Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Design, Antimicrobial Testing, and Molecular Docking Studies of New Chalcone and Pyrimidine Derivatives based on 2-phenyl-1H-pyrazol-3(2H)-one

Author(s): Ruba A. Alolayan, Nadia A.A. Elkanzi, Hajer Hrichi, Cyrine El Baher Dhafer, Faten M. Zahou and Rania B. Bakr*

Volume 21, Issue 10, 2024

Published on: 17 May, 2023

Page: [1864 - 1873] Pages: 10

DOI: 10.2174/1570180820666230505142821

Price: $65

Abstract

Background & Objectives: Heterocyclic pyrimidine and pyrazole rings have attracted the interest of medicinal chemists because of their pharmacological potential including antimicrobial activity. Based on molecular hybridization, new chalcones 6a-g and pyrimidines 7a-g based on a pyrazole scaffold were designed.

Methods: The synthesis of these compounds involved mild condensation reactions between compound 4 and various aromatic aldehydes in a mixture of ethanol/NaOH (95:5 v/v) to give the corresponding chalcones 6a-g. These chalcones were further reacted with urea in the presence of a base in ethanol to produce the pyrimidine derivatives 7a-g. These new candidates were screened for their in vitro antimicrobial activities and molecular docking studies were evaluated.

Results: The antibacterial and antifungal studies of all synthesized compounds against the strains tested showed that compounds 6c, d, and 7c, d exhibited the highest antibacterial and antifungal activities. In addition, the structure-activity relationship and docking studies are discussed.

Conclusion: The synthesized compounds 6c, 6d, 7c, and 7d showed the highest antibacterial and antifungal activities against the tested strains.

[1]
Prestinaci, F.; Pezzotti, P.; Pantosti, A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog. Glob. Health, 2015, 109(7), 309-318.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[2]
Doron, S.; Gorbach, S. Bacterial infections: overview; International Encyclopedia of Public Health, 2008, p. 273.
[3]
Pendleton, J.N.; Gorman, S.P.; Gilmore, B.F. Clinical relevance of the ESKAPE pathogens. Expert Rev. Anti Infect. Ther., 2013, 11(3), 297-308.
[http://dx.doi.org/10.1586/eri.13.12] [PMID: 23458769]
[4]
Levy, S.B.; Marshall, B. Antibacterial resistance worldwide: Causes, challenges and responses. Nat. Med., 2004, 10(Suppl. 12), S122-S129.
[http://dx.doi.org/10.1038/nm1145] [PMID: 15577930]
[5]
Okeke, I.N.; Klugman, K.P.; Bhutta, Z.A.; Duse, A.G.; Jenkins, P.; O’Brien, T.F.; Pablos-Mendez, A.; Laxminarayan, R. Antimicrobial resistance in developing countries. Part II: strategies for containment. Lancet Infect. Dis., 2005, 5(9), 568-580.
[http://dx.doi.org/10.1016/S1473-3099(05)70217-6] [PMID: 16122680]
[6]
Naman, C.B.; Leber, C.A.; Gerwick, W.H. Modern natural products drug discovery and its relevance to biodiversity conservation. Microbial Resources; Elsevier: Amsterdam, 2017, pp. 103-120.
[7]
Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov., 2005, 4(3), 206-220.
[http://dx.doi.org/10.1038/nrd1657] [PMID: 15729362]
[8]
Yang, H.M.; Shin, H.R.; Cho, S.H.; Bang, S.C.; Song, G.Y.; Ju, J.H.; Kim, M.K.; Lee, S.H.; Ryu, J.C.; Kim, Y.; Jung, S.H. Structural requirement of chalcones for the inhibitory activity of interleukin-5. Bioorg. Med. Chem., 2007, 15(1), 104-111.
[http://dx.doi.org/10.1016/j.bmc.2006.10.007] [PMID: 17064909]
[9]
Gupta, D.; Jain, D.; Trivedi, P. Recent advances in chalcones as antiinfective agents. Int. J. Chem. Sci., 2010, 8, 649-654.
[10]
Alcaráz, L.E.; Blanco, S.E.; Puig, O.N.; Tomás, F.; Ferretti, F.H. Antibacterial activity of flavonoids against methicillin-resistant Staphylococcus aureus strains. J. Theor. Biol., 2000, 205(2), 231-240.
[http://dx.doi.org/10.1006/jtbi.2000.2062] [PMID: 10873434]
[11]
Xu, M.; Wu, P.; Shen, F.; Ji, J.; Rakesh, K.P. Chalcone derivatives and their antibacterial activities: Current development. Bioorg. Chem., 2019, 91, 103133.
[http://dx.doi.org/10.1016/j.bioorg.2019.103133] [PMID: 31374524]
[12]
Liu, M.; Wilairat, P.; Go, M.L. Antimalarial alkoxylated and hydroxylated chalcones: Structure-activity relationship analysis. J. Med. Chem., 2001, 44(25), 4443-4452.
[http://dx.doi.org/10.1021/jm0101747] [PMID: 11728189]
[13]
Lee, Y.H.; Jeon, S.H.; Kim, S.H.; Kim, C.; Lee, S.J.; Koh, D.; Lim, Y.; Ha, K.; Shin, S.Y. A new synthetic chalcone derivative, 2-hydroxy-3′,5,5′-trimethoxychalcone (DK-139), suppresses the Toll-like receptor 4-mediated inflammatory response through inhibition of the Akt/NF-κB pathway in BV2 microglial cells. Exp. Mol. Med., 2012, 44(6), 369-377.
[http://dx.doi.org/10.3858/emm.2012.44.6.042] [PMID: 22382990]
[14]
Haraguchi, H.; Inoue, J.; Tamura, Y.; Mizutani, K. Antioxidative components of Psoralea corylifolia (Leguminosae). Phytother. Res., 2002, 16(6), 539-544.
[http://dx.doi.org/10.1002/ptr.972] [PMID: 12237811]
[15]
Bonakdar, A.P.S.; Vafaei, F.; Farokhpour, M.; Esfahani, M.H.N.; Massah, A.R. Synthesis and anticancer activity assay of novel chalcone-sulfonamide derivatives. IJPR, 2017, 16, 565.
[16]
Caamal-Fuentes, E.; Peraza-Sánchez, S.; Torres-Tapia, L.; Moo-Puc, R. Isolation and identification of cytotoxic compounds from Aeschynomene fascicularis, a Mayan medicinal plant. Molecules, 2015, 20(8), 13563-13574.
[http://dx.doi.org/10.3390/molecules200813563] [PMID: 26213910]
[17]
Go, M.; Wu, X.; Liu, X. Chalcones: An update on cytotoxic and chemoprotective properties. Curr. Med. Chem., 2005, 12(4), 483-499.
[http://dx.doi.org/10.2174/0929867053363153] [PMID: 15720256]
[18]
Avupati, D.; Yejella, P. A review on pyrimidine scaffold. World J Pharm Res Technol, 2014, 3, 1563-1587.
[19]
Mallikarjunaswamy, C.; Mallesha, L.; Bhadregowda, D.G.; Pinto, O. Studies on synthesis of pyrimidine derivatives and their antimicrobial activity. Arab. J. Chem., 2017, 10, S484-S490.
[http://dx.doi.org/10.1016/j.arabjc.2012.10.008]
[20]
Abd El-Aleam, R.H.; George, R.F.; Hassan, G.S.; Abdel-Rahman, H.M. Synthesis of 1,2,4-triazolo[1,5-a]pyrimidine derivatives: Antimicrobial activity, DNA Gyrase inhibition and molecular docking. Bioorg. Chem., 2020, 94, 103411.
[http://dx.doi.org/10.1016/j.bioorg.2019.103411] [PMID: 31711767]
[21]
Tageldin, G.N.; Fahmy, S.M.; Ashour, H.M.; Khalil, M.A.; Nassra, R.A.; Labouta, I.M. Design, synthesis and evaluation of some pyrazolo[3,4-d]pyrimidine derivatives bearing thiazolidinone moiety as anti-inflammatory agents. Bioorg. Chem., 2018, 80, 164-173.
[http://dx.doi.org/10.1016/j.bioorg.2018.06.013] [PMID: 29929077]
[22]
Amr, A.E.G.E.; Omar, M.A.A.; Abdalla, M.M. Analgesic, anticonvulsant and antiparkinsonian activities of some synthesized 2, 6-bis (tetracarboxamide)-pyridine and macrocyclic tripeptide derivatives. Int. J. Pharmacol., 2016, 12(2), 74-80.
[http://dx.doi.org/10.3923/ijp.2016.74.80]
[23]
Elkanzi, N.A.A.; Kadry, A.M.; Ryad, R.M.; Bakr, R.B.; Ali El-Remaily, M.A.E.A.A.; Ali, A.M. Efficient and recoverable bio-organic catalyst cysteine for synthesis, docking study, and antifungal activity of new bio-active 3,4-Dihydropyrimidin-2(1 H)-ones/thiones under microwave irradiation. ACS Omega, 2022, 7(26), 22839-22849.
[http://dx.doi.org/10.1021/acsomega.2c02449] [PMID: 35811927]
[24]
Elkanzi, N.A.A.; El Azab, I.H.; Bakr, R.B. Design, synthesis, and in silico molecular docking study of some novel thiochromene derivatives with antimicrobial potential. Polycycl. Aromat. Compd., 2022, 42(9), 6760-6779.
[http://dx.doi.org/10.1080/10406638.2022.2041052]
[25]
Bakr, R.B.; Elkanzi, N.A.; Ghoneim, A.A.; Moustafa, S. Synthesis, molecular docking studies and in vitro antimicrobial evaluation of novel pyrimido [1, 2-a] quinoxaline and triazino [4, 3-a] quinoxaline derivatives. Heterocycles, 2018, 96, 1941-1957.
[26]
Elkanzi, N.A.A.; Bakr, R.B. Microwave assisted, antimicrobial activity and molecular modeling of some synthesized newly pyrimidine derivatives using 1, 4-diazabicyclo[2.2.2]octane as a catalyst. Lett. Drug Des. Discov., 2020, 17(12), 1538-1551.
[http://dx.doi.org/10.2174/1570180817999200802033351]
[27]
Hrichi, H.; Elkanzi, N.A.A.; Bakr, R.B. Novel β-lactams and thiazolidinone derivatives from 1, 4-dihydroquinoxaline Schiff’s base: Synthesis, antimicrobial activity and molecular docking studies. Chem. J. Moldova, 2020, 15(1), 86-94.
[http://dx.doi.org/10.19261/cjm.2019.647]
[28]
Abdelgawad, M.A.; Al-Sanea, M.; Musa, A.; Elmowafy, M.; El-Damasy, A.K.; Azouz, A.A.; Ghoneim, M.M.; Bakr, R.R. Docking study, synthesis, and anti-inflammatory potential of some new pyridopyrimidine-derived compounds. J. Inflamm. Res., 2022, 15, 451-463.
[http://dx.doi.org/10.2147/JIR.S343263] [PMID: 35125880]
[29]
Abdelgawad, M.A.; Elkanzi, N.A.A.; Musa, A.; Ghoneim, M.M.; Ahmad, W.; Elmowafy, M.; Abdelhaleem Ali, A.M.; Abdelazeem, A.H.; Bukhari, S.N.A.; El-Sherbiny, M.; Abourehab, M.A.S.; Bakr, R.B. Optimization of pyrazolo[1,5-a]pyrimidine based compounds with pyridine scaffold: Synthesis, biological evaluation and molecular modeling study. Arab. J. Chem., 2022, 15(8), 104015.
[http://dx.doi.org/10.1016/j.arabjc.2022.104015]
[30]
Alanazi, M.A.; Arafa, W.A.A.; Althobaiti, I.O.; Altaleb, H.A.; Bakr, R.B.; Elkanzi, N.A.A. Green design, synthesis, and molecular docking study of novel quinoxaline derivatives with insecticidal potential against Aphis craccivora. ACS Omega, 2022, 7(31), 27674-27689.
[http://dx.doi.org/10.1021/acsomega.2c03332] [PMID: 35967065]
[31]
Abdelgawad, M.A.; Musa, A.; Almalki, A.H.; Alzarea, S.I.; Mostafa, E.M.; Hegazy, M.M.; Mostafa-Hedeab, G.; Ghoneim, M.M.; Parambi, D.G.T.; Bakr, R.B.; Al-Muaikel, N.S.; Alanazi, A.S.; Alharbi, M.; Ahmad, W.; Bukhari, S.N.A.; Al-Sanea, M.M. Novel phenolic compounds as potential dual EGFR and COX-2 inhibitors: Design, semisynthesis, in vitro biological evaluation and in silico insights. Drug Des. Devel. Ther., 2021, 15, 2325-2337.
[http://dx.doi.org/10.2147/DDDT.S310820] [PMID: 34103896]
[32]
Elkanzi, N.A.; Bakr, R.B.; Ghoneim, A.A. Design, synthesis, molecular modeling study, and antimicrobial activity of some novel pyrano [2, 3‐b] pyridine and pyrrolo [2, 3‐b] pyrano [2.3‐d] pyridine derivatives. J. Heterocycl. Chem., 2019, 56, 406-416.
[33]
El Azab, I.H.; Bakr, R.B.; Elkanzi, N.A.A. Facile one-pot multicomponent synthesis of pyrazolo-thiazole substituted pyridines with potential anti-proliferative activity: Synthesis, in vitro and in silico studies. Molecules, 2021, 26(11), 3103.
[http://dx.doi.org/10.3390/molecules26113103] [PMID: 34067399]
[34]
Bauer, A.W.; Kirby, W.M.M.; Sherris, J.C.; Turck, M. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol., 1966, 45(Suppl. 4), 493-496.
[http://dx.doi.org/10.1093/ajcp/45.4_ts.493] [PMID: 5325707]
[35]
Aouf, A.; Bouaouina, S.; Abdelgawad, M.A.; Abourehab, M.A.S.; Farouk, A. In silico study for algerian essential oils as antimicrobial agents against multidrug-resistant bacteria isolated from pus samples. Antibiotics, 2022, 11(10), 1317.
[http://dx.doi.org/10.3390/antibiotics11101317] [PMID: 36289975]
[36]
Kolb, V.M. Green Organic Chemistry and its Interdisciplinary Applications; CRC Press, 2017.
[http://dx.doi.org/10.1201/9781315371856]

© 2025 Bentham Science Publishers | Privacy Policy