.; Schultz, M.; Amrusi, S.; Grosz, A.; Klein, L. Detection of low-frequency magnetic fields down to Sub-pT resolution with planar-Hall effect sensors. IEEE Sens. Lett., 2021, 5(1), 1-4.
[http://dx.doi.org/10.1109/LSENS.2020.3046632]
[57]
Lee, C.Y.; Chien, T.C. Design and fabrication of micro-Hall-effect sensors. 2018 12th International Conference on Sensing Technology (ICST), 2018.
[http://dx.doi.org/10.1109/ICSensT.2018.8603649]
[58]
Nama, T.; Gogoi, A.K.; Tripathy, P. Application of a smart hall effect sensor system for 3-phase BLDC drives. 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), 2017, pp. 208-212.
[http://dx.doi.org/10.1109/IRIS.2017.8250123]
[59]
Huber, S.; Leten, W.; Ackermann, M.; Schott, C.; Paul, O. A fully integrated analog compensation for the piezo-hall effect in a CMOS single-chip hall sensor microsystem. IEEE Sens. J., 2015, 15(5), 2924-2933.
[http://dx.doi.org/10.1109/JSEN.2014.2385879]
[60]
Huber, S.; Raman, J.; Van Der Wiel, A.; Schott, C.; Rombouts, P.; Paul, O. A combined hall and stress sensor for highly accurate magnetic field sensing free from the piezo-Hall effect. 2015 Transducers - 2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), 2015.
[61]
Sangsai, N.; Kaewwichit, T.; Chaithanee, N. Contactless Distance Sensor for small airgap (< 10 mm) using Linear Hall Effect Sensor. 2018 Third International Conference on Engineering Science and Innovative Technology (ESIT), 2018, pp. 1-5.
[62]
Krainov, I.V.; Klier, J.; Dmitriev, A.P.; Klyatskaya, S.; Ruben, M.; Wernsdorfer, W. Giant Magnetoresistance in carbon Nanotubes with single-molecule magnets TbPc2. ACS Nano, 2017, 11(7), 6868-6880.
[63]
Tavassolizadeh, A.; Rott, K.; Quandt, E.; Hölscher, H.; Reiss, G. Tunnel magnetoresistance sensors with magnetostrictive electrodes: Strain sensors. Sensors, 2016, 16(11), 1-11.
[64]
Sreekantan, A.C.; George, B. Magnetic sensors and industrial sensing applications.Smart Sensors and MEMs; Woodhead Publishing, Sawston, Cambridge, 2018, p. 131-150.
[http://dx.doi.org/10.1016/B978-0-08-102055-5.00006-1]
[65]
Ogasawara, T.; Oogane, M.; Al-Mahdawi, M.; Tsunoda, M.; Ando, Y. Effect of second-order magnetic anisotropy on nonlinearity of conductance in CoFeB/MgO/CoFeB magnetic tunnel junction for magnetic sensor devices. Sci. Rep., 2019, 9(1), 1-9.
[PMID: 30626917]
[66]
Dai, H.; Song, S.; Zeng, X.; Su, S.; Lin, M.; Meng, M.Q.H. 6-D electromagnetic tracking approach using uniaxial transmitting coil and tri-axial magneto-resistive sensor. IEEE Sens. J., 2018, 18(3), 1178-1186.
[http://dx.doi.org/10.1109/JSEN.2017.2779560]
[67]
Lukose, R.; Zurauskiene, N.; Balevicius, S.; Stankevic, V.; Keršulis, S.; Plausinaitiene, V.; Navickas, R. Hybrid graphene-manganite thin film structure for magnetoresistive sensor application. Nanotechnology, 2019, 30(35), 355503.
[http://dx.doi.org/10.1088/1361-6528/ab201d] [PMID: 31067515]
[68]
Dauber, J.; Sagade, A.A.; Oellers, M.; Watanabe, K.; Taniguchi, T.; Neumaier, D.; Stampfer, C. Ultra-sensitive Hall sensors based on graphene encapsulated in hexagonal boron nitride. Appl. Phys. Lett., 2015, 106(19), 193501.
[http://dx.doi.org/10.1063/1.4919897]
[69]
Wu, Y.; Zhao, G.; Hu, J.; Ouyang, Y.; Wang, S.X.; He, J.; Gao, F.; Wang, S. Overhead transmission line parameter reconstruction for UAV inspection based on Tunneling Magnetoresistive sensors and inverse models. IEEE Trans. Power Deliv., 2019, 34(3), 819-827.
[http://dx.doi.org/10.1109/TPWRD.2019.2891119]
[70]
Fliegans, J. Coercivity of NdFeB-based sintered permanent magnets: Experimental and numerical approaches, Doctoral dissertation, Université Grenoble Alpes 2019.
[71]
Chatterjee, S.; Maiti, R.; Chakravorty, D. Large magnetodielectric effect and negative magnetoresistance in NiO nanoparticles at room temperature. RSC Advances, 2020, 10(23), 13708-13716.
[http://dx.doi.org/10.1039/D0RA00188K] [PMID: 35493001]
[72]
Donahue, M.J.; Donahue, M.J. OOMMF User's Guide, Version 1.0, -6376; National Institute of Standards and Technology: Gaithersburg, MD, 1999. Available from:
[http://dx.doi.org/10.6028/NIST.IR.6376]

© 2024 Bentham Science Publishers | Privacy Policy