Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Molecular Docking, Acute Toxicity and Antibacterial Study of Debilon and Phorbasterone-B Extracted from Rhodophyta

Author(s): Saad Salman*, Fahad Hassan Shah, Mehwish Shah and Song Ja Kim*

Volume 21, Issue 10, 2024

Published on: 05 May, 2023

Page: [1858 - 1863] Pages: 6

DOI: 10.2174/1570180820666230410100524

Price: $65

Abstract

Introduction: Natural compounds obtained from marine algae, especially Rhodophyta are now being investigated for various biological activities. However, the antimicrobial activity and toxicity profile of compounds present in these algae isunderexplored.

Objective: This study procured two compounds, Debilon and Phorbasterone-B, from Rhodophyta to analyze their in silico and in vitro potential against pathogenic bacterial strains and their acute toxicity.

Methods: Debilon and Phorbasterone-B were extracted from Rhodophyta by a previously reported method and were further subsequently exploited computationally for their physicochemical properties, prediction of biological activity and molecular docking against bacterial proteins, toxicity, and experimentally for antibacterial potential against pathogenic strains of Vibrio cholera, Salmonella typhi, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa.

Results: Docking studies proved that these molecules possess a chemical affinity for the bacterial proteins and can inhibit the growth of these microorganisms, as confirmed by antibacterial assay. Whereas the prediction analysis and toxicity studies showed that the friendliness of these molecules to the human body is enormous.

Conclusion: From this study, it has been proved that DN and PB are perfect candidates for inhibiting these bacterial strains.

[1]
Patel, S. Therapeutic importance of sulfated polysaccharides from seaweeds: Updating the recent findings. 3 Biotech, 2012, 2(3), 171-185.
[http://dx.doi.org/10.1007/s13205-012-0061-9]
[2]
Shukla, P.S.; Borza, T.; Critchley, A.T.; Prithiviraj, B. Carrageenans from red seaweeds as promoters of growth and elicitors of defense response in plants. Front. Mar. Sci., 2016, 3, 81.
[http://dx.doi.org/10.3389/fmars.2016.00081]
[3]
Li, L.; Ni, R.; Shao, Y.; Mao, S. Carrageenan and its applications in drug delivery. Carbohydr. Polym., 2014, 103, 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2013.12.008] [PMID: 24528694]
[4]
Genicot, S.; Préchoux, A. Carrageenans: New tools for new applications. Blue Biotechnol., 2018, 1, 371-416.
[http://dx.doi.org/10.1002/9783527801718.ch12]
[5]
Sahiner, N.; Sagbas, S.; Yılmaz, S. Microgels derived from different forms of carrageenans, kappa, iota, and lambda for biomedical applications. MRS Adv., 2017, 2(47), 2521-2527.
[http://dx.doi.org/10.1557/adv.2017.415]
[6]
Ghanbarzadeh, M.; Golmoradizadeh, A.; Homaei, A. Carrageenans and carrageenases: Versatile polysaccharides and promising marine enzymes. Phytochem. Rev., 2018, 17(3), 535-571.
[http://dx.doi.org/10.1007/s11101-018-9548-2]
[7]
Derkach, S.R.; Voron’ko, N.G.; Kuchina, Y.A.; Kolotova, D.S.; Gordeeva, A.M.; Faizullin, D.A.; Gusev, Y.A.; Zuev, Y.F.; Makshakova, O.N. Molecular structure and properties of κ-carrageenan-gelatin gels. Carbohydr. Polym., 2018, 197, 66-74.
[http://dx.doi.org/10.1016/j.carbpol.2018.05.063] [PMID: 30007659]
[8]
Sedayu, B.B.; Cran, M.J.; Bigger, S.W. A review of property enhancement techniques for carrageenan-based films and coatings. Carbohydr. Polym., 2019, 216, 287-302.
[http://dx.doi.org/10.1016/j.carbpol.2019.04.021] [PMID: 31047069]
[9]
Khare, A.K.; Abraham, R.J.J.; Rao, V.A.; Babu, R.N. Utilization of carrageenan, citric acid and cinnamon oil as an edible coating of chicken fillets to prolong its shelf life under refrigeration conditions. Vet. World, 2016, 9(2), 166-175.
[http://dx.doi.org/10.14202/vetworld.2016.166-175] [PMID: 27051203]
[10]
Zaidi, M.I.; Wattoo, F.H.; Wattoo, M.H.S.; Tirmizi, S.A.; Salman, S. Antibacterial activities of nicotine and its zinc complex. Afr. J. Microbiol. Res., 2012, 6(24), 5134-5137.
[11]
Rahelivao, M.; Gruner, M.; Andriamanantoanina, H.; Andriamihaja, B.; Bauer, I.; Knölker, H.J. Red Algae (Rhodophyta) from the coast of madagascar: Preliminary bioactivity studies and isolation of natural products. Mar. Drugs, 2015, 13(7), 4197-4216.
[http://dx.doi.org/10.3390/md13074197] [PMID: 26198236]
[12]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Christie, C.H.; Dalenberg, K.; Di Costanzo, L.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ganesan, S.; Goodsell, D.S.; Ghosh, S.; Green, R.K.; Guranović, V.; Guzenko, D.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Persikova, I.; Randle, C.; Rose, A.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Tao, Y.P.; Voigt, M.; Westbrook, J.D.; Young, J.Y.; Zardecki, C.; Zhuravleva, M. RCSB protein data bank: Powerful new tools for exploring 3D structures of biological macromolecules for basic and applied research and education in fundamental biology, biomedicine, biotechnology, bioengineering and energy sciences. Nucleic Acids Res., 2021, 49(D1), D437-D451.
[http://dx.doi.org/10.1093/nar/gkaa1038] [PMID: 33211854]
[13]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[14]
Xu, D.; Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J., 2011, 101(10), 2525-2534.
[http://dx.doi.org/10.1016/j.bpj.2011.10.024] [PMID: 22098752]
[15]
Constans, A. Building an informatics bridge: Accelrys’ Discovery Studio suite facilitates scientific collaboration. Scientist, 2002, 16(20), 54-55.
[16]
Hadda, T.B.; Rastija, V.; AlMalki, F.; Titi, A.; Touzani, R.; Mabkhot, Y.N.; Khalid, S.; Zarrouk, A.; Siddiqui, B.S. Petra/Osiris/Molinspiration and molecular docking analyses of 3-hydroxy-indolin-2-one derivatives as potential antiviral agents. Curr. Computeraided Drug Des., 2021, 17(1), 123-133.
[http://dx.doi.org/10.2174/1573409916666191226110029] [PMID: 31878861]
[17]
Lagunin, A.; Zakharov, A.; Filimonov, D.; Poroikov, V. QSAR modelling of rat acute toxicity on the basis of PASS prediction. Mol. Inform., 2011, 30(2-3), 241-250.
[http://dx.doi.org/10.1002/minf.201000151] [PMID: 27466777]
[18]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[19]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]

© 2025 Bentham Science Publishers | Privacy Policy